The Fairchild Notebooks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mos Technology, 1963-1974: a Dozen Crucial Years
One of IBM’s most important MOS Technology, 1963-1974: A Dozen Crucial Years contributions to MOS research came from the Components Division, which was responsible for developing by Ross Knox Bassett and manufacturing bipolar transistors for its large computer systems and had very little interest in MOS transistors line can be drawn from the as such. As part of its work on Frosch’s and Derick’s work on bipolar transistors, Donald Kerr and silicon dioxide to the MOS (metal- a group of engineers had discovered A that depositing small amounts of oxide-semiconductor) transistor’s domi- nance of semiconductor technology, phosphorous on the silicon-dioxide but it is neither short nor straight. That surface and forming a layer of line has several discernable segments, phosphosilicate glass (PSG) could first from Frosch and Derick’s work, limit the amount of leakage in bipolar until 1963. In this interval, by and transistors and play an important role large, no one thought seriously about a in enhancing the stability of MOS metal-oxide-semiconductor as a viable transistors. Jerome Eldridge and Pieter technology in its own right. The second Balk from IBM Research implemented segment runs from 1963, when the this work by using thin layers of combination of integrated circuits and PSG to make stable MOS devices. the planar manufacturing process had Other important work on the physics FIG. 2. Drawing of Atalla and Kahng’s “silicon-silicon dioxide surface device,” now known as and chemistry of MOS devices done led people to see MOS transistors as a the MOS transistor, from a 1961 Bell Labs technical memorandum by Kahng. -
Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical
SURF Research Talk, June 16, 2015 Along for the Ride – reflections on the past, present, and future of nanoelectronics Mark Lundstrom [email protected] Electrical and Computer Engineering Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA Lundstrom June 2015 what nanotransistors have enabled “If someone from the 1950’s suddenly appeared today, what would be the most difficult thing to explain to them about today?” “I possess a device in my pocket that is capable of assessing the entirety of information known to humankind.” “I use it to look at pictures of cats and get into arguments with strangers.” Curious, by Ian Leslie, 2014. transistors The basic components of electronic systems. >100 billion transistors Lundstrom June 2015 transistors "The transistor was probably the most important invention of the 20th Century, and the story behind the invention is one of clashing egos and top secret research.” -- Ira Flatow, Transistorized! http://www.pbs.org/transistor/ Lundstrom June 2015 “The most important moment since mankind emerged as a life form.” Isaac Asimov (speaking about the “planar process” used to manufacture ICs - - invented by Jean Hoerni, Fairchild Semiconductor, 1959). IEEE Spectrum Dec. 2007 Lundstrom June 2015 Integrated circuits "In 1957, decades before Steve Jobs dreamed up Apple or Mark Zuckerberg created Facebook, a group of eight brilliant young men defected from the Shockley Semiconductor Company in order to start their own transistor business…” Silicon Valley: http://www.pbs.org/wgbh/americanexperience/films/silicon/ -
Intuitive Analog Circuit Design
Chapter 1 Introduction MTThMarc T. Thompson, PhDPh.D. Thompson Consulting, Inc. 9 Jacob Gates Road Harvard, MA 01451 Phone: (978) 456-7722 Fax: (240) 414-2655 Email: [email protected] Web: http://www.thompsonrd.com Slides to accomppyany Intuitive Analoggg Circuit Design byyp Marc T. Thompson © 2006-2008, M. Thompson Analog Design is Not Dead • The world is analog •…(well, until we talk about Schrodinger) Introduction 2 Partial Shopping List of Analog Design • Analogg,,p filters: Discrete or ladder filters, active filters, switched capacitor filters. • Audio amplifiers: Power op-amps, output (speaker driver) stages • Oscillators: Oscillators, phase-locked loops, video demodulation • Device fabrication and device physics: MOSFETS, bipolar transistors, diodes, IGBTs,,,, SCRs, MCTs, etc. • IC fabrication: Operational amplifiers, comparators, voltage references, PLLs, etc • Analog to digital interface: A/D and D/A, voltage references • Radio frequency circuits: RF amplifiers, filters, mixers and transmission lines; cable TV • Controls: Control system design and compensation, servomechanisms, speed controls • Power electronics: This field requires knowledge of MOSFET drivers, control syyg,y,stem design, PC board layout, and thermal and magg;netic issues; motor drivers; device fabrication of transistors, MOSFETs (metal oxide semiconductor field effect transistors), IGBTs (insulated gate bipolar transistors), SCRs (silicon- controlled rectifiers) • Medical electronics: instrumentation (EKG, NMR), defibrillators, implanted medical devices • Simulation: SPICE and other circuit simulators • PC board layout: This requires knowledge of inductance and capacitive effects, grounding, shielding and PC board design rules. Introduction 3 Lilienfeld Patent (c. 1930) 4 Introduction 1st Bipolar Transistor (c. 1948) • Point contact transistor , demonstrated December 23, 1947 at Bell Labs (Shockley, Bardeen and Brattain) Reference: Probir K. -
Copyrighted Material
pter O ha n C e An Historic Overview of Venture Capitalism • Those who cannot remember the past are condemned to repeat it. —George Santayana Why is an historical overview of VC important? Because history does in fact repeat itself, and a study of history allows us to frame an understanding of the present and the future. The playersCOPYRIGHTED and the investment climate MATERIAL change, but the entrepreneur’s innate instinct to risk capital for a return is no different today from what it was when John D. Rockefeller became America’s first billionaire in 1900. When Andrew c01.indd 1 10-12-2013 8:50:11 [2] The Little Book of Venture Capital Investing Carnegie joined forces with his childhood friend, Henry Phipps, to form Carnegie Steel in 1892, they were driven by the same conviction to improve the status quo as are the idealistic dream chasers of the twenty-first century. It was these early trailblazers who paved the way and developed the techniques that have laid the foundation for VC as we know it today. Arguably, historians will debate the nature of history and its usefulness. This includes using the discipline as a way of providing perspective on the problems and opportu- nities of the present. I believe it to be an important tool in providing a systematic account and window to the future. It is patently dishonest and irresponsible to perpetuate the popular mythology that those who created great wealth in America are to be despised and that there are no useful les- sons to be learned from an objective, historical review of their contributions to the subject at hand. -
Planar Process with Noyce’S Interconnection Via a Diffused Layer of Metal Conductors
Future Horizons Ltd Blakes Green Cottage TN15 0LQ, UK Tel: +44 1732 740440 Fax: +44 1732 608045 [email protected] www.futurehorizons.com Research Brief: 2019/01 – The Planar IC Process The Planar IC Process On 1 December 1957, Jean Hoerni, a Swiss physicist and Fairchild Semiconductor co-founder, recorded in his patent notebook an entry called "A method of protecting exposed p-n junctions at the surface of silicon transistors by oxide masking techniques." This was the first formal documentation of the planar semiconductor process, a radically new transistor design in which the oxide layer was left in place on the silicon wafer to protect the sensitive p-n junctions underneath. Focused on getting its first semiconductor devices into production, Fairchild did not pursue Hoerni’s planar approach at that time and it was not until 14 January 1959 that Hoerni finally wrote up his disclosure for what would become U.S. Patent 3025589. One week later, on 23 January 1959, Robert (Bob) Noyce, a fellow Fairchild co-founder, wrote up a disclosure for the planar IC. Fairchild’s first working planar IC was built some 16 months later in May 1960. Sixty years on, this technology remains the basis for virtually all semiconductor manufacturing today. The Early Days By the late 1950s, even though barely a decade old, transistors had already gone through several stages of development, including the material transition from germanium to silicon and the move from piece by piece to batch manufacturing through a simple photolithographic and Page 1 of 8 © Future Horizons 1989-2019, Reproduction Prohibited - All Rights Reserved The Planar IC Process The Global Semiconductor Industry Analysts Research Brief: 2019/01 etching technique known as the Mesa process. -
Oral History of Jay Last
Oral History of Jay Last Interviewed by: Craig Addison Recorded: September 15, 2007 Beverly Hills, California CHM Reference number: X4158.2008 © 2007 Computer History Museum Oral History of Jay Last Craig Addison: Jay, could you start off by talking about where you were brought up and your education experience? Jay Last: Sure, I was born in Western Pennsylvania and went to school there in a small steel mill town. My father worked in the steel mill there and I was born in 1929 -- the week the stock market crashed -- and so in my first decade steel was a pretty tough industry to be involved with from my father’s point-of- view. So my first 10 years were the Depression and after that there was five years of war so by the time I was 15 I realized I had seen nothing but depressions and wars. I got a good high school education in this small town and then went to the University of Rochester and got a Bachelor’s degree in optics and had a very heavy physics training there also which gave me the background, then, to go on to MIT and get a doctorate in solid state physics. Solid state physics was a relatively new field then. All of the technical developments from the 1930s and the things happening in the war just had this vast amount of physical phenomenon that were available for use in various commercial products and improving whatever we were doing. So my timing was just perfect. I got an education in solid state physics…so I knew the background of the transistor field. -
A Study of Soi Cmos and Gan Mmic Technology for Development of Low Power Rf Transceiver
A STUDY OF SOI CMOS AND GAN MMIC TECHNOLOGY FOR DEVELOPMENT OF LOW POWER RF TRANSCEIVER Sanjay S.Khonde1, Dr.Ashok Ghatol2, Dr.S.V.Dudul3 1 Research Scholar, Sant Gadge baba Amravati University, Amravati 2 Former Vice Chancellor of BATU Lonere 3.Professor and Head, Department of Electronics, Sant Gadge Baba Amravati University, Amravati. ABSTRACT The recent trends shows that there are many upcoming semiconductor technologies used for developing low power RF transceiver required for wireless sensor node. The SOI CMOS and GaN MMIC technologies are most common out of them. The paper is divided into two parts. The first part of this paper consists of study of these two technologies based upon certain parameters like capability, device structure, device characteristics, effect of temperature, process of manufacturing the device etc. The second part discusses the device performance as an RF (Radio Frequency) circuit component necessary for high frequencies Keywords: SOI CMOS, GaN MMIC, RF transceiver, low power I. INTRODUCTION The evolution of new semiconductor technology has improved performance of devices giving rise to more power density, gain, noise figure, shrink in size and reduce power consumption. SOI CMOS is emerging process from CMOS as compared to CMOS and BiCMOS with lots of advantages when high resistivity silicon substrate is used.[7]The advantages which draw more attention are low loss, less noise and low leakage etc. The GaN (Gallium Nitride technology), is revolutionary giving five times improvement in power density over the traditional GaAs (Gallium Arsenide).Due to this it is now been used in MMIC ( Monolithic Microwave Integrated Circuit) for next generation mobile Communication system and wireless sensor network.[11] The rest of the paper contains background of these technologies and also the study based upon different parameters like capability, device structure, device characteristics, effect of temperature, process and applications. -
CSET Issue Brief
SEPTEMBER 2020 The Chipmakers U.S. Strengths and Priorities for the High-End Semiconductor Workforce CSET Issue Brief AUTHORS Will Hunt Remco Zwetsloot Table of Contents Executive Summary ............................................................................................... 3 Key Findings ...................................................................................................... 3 Workforce Policy Recommendations .............................................................. 5 Introduction ........................................................................................................... 7 Why Talent Matters and the American Talent Advantage .............................. 10 Mapping the U.S. Semiconductor Workforce .................................................. 12 Identifying and Analyzing the Semiconductor Workforce .......................... 12 A Large and International Workforce ........................................................... 14 The University Talent Pipeline ........................................................................ 16 Talent Across the Semiconductor Supply Chain .......................................... 21 Chip Design ................................................................................................ 23 Electronic Design Automation ................................................................... 24 Fabrication .................................................................................................. 24 Semiconductor Manufacturing Equipment (SME) Suppliers -
The Legacy of Bob Noyce
The Legacy of Bob Noyce This February, a new documentary about the rise of Silicon Valley and the story of Bob Noyce will air on the Public Broadcasting System’s American Experience, the most-watched history series on American television. As the filmmakers put it, the radical innovations of the brilliant, charismatic young physicist Noyce included the integrated circuit, which transformed the way the world works, plays, and communicates, and has made possible everything from space exploration to smart phones, pacemakers to microwaves. In other words, all of modern electronics and, directly or indirectly, most of modern technology. A quote from Bob guards the entrance to the Robert Noyce Building: “Innovation is everything.” Hasn’t innovation moved on to someplace else? Like consumer electronics, e-readers, phones, tablets – all the cool gadgets in the Top Ten Black Friday Most Popular Items list? You could be forgiven for having missed it, or for thinking it didn’t matter much: Recently the IEEE named two retired Intel technologists, Sunlin Chou and Youssef El-Mansy, the next winners of its Robert N. Noyce Medal. All Chou and El-Mansy did was this: Establish a research-development manufacturing methodology that led to industry leadership in logic technology for advanced microprocessor products. And that led to strained silicon at 90 nanometers, high-k and metal gate at 45nm, and tri-gate transistors at 22nm. Along the way, organizational innovations from Chou and El-Mansy included Copy Exactly, a focus on defect reduction, increased work-in- process turns, and more. Andy Grove, in an email to them, wrote: “Bob Noyce, who knew a thing or two about exceptional contributions, would be even more emphatic in congratulating you. -
Who Invented the Integrated Circuit?
Who Invented the Integrated Circuit? Gene Freeman IEEE Pikes Peak Region Life Member May 2020 Gene Freeman May 2020 Kilby and Noyce Photos (Kilby, TI Noyce, Intel) Gene Freeman May 2020 Commemorative Microchip Stamp Image: Computer- Stamps.com Gene Freeman May 2020 Motivation Gene Freeman May 2020 Trav-ler 4 Tube Tabletop AM Radio around 1949 Gene Freeman May 2020 Discrete passives and point to point wiring Gene Freeman May 2020 •Computers •Space vehicles Motivators •Decrease power, space, cost •Increase reliability Gene Freeman May 2020 • In an article celebrating the tenth anniversary of the invention of the computer, J. A. Morton, A Vice President of Bell Labs wrote in Proceedings of the IRE in 1958: • “For some time now, electronic man has known how 'in principle' to extend greatly his visual, tactile, and mental abilities through the digital transmission and Tyranny of processing of all kinds of information. However, all these functions suffer from what has been called Numbers 'the tyranny of numbers.' Such systems, because of their complex digital nature, require hundreds, thousands, and sometimes tens of thousands of electron devices. Each element must be made, tested, packed, shipped, unpacked, retested, and interconnected one-at-a-time to produce a whole system.” Gene Freeman May 2020 •Active Components: Vacuum Tubes to transistors Solution •Passive Components: Discrete elements to integrated form •Wires to integrated wires Gene Freeman May 2020 Key Companies in the Story 1925 1956 1968 Bell Labs – Western Electric and AT&T Shockley Semiconductor Laboratory – Intel- Formed 1968 consolidate research activities of Bell Started by William Shockley in 1956 By Robert Noyce and Gordon Moore System. -
Fairchild Semiconductor
Report to the Computer History Museum on the Information Technology Corporate Histories Project Semiconductor Sector Fairchild Semiconductor Company Details Name: Fairchild Semiconductor Sector: Semiconductor Sector Description . THIS SITE WAS ESTABLISHED TO COLLECT AND PRESENT INFORMATION AND STORIES RELATED TO FAIRCHILD SEMICONDUCTOR AS PART OF THE OCTOBER 2007 CELEBRATION OF THE FIFTIETH ANNIVERSARY OF THE FOUNDING OF THE COMPANY. IF YOU HAVE ANY CORRECTIONS OR ADDITIONAL INFORMATION TO CONTRIBUTE PLEASE CONTACT THE FACILITATORS LISTED BELOW. Overview Founded in 1957 in a building now designated as California Historical Landmark # 1000 in Palo Alto, California by eight young engineers and scientists from Shockley Semiconductor Laboratories, Fairchild Semiconductor Corporation pioneered new products and technologies together with an entrepreneurial style and manufacturing and marketing techniques that reshaped Silicon Valley and the world-wide industry. The Planar process invented in 1959 revolutionized the production of semiconductor devices and enables the manufacture of today's billion transistor microprocessor and memory chips. Funded by and later acquired as a division of Fairchild Camera and Instrument Corporation of Syosset, New York, Fairchild was the first manufacturer to introduce high-frequency silicon transistors and practical monolithic integrated circuits to the market. At the peak of its influence in the mid-1960s, the division was one of the world’s largest producers of silicon transistors and controlled over 30 percent of the market for ICs. Director of Research and Development, Gordon Moore observed in 1965 that device complexity was increasing at a consistent rate and predicted that this would continue into the future. “Moore’s Law,” as it became known, created a yardstick against which companies have measured their technology progress for over 40 years. -
A History of Silicon Valley the Greatest Creation of Wealth in History (An Immoral Tale) Being a Presentation by Piero Scaruffi
A History of Silicon Valley The Greatest Creation of Wealth in History (An immoral tale) being a presentation by piero scaruffi www.scaruffi.com adapted from the book “A History of Silicon Valley” Piero Scaruffi • Cultural Historian • Cognitive Scientist • Blogger • Poet • www.scaruffi.com www.scaruffi.com 2 This is Part 2 • See http://www.scaruffi.com/svhistory for the index of this Powerpoint presentation and links to the other parts – 1900-1960 – The 1960s – The 1970s – The 1980s – The 1990s – The 2000s www.scaruffi.com 3 What the book is about… • The book is a history of the high-tech industry in the San Francisco Bay Area (of which Silicon Valley is currently the most famous component) www.scaruffi.com 4 Semiconductors – Fairchild Semiconductors’ planar integrated circuit (1961) – Fairchild Semiconductors employees: Don Farina, Don Valentine, Charles Sporck, Jerry Sanders, Jack Gifford, Mike Markkula – Signetics (1961), first Fairchild spinoff – Main customers of integrated circuits: the Air Force and NASA www.scaruffi.com 5 Life Sciences • Stanford hires Carl Djerassi (1959), inventor of the birth-control pill • Alejandro Zaffaroni’s Syntex relocates to the Stanford Industrial Park (1963) www.scaruffi.com 6 Meanwhile elsewhere… • New York – IBM 7000 transistorized series (1960) – IBM’s SABRE (1960), the first online transaction processing, an adaptation of SAGE to automating American Airlines' reservation system – GE’s IDS (1961), the first database management system • Boston (MIT) – CTSS (1961), the first time-sharing system – "Spacewar" (1962), the first computer game – Ivan Sutherland’s "Sketchpad“ (1963), the first computer program with a GUI www.scaruffi.com 7 Meanwhile elsewhere… • US Government – Paul Baran (Rand Corp): a distributed network of computers can survive a nuclear strike (1962) – Ted Nelson (Harvard Univ): hypertext (1965) – Joseph Licklider (DARPA’s IPTO) funds Project MAC for A.I.