First Record of Ategmic Ovules in Orchidaceae Offers New Insights Into Mycoheterotrophic Plants

Total Page:16

File Type:pdf, Size:1020Kb

First Record of Ategmic Ovules in Orchidaceae Offers New Insights Into Mycoheterotrophic Plants ORIGINAL RESEARCH published: 29 November 2019 doi: 10.3389/fpls.2019.01447 First Record of Ategmic Ovules in Orchidaceae Offers New Insights Into Mycoheterotrophic Plants Mariana Ferreira Alves *, Fabio Pinheiro, Marta Pinheiro Niedzwiedzki and Juliana Lischka Sampaio Mayer * Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil The number of integuments found in angiosperm ovules is variable. In orchids, most species show bitegmic ovules, except for some mycoheterotrophic species that show ovules with only one integument. Analysis of ovules and the development of the seed coat provide important information regarding functional aspects such as dispersal and seed germination. This study aimed to analyze the origin and development of the seed coat of the mycoheterotrophic orchid Pogoniopsis schenckii and to compare this development with that of other photosynthetic species of the family. Flowers and Edited by: fruits at different stages of development were collected, and the usual methodology Jen-Tsung Chen, National University of Kaohsiung, for performing anatomical studies, scanning microscopy, and transmission microscopy Taiwan following established protocols. P. schenckii have ategmic ovules, while the other species Reviewed by: are bitegmic. No evidence of integument formation at any stage of development was David Smyth, found through anatomical studies. The reduction of integuments found in the ovules Monash University, Australia Dennis William Stevenson, could facilitate fertilization in this species. The seeds of P. schenckii, Vanilla planifolia, and New York Botanical Garden, V. palmarum have hard seed coats, while the other species have seed coats formed by United States the testa alone, making them thin and transparent. P. schenckii, in contrast to the other *Correspondence: Mariana Ferreira Alves species analyzed, has a seed coat that originates from the nucellar epidermis, while in [email protected] other species, the seed coat originates from the outer integument. Juliana Lischka Sampaio Mayer [email protected] Keywords: anatomy, integument, Epidendroideae, saprophytic, Vanilloideae Specialty section: This article was submitted to INTRODUCTION Plant Development and EvoDevo, a section of the journal Flowers are highly variable structures, resulting in a great morphological diversity and a variety of Frontiers in Plant Science adaptive processes in angiosperms (Endress, 1994; Friis et al., 2011). Variations in flower size and Received: 05 July 2019 number of whorls, besides the presence or absence of fused floral parts, are caused by differences Accepted: 17 October 2019 that occur during the development of floral organs. Plants exhibit open organization, which means Published: 29 November 2019 that their organs are generally exposed, and that they do not have any organ or parts of organs Citation: internalized, with the exception of carpels (Endress, 2015). In turn, carpels can be free or united, Alves MF, Pinheiro F, Niedzwiedzki MP becoming curved during their initial development, with edges getting closed or sealed when they and Mayer JLS (2019) First Record of are fully developed (Endress, 2006). While most floral organs are exposed, mainly due to the action Ategmic Ovules in Orchidaceae Offers New Insights Into of pollinating agents (e.g., animals, wind, and water), ovules are completely enclosed in the carpel a Mycoheterotrophic Plants. condition known as angiospermy (Endress, 2006). Front. Plant Sci. 10:1447. Ovules are female reproductive structures that develop in the seeds (Bouman, 1984; Endress, 2011). doi: 10.3389/fpls.2019.01447 Despite their relatively stable basic structure, ovules have a wide diversity of form, varying in terms of Frontiers in Plant Science | www.frontiersin.org 1 November 2019 | Volume 10 | Article 1447 Alves et al. Ategmic Ovules in Orchidaceae their position in the ovary, size, curvature, number and thickness of mycoheterotrophic species evolved several times independently integument, funiculus length, and degree of vascularization (Endress, (Li et al., 2019). In the family, 235 species with this condition 2011). For angiosperms, there are records of bitegmic, unitegmic, are described (Merckx et al., 2013), and little is known about the and ategmic species (Bouman, 1984; Endress, 2011). Although most reproductive process of these species. Owing to the importance of angiosperms are bitegmic, variation in the number and thickness the seed coat in the life cycle of plants, and because it is considered of integuments can be observed at different taxonomic levels, such a stable characteristic, understanding its structure and development as in families and genera. For example, in Olacaceae, there are can reveal information relevant to its functional aspects, such as described bitegmic, unitegmic, and ategmic species (Brown et al., dispersal and seed germination (Bouman, 1984; Windsor et al., 2000; 2010). In Melastomataceae, ovules are bitegmic; however, in species Endress, 2011). Thus, the objective of this work was to analyze the of the same genus, the number of the outer integument layers can origin and development of the seed coat of the mycoheterotrophic vary from two to many (Caetano et al., 2018). orchid Pogoniopsis schenckii Cogn, and to compare this development Previous studies have described the main function of with that of other species in the family that have chlorophyll integuments as the delimitation of the micropyle, and protection and present different mechanisms of seed dispersal, Polystachya to the embryo sac and embryo (Herrero, 2001); however, they estrellensis Rchb.f., Elleanthus brasiliensis Rchb.f., Isochilus linearis may also have other functions in species of different families. (Jacq) Barb.Rodr., and Cleistes libonii (Rchb. f.) Schltr.—species For example, the inner epidermis of the inner integument can that exhibit anemochory, and Vanilla planifolia Jacks. ex Andrews function as a secretory tissue, playing a role in the nutrition of and Vanilla palmarum (Salzm ex. Lindl.) Lindl.—species showing the embryonic sac. This layer of cells is known as integumentary evidence of zoochory (Cribb, 1999). Pogoniopsis schenckii is an tapetum (Kapil and Tiwari, 1978). Another hypothesis is that the endemic mycoheterotrophic species found in the Brazilian Atlantic number of integument layers could be related to the fruit type Forest. Prior studies indicate a tendency of reduction in the number and seed dispersal mode. A study performed with several species of integuments in species of mycoheterotrophic plants, including of Melastomataceae tried to confirm if there was a relationship orchids (Abe, 1976; Arekal and Karanth, 1981; Maas and Ruyters, between ovules with multiseriate outer integument and fleshy 1986; Bouman et al., 2002; Endress, 2011; Krawczyk et al., 2016; Li fruits (Caetano et al., 2018). The data obtained did not confirm this et al., 2016). Thus, our hypothesis is thatP. schenckii also exhibits relation; however, ancestral state reconstruction shows a tendency reduction in the number of integuments, leading to a greater for ovules with multiseriate outer integument to occur in fleshy fruit exposure of the ovule and simplification of the seed coat involving clades. Recent studies conducted with Arabidopsis show that the the embryo, which may facilitate the penetration of fungal hyphae. number of ovule integument layers is related to gene and hormone In this context, structural information on the reproductive organs of expression (Bencivenga et al., 2012; Gomez et al., 2016; Coen and mycoheterotrophic species, especially P. schenckii, can contribute to Magnani, 2018) and may be responsible for the seed coat diversity the elucidation of processes related to the symbiosis between fungi observed in angiosperms. After fertilization, the integument layers and mycoheterotrophic species. In addition, since the mode of seed go through different pathways to establish a protective barrier for dispersal of P. schenckii is not known, characterization of the stages the embryo (Windsor et al., 2000). There is an immense diversity in of development of its seeds can contribute to the understanding of seed structure, such as size, color, texture, and shape; this diversity the ecological interactions involved in the dispersal and colonization is related to dispersal and germination strategies (Boesewinkel and of new habitats. Bouman, 1984), and may have been initially determined by the arrangement and number of ovule integuments. In most angiosperms, the formation of ovules is complete MATERIAL AND METHODS when anthesis starts. In Orchidaceae, however, a different pattern is observed, where in the development of ovules and Species Studied and Literature Review their respective placental proliferation are conditioned to the Pogoniopsis schenckii Cogn. -Epidendroideae- is aclorophyllated pollination event (Swamy, 1949a). In general, orchids have and remains underground for almost its entire life cycle. During low reproductive success because of low pollination rates its reproductive phase, a floral stem appears above ground level; (Cozzolino and Widmer, 2005). Thus, ovules will be produced afterwards, flowers and fruits develop.Polystachya estrellensis only if there is guaranteed seed formation, in order to prevent Rchb. f., Elleanthus brasiliensis Rchb. f., Isochilus linearis (Jacq) unnecessary energy expenditure (Arditti, 1992). The formation Barb. Rodr., belonging to the subfamily Epidendroideae, and of
Recommended publications
  • Orchids: 2017 Global Ex Situ Collections Assessment
    Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions.
    [Show full text]
  • Bonpland and Humboldt Specimens, Field Notes, and Herbaria; New Insights from a Study of the Monocotyledons Collected in Venezuela
    Bonpland and Humboldt specimens, field notes, and herbaria; new insights from a study of the monocotyledons collected in Venezuela Fred W. Stauffer, Johann Stauffer & Laurence J. Dorr Abstract Résumé STAUFFER, F. W., J. STAUFFER & L. J. DORR (2012). Bonpland and STAUFFER, F. W., J. STAUFFER & L. J. DORR (2012). Echantillons de Humboldt specimens, field notes, and herbaria; new insights from a study Bonpland et Humboldt, carnets de terrain et herbiers; nouvelles perspectives of the monocotyledons collected in Venezuela. Candollea 67: 75-130. tirées d’une étude des monocotylédones récoltées au Venezuela. Candollea In English, English and French abstracts. 67: 75-130. En anglais, résumés anglais et français. The monocotyledon collections emanating from Humboldt and Les collections de Monocotylédones provenant des expéditions Bonpland’s expedition are used to trace the complicated ways de Humboldt et Bonpland sont utilisées ici pour retracer les in which botanical specimens collected by the expedition were cheminements complexes des spécimens collectés lors returned to Europe, to describe the present location and to de leur retour en Europe. Ces collections sont utilisées pour explore the relationship between specimens, field notes, and établir la localisation actuelle et la composition d’importants descriptions published in the multi-volume “Nova Genera et jeux de matériel associés à ce voyage, ainsi que pour explorer Species Plantarum” (1816-1825). Collections in five European les relations existantes entre les spécimens, les notes de terrain herbaria were searched for monocotyledons collected by et les descriptions parues dans les divers volumes de «Nova the explorers. In Paris, a search of the Bonpland Herbarium Genera et Species Plantarum» (1816-1825).
    [Show full text]
  • Orchids of Suspa-Kshamawoti, Dolakha -An Annotated Checklist
    Banko Janakari, Vol 29 No. 2, 2019 Pp 28‒41 Karki & Ghimire https://doi.org:10.3126/banko.v29i2.28097 Orchids of Suspa-Kshamawoti, Dolakha -An annotated checklist S. Karki1* and S. K. Ghimire1 Suspa-Kshamawoti area of Dolakha district covers diverse vegetation types and harbors many interesting species of orchids. This paper documents 69 species of orchids covering 33 genera based on repeated field surveys and herbarium collections. Of them, 50 species are epiphytic (including lithophytes) and 19 species are terrestrial. Information regarding habit and habitat, phenology, host species and elevational range of distribution of each species are provided in the checklist. Keywords : Bulbophyllum, Nepal, Orchidaceae rchids are one of the most diverse and contributions on documentation of orchid flora are highly evolved groups of flowering made by Bajracharya (2001; 2004); Rajbhandari Oplants, and orchidaceae is the largest and Bhattrai (2001); Bajracharya and Shrestha family comprising 29,199 species and are (2003); Rajbhandari and Dahal (2004); Milleville globally distributed (Govaerts et al., 2017). Out and Shrestha (2004); Subedi et al. (2011); of them, two-third belong to epiphytes (Zotz and Rajbhandari (2015); Raskoti (2015); Raskoti and Winkler, 2013). In Nepal, orchidaceae is one of Ale (2009; 2011; 2012; 2019) and Bhandari et al. the major families amongst the higher flowering (2016 b; 2019). Suspa-Kshamawoti, the northern plants and comprises 502 taxa belonging to 108 part of the Dolakha district covers diverse genera, which forms around 8 percent of our flora vegetation and harbors some interesting species (Raskoti and Ale, 2019). The number of species of orchids. Bhandari et al.
    [Show full text]
  • E29695d2fc942b3642b5dc68ca
    ISSN 1409-3871 VOL. 9, No. 1—2 AUGUST 2009 Orchids and orchidology in Central America: 500 years of history CARLOS OSSENBACH INTERNATIONAL JOURNAL ON ORCHIDOLOGY LANKESTERIANA INTERNATIONAL JOURNAL ON ORCHIDOLOGY Copyright © 2009 Lankester Botanical Garden, University of Costa Rica Effective publication date: August 30, 2009 Layout: Jardín Botánico Lankester. Cover: Chichiltic tepetlauxochitl (Laelia speciosa), from Francisco Hernández, Rerum Medicarum Novae Hispaniae Thesaurus, Rome, Jacobus Mascardus, 1628. Printer: Litografía Ediciones Sanabria S.A. Printed copies: 500 Printed in Costa Rica / Impreso en Costa Rica R Lankesteriana / International Journal on Orchidology No. 1 (2001)-- . -- San José, Costa Rica: Editorial Universidad de Costa Rica, 2001-- v. ISSN-1409-3871 1. Botánica - Publicaciones periódicas, 2. Publicaciones periódicas costarricenses LANKESTERIANA i TABLE OF CONTENTS Introduction 1 Geographical and historical scope of this study 1 Political history of Central America 3 Central America: biodiversity and phytogeography 7 Orchids in the prehispanic period 10 The area of influence of the Chibcha culture 10 The northern region of Central America before the Spanish conquest 11 Orchids in the cultures of Mayas and Aztecs 15 The history of Vanilla 16 From the Codex Badianus to Carl von Linné 26 The Codex Badianus 26 The expedition of Francisco Hernández to New Spain (1570-1577) 26 A new dark age 28 The “English American” — the journey through Mexico and Central America of Thomas Gage (1625-1637) 31 The renaissance of science
    [Show full text]
  • Chromosome Numbers and Polyploidy Events in Korean Non-Commelinids Monocots: a Contribution to Plant Systematics
    pISSN 1225-8318 − Korean J. Pl. Taxon. 48(4): 260 277 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.4.260 Korean Journal of REVIEW Plant Taxonomy Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics Tae-Soo JANG* and Hanna WEISS-SCHNEEWEISS1 Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea 1Department of Botany and Biodiversity Research, University of Vienna, A-1030 Vienna, Austria (Received 4 June 2018; Revised 9 September 2018; Accepted 16 December 2018) ABSTRACT: The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tet- raploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3–44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061–152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chro- mosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolution- ary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies.
    [Show full text]
  • Two Rare Epiphytic Orchids of India, Saccolabiopsis Pusilla (Lindl.) Seidenf
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2015 | 7(9): 7577–7580 Note Two rare epiphytic orchids of India, some extent with Burmese-Thailand Saccolabiopsis pusilla (Lindl.) Seidenf. & elements. Andaman and Nicobar Garay and Oberonia gammiei King & Pantl. Islands are known to harbor 2650 discovered on Andaman Islands, India species (Pandey & Diwakar 2008), ISSN 0974-7907 (Online) of which 308 taxa are classified as ISSN 0974-7893 (Print) Kothareddy Prasad 1 & B. Ravi Prasad Rao 2 strict endemics. Orchidaceae is one of the largest OPEN ACCESS 1 Biodiversity Conservation Division, Department of Botany, Sri family of the flowering plants Krishnadevaraya University, Anantapur, Andhra Pradesh 515003, India comprising about 22,075 species (APG III, 2009) and 1 [email protected], 2 [email protected] (corresponding author) almost cosmopolitan in distribution,except in Antarctica. Most of the orchids are native to tropical countries and occur in their greatest diversity in humid tropical forests. The Andaman and Nicobar Islands are a group The family is represented in India by 1331 taxa (Misra of Indian Ocean archipelagic islands known as ‘Green 2007), of which about 151 species are found in Andaman Emerald’ or ‘Bay Islands’ comprising 572 Islands and and Nicobar Islands (Rao et al. 2012). located about 1200km from the mainland India. The While working on DBT sponsored project on Andaman group comprises 324 Islands and can be ‘Quantitative Assessment and Mapping of Plant Resources broadly sub-divided into North, Middle and South of the Andaman and Nicobar Islands’, the authors could Andamans. The climate in Andaman Islands are warm collect some curious orchid specimens from Middle and humid with the temperature ranging between 220C Andaman Islands.
    [Show full text]
  • A Molecular Phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 Inferred from Multiple Nuclear and Chloroplast Regions
    YMPEV 5128 No. of Pages 8, Model 5G 28 February 2015 Molecular Phylogenetics and Evolution xxx (2015) xxx–xxx 1 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev 2 Short Communication 6 4 A molecular phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 inferred from multiple nuclear and chloroplast regions a,b,1 a,1 b a,b,c,⇑ a,⇑ 8 Long-Hai Zou , Jiu-Xiang Huang , Guo-Qiang Zhang , Zhong-Jian Liu , Xue-Ying Zhuang 9 a College of Forestry, South China Agricultural University, Guangzhou, China 10 b Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of 11 Shenzhen, Shenzhen, China 12 c The Center for Biotechnology and Biomedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China 1314 15 article info abstract 1730 18 Article history: The subtribe Aeridinae, which contains approximately 90 genera, is one of the most diverse and 31 19 Received 12 August 2014 taxonomically puzzling groups in Orchidaceae. In the present study, the phylogenetic relationships of 32 20 Revised 6 January 2015 Aeridinae were reconstructed utilizing five DNA sequences (ITS, atpI-H, matK, psbA-trnH, and trnL-F) from 33 21 Accepted 17 February 2015 211 taxa in 74 genera. The results of the phylogenetic analyses indicate that Aeridinae is monophyletic 34 22 Available online xxxx and that the subtribe can primarily be grouped into 10 clades: (1) Saccolabium clade, (2) Chiloschista 35 clade, (3) Phalaenopsis clade, (4) Thrixspermum clade, (5) Vanda clade, (6) Aerides clade, (7) Trichoglottis 36 23 Keywords: clade, (8) Abdominea clade, (9) Gastrochilus clade, and (10) Cleisostoma clade.
    [Show full text]
  • STATUS of ORCHID TAXONOMY RESEARCH in the PHILIPPINES Review
    Philippine Journal of Systematic Biology Vol. I, No. 1 (June 2007) Review STATUS OF ORCHID TAXONOMY RESEARCH IN THE PHILIPPINES Esperanza Maribel G. Agoo Biology Department, De La Salle University-Manila Orchidaceae is the largest of the monocotyledonous families in the Philip- pines. There are over 137 genera and about 998 species of orchids so far re- corded for the archipelago. This represents about 10% of the total flora of the Philippines. The Philippines ranks second to New Guinea in occurrence of en- demic species in the Malesian region. The monotypic endemic genera of orchids are Ceratocentron, Megalotus, Phragmorchis, and Schuitemania. Bogoria, Chelonistele, Lepidogyne, Omoea, Orchipedum are Malesian endemics repre- sented in the Philippines by one species each. The largest genera are Bulbophyllum (137 species), Dendrochilum (89 species), Dendrobium (85 species), Eria (54 species), Liparis (38 species), and Malaxis (33 species). Orchid collecting started in the Philippines as early as the Spanish times by Spanish missionaries like I. Mercado, G. Kamel, J. Blanco, Llanos, Fernandez- Villar, and Naves. Other notable collectors or expeditions were P. Sonnerat, T Haenke and L. Nee (Malaspina Expedition), A. von Chamisso (Romassoff), S. Perrottet (Le Rhone), H. Cuming, A. Loher, F.J.F. Meyen (Princess Louise of Prussia), C. Gaudichaude-Beaupre (La Bonite Expedition), Wilkes Expedition, and the Challenger. This was also the time when horticultural companies brought plants to Europe for trade (Mendoza, 1959). Collectors of the the Forestry Bureau in the 19th century, then the Bureau of Government Laboratories, and finally the Bureau of Science amassed a huge collection of specimens for the herbarium.
    [Show full text]
  • Vro Orchid Catalogue
    VRO ORCHID CATALOGUE Picture Name Parentage Size Code Price Description Madagascar, Comores Flowering Aeranthes caudata S307 R 265,00 Grow in cool to warm conditions in shaded Size conditions Aerides Korat Koki x Aeridovanda Full Flowering Vanda VHT68 R 250,00 Free flowering orange flowers Moon Size Bangkhunthian Aliceara Winter Very appealing, fuller Brassia-like sparkling white Brat Cartagena x Flowering Wonderland 'White OSH04 R 175,00 flowers with small maroon markings. Onc Gledhow Size Fairy' Long lasting Angraecum Flowering AFRICAN Dwarf epiphyte; attractive leaf AS08 R 150,00 distichum Size structure; tiny, white flowers. Rare. Ascocenda Gold Ascocenda Gold Our best yellow - Charming very large yellow Flowering Lover x Ascocenda Lover x Ascocenda VHT52 R 350,00 flowers with some fine mahogany spotting, from Size Boris Boris two excellent yellow parents. Ascocenda V. Gordon Dillon x Kulwadee Flowering Bold dark maroon spotting with some pink Ascda. Guo Chia VHT64 R 285,00 Fragrance 'Klai Size flushing Long Song Jed' Ascocenda V. Gordon Dillon x Flowering Kulwadee Ascda. Guo Chia VHT63 R 285,00 Stunning maroon-spotted flowers Size Fragrance 'Sib Hok' Long Ascocenda V. Gordon Dillon x Kulwadee Flowering Ascda. Guo Chia VHT65 R 285,00 Bold dark maroon-red spotting Fragrance 'Song Size Long Ng' HYBRID Ascocenda Ascocenda Kulwadee Lavender flower crossed onto a purple-grey - an Kulwadee Flowering Fragrance x Vanda VHT75 R 285,00 array of colours emerged in the progeny all of Fragrance x Vanda Size Pitchaon them spotted - Maroon, pink, blue spots on Pitchaon lighter pale cream to yellow background. HYBRID Ascocenda Laksi x Ascocenda Laksi x Free flowering, smaller flowers Flowering Ascocenda Ascocenda VHT81 R 375,00 Bright red x blue - the first ones to open were Size Rakpaibulsombat Rakpaibulsombat beautiful purple-blue spotted flowers.
    [Show full text]
  • MICROMORFOLOGIA E ANATOMIA FLORAL DAS SEÇÕES NEOTROPICAIS DE Bulbophyllum THOUARS (ORCHIDACEAE, ASPARAGALES): CONSIDERAÇÕES TAXONÔMICAS E EVOLUTIVAS
    UNIVERSIDADE ESTADUAL PAULISTA unesp “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA VEGETAL) MICROMORFOLOGIA E ANATOMIA FLORAL DAS SEÇÕES NEOTROPICAIS DE Bulbophyllum THOUARS (ORCHIDACEAE, ASPARAGALES): CONSIDERAÇÕES TAXONÔMICAS E EVOLUTIVAS ELAINE LOPES PEREIRA NUNES Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas (Biologia Vegetal). Setembro - 2014 UNIVERSIDADE ESTADUAL PAULISTA unesp “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA VEGETAL) MICROMORFOLOGIA E ANATOMIA FLORAL DAS SEÇÕES NEOTROPICAIS DE Bulbophyllum THOUARS (ORCHIDACEAE, ASPARAGALES): CONSIDERAÇÕES TAXONÔMICAS E EVOLUTIVAS ELAINE LOPES PEREIRA NUNES Orientadora: Profa. Dra. Alessandra Ike Coan Coorientador: Prof. Dr. Eric de Camargo Smidt Setembro - 2014 581.4 Nunes, Elaine Lopes Pereira N972m Micromorfologia e anatomia floral das seções neotropicais de Bulbophyllum Thouars (Orchidaceae, Asparagales) : considerações taxonômicas e evolutivas / Elaine Lopes Pereira Nunes. - Rio Claro, 2014 252 f. : il., figs., tabs. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Alessandra Ike Coan Coorientador: Eric de Camargo Smidt 1. Anatomia vegetal. 1. Anatomia floral de Orchidaceae. 3. Dendrobieae. 4. Epidendroideae. 5. Labelo. 6. Nectário. 6. Osmóforos.
    [Show full text]
  • Subfam. ORCHIDOIDEAE 兰亚科 Lan Ya Ke Chen Xinqi (陈心启 Chen Sing-Chi), Lang Kaiyong (郎楷永 Lang Kai-Yung); Stephan W
    3. Subfam. ORCHIDOIDEAE 兰亚科 lan ya ke Chen Xinqi (陈心启 Chen Sing-chi), Lang Kaiyong (郎楷永 Lang Kai-yung); Stephan W. Gale, Phillip J. Cribb, Paul Ormerod Terrestrial or very rarely epiphytic plants with root-stem tubers or fleshy, short to long rhizomes, rarely mycotrophic with leaves reduced to colorless sheaths. Tubers, if present, ovoid, spherical, ellipsoidal, digitate, or cylindric-fusiform, solitary or in clusters, hairy or glabrous; rhizome, if present, fleshy, elongate. Leaves spirally arranged, 1 to many, basal or arranged along stem, deciduous or rarely persistent for more than a year, often sheathing at base, usually green, rarely spotted or veined with silver, red, or gold, rarely purple spotted or shaded beneath. Inflorescence terminal, erect or arching, 1- to many flowered; peduncle usually terete, gla- brous, hairy, or glandular; bracts linear, lanceolate, ovate, or elliptic, usually glabrous and green. Flowers small to large, usually resupinate, flat to tubular, often showy; pedicel often obscure; ovary distinct, glabrous or less frequently hairy or glandular, lacking an abscission layer. Dorsal sepal free or often adnate to petals to form a hood over column; lateral sepals usually free, sometimes connate and oblique at base to form a spurlike mentum. Petals entire or 2-lobed, often adnate to dorsal sepal; lip usually lowermost in flower, usually deflexed, entire, 3- or 5-lobed, or 2-partite, occasionally callose or with 2 basal glands, often saccate at base or with spurlike nectary; nectary fusiform, clavate, or cylindric,
    [Show full text]
  • Notes on Some Malesian Orchidaceae
    NOTES ON SOME MALESIAN ORCHIDACEAE PAUL ORMEROD,1, 2 MARK A. NAÏVE,3 AND JIM COOTES4 Abstract. Herbarium and literature studies of various orchids from the Malesian floristic zone reveal some new species, synonymy, and the need for a few nomenclatural proposals. Thus, the synonymy of Cestichis halconensis is elaborated; Cymboglossum is found to be the older name for Ascidieria, requiring 8 transfers; Dendrobium appendiculoides is reduced to D. zamboangense; Dendrobium philippinense is reduced to D. gerlandianum; Epidendrum subulatum is reduced to Thrixspermum filiforme; Eria section Polyura is transferred to Pinalia; Eria villosissima is transferred to Mycaranthes; and Myrmechis philippinensis is renamed Odontochilus marivelensis. Six new species are proposed, namely, Dendrobium rubroflavum, Pinalia edanoana, P. kitangladensis, P. pentalopha, P. sanguinea, and P. tonglonensis. Keywords: Cymboglossum, Dendrobium, Pinalia, Malesia, synonymy, new species This paper is a collaborative venture on Malesian orchids, TYPE: MALAYSIA. Pahang: Fraser’s Hill, 1220 m, January with a bias toward Philippine taxa (the specialty area of the 1953, R.E.Holttum 39465 (Holotype: K, image seen). second and third authors). The basic Malesian area extends Stichorkis viridicallus (Holtt.) Marg., Szlach. & from the Malaysian peninsula to the Solomon Islands, north Kulak, Acta Soc. Bot. Polon. 77, 1: 39. 2008. to the Philippines. Our studies frequently overlap, and we Liparis terrestris J.B. Comber, Orch. Sumatra: 156. thought it best to deal with a number of taxonomic and 2001. nomenclatural issues in one place. Since Malesia mostly TYPE: INDONESIA. Java: Puncak, 1500 m, 29 August consists of mountainous tropical islands, many once clad 1986, J.B.Comber 1687 (Holotype: K, image seen).
    [Show full text]