A Molecular Phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 Inferred from Multiple Nuclear and Chloroplast Regions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
Global Research on Ultramafic (Serpentine) Ecosystems
van der Ent, et al. 2015. Published in Australian Journal of Botany. 63:1-16. Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia): a summary and synthesis A,E,H B,C D E Antony van der Ent , Nishanta Rajakaruna , Robert Boyd , Guillaume Echevarria , Rimi RepinF and Dick WilliamsG ACentre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Qld, Australia. BCollege of the Atlantic, 105 Eden Street, ME 04609, USA. CEnvironmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa. DDepartment of Biological Sciences, 101 Rouse Life Sciences Bldg, Auburn University, AL 36849, USA. ELaboratoire Sols et Environnement, UMR 1120, Université de Lorraine – INRA, France. FSabah Parks, KK Times Square, Coastal Highway, 88100 Kota Kinabalu, Malaysia. GAustralian Journal of Botany, CSIRO Tropical Ecosystems Research Centre, Australia. HCorresponding author. Email: [email protected] Abstract. Since 1991, researchers from approximately 45 nations have participated in eight International Conferences on Serpentine Ecology (ICSE). The Conferences are coordinated by the International Serpentine Ecology Society (ISES), a formal research society whose members study geological, pedological, biological and applied aspects of ultramafic (serpentine) ecosystems worldwide. These conferences have provided an international forum to discuss and synthesise multidisciplinary research, and have provided opportunities for scientists in distinct fields and from different regions of the world to conduct collaborative and interdisciplinary research. The 8th ICSE was hosted by Sabah Parks in Malaysia, on the island of Borneo, and attracted the largest delegation to date, 174 participants from 31 countries. This was the first time an ICSE was held in Asia, a region that hosts some of the world’s most biodiverse ultramafic ecosystems. -
Seidenfaden Malaysia: 0.65 These Figures Are Surprisingly High, They Apply to Single Only. T
BIOGEOGRAPHY OF MALESIAN ORCHIDACEAE 273 VIII. Biogeographyof Malesian Orchidaceae A. Schuiteman Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands INTRODUCTION The Orchidaceae outnumber far other in Malesia. At how- by any plant family present, accurate estimate of the of Malesian orchid is difficult to make. ever, an number species Subtracting the numberofestablishedsynonyms from the numberof names attributed to Malesian orchid species results in the staggering figure of 6414 species, with a retention of 0.74. This is ratio (ratio of ‘accepted’ species to heterotypic names) undoubtedly a overestimate, of the 209 Malesian orchid have been revised gross as most genera never their entire from availablerevisions estimate realis- over range. Extrapolating to a more tic retention ratio is problematic due to the small number of modern revisions and the different of treated. If look for Malesian of nature the groups we comparison at species wide ofretention ratios: some recently revised groups, we encounter a range Bulbophylluw sect. Uncifera (Vermeulen, 1993): 0.24 Dendrobium sect. Oxyglossum (Reeve & Woods, 1989): 0.24 Mediocalcar (Schuiteman, 1997): 0.29 Pholidota (De Vogel, 1988): 0.29 Bulbophyllum sect. Pelma (Vermeulen, 1993): 0.50 Paphiopedilum (Cribb, 1987, modified): 0.57 Dendrobium sect. Spatulata (Cribb, 1986, modified): 0.60. Correspondingly, we find a wide rangeof estimates for the ‘real’ numberof known Male- sian orchid species: from 2050 to 5125. Another approach would be to look at a single area, and to compute the retention ratio for the orchid flora of that area. If we do this for Java (mainly based on Comber, 1990), Peninsular Malaysia & Singapore (Seidenfaden & Wood, 1992) and Sumatra (J.J. -
Somerset's Ecological Network
Somerset’s Ecological Network Mapping the components of the ecological network in Somerset 2015 Report This report was produced by Michele Bowe, Eleanor Higginson, Jake Chant and Michelle Osbourn of Somerset Wildlife Trust, and Larry Burrows of Somerset County Council, with the support of Dr Kevin Watts of Forest Research. The BEETLE least-cost network model used to produce Somerset’s Ecological Network was developed by Forest Research (Watts et al, 2010). GIS data and mapping was produced with the support of Somerset Environmental Records Centre and First Ecology Somerset Wildlife Trust 34 Wellington Road Taunton TA1 5AW 01823 652 400 Email: [email protected] somersetwildlife.org Front Cover: Broadleaved woodland ecological network in East Mendip Contents 1. Introduction .................................................................................................................... 1 2. Policy and Legislative Background to Ecological Networks ............................................ 3 Introduction ............................................................................................................... 3 Government White Paper on the Natural Environment .............................................. 3 National Planning Policy Framework ......................................................................... 3 The Habitats and Birds Directives ............................................................................. 4 The Conservation of Habitats and Species Regulations 2010 .................................. -
How to Cite Complete Issue More Information About This Article
Lankesteriana ISSN: 1409-3871 Lankester Botanical Garden, University of Costa Rica Gyeltshen, Choki; Dalström, Stig; Gyeltshen, Nima; Tobgay, Kezang A new spotted Chiloschista (Orchidaceae: Aeridinae) from Bhutan Lankesteriana, vol. 19, no. 1, 2019, pp. 23-29 Lankester Botanical Garden, University of Costa Rica DOI: https://doi.org/10.15517/lank.v19i1.37030 Available in: https://www.redalyc.org/articulo.oa?id=44366682005 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative LANKESTERIANA 19(1): 23—29. 2019. doi: http://dx.doi.org/10.15517/lank.v19i1.37030 A NEW SPOTTED CHILOSCHISTA (ORCHIDACEAE: AERIDINAE) FROM BHUTAN CHOKI GYELTSHEN1, STIG DALSTRÖM2.5, NIMA GYELTSHEN3 & KEZANG TOBGAY4 1 Senior Biodiversity Officer, National Biodiversity Centre, Ministry of Agriculture and Forests, Serbithang, Thimphu, Royal Government of Bhutan 2 2304 Ringling Boulevard, unit 119, Sarasota FL 34237, USA; Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica; National Biodiversity Centre, Serbithang, Royal Government of Bhutan 3 Biodiversity Supervisor, Royal Botanic Garden, National Biodiversity Centre, Ministry of Agriculture and Forests, Serbithang, Thimphu, Royal Government of Bhutan 4 Biodiversity Officer, Royal Botanic Garden, National Biodiversity Centre, Serbithang, Thimphu, Royal Government of Bhutan 5 Corresponding author: [email protected] ABSTRACT. A new species of Chiloschista from a restricted area in Bhutan is described and illustrated. It is compared with C. parishii from Myanmar and Thailand, which has similarly colored flowers and from which it differs by the larger flowers, 15–18 mm versus 8–10 mm, and the lack of a glandular and pubescent, erect and curved callus lobe inside the lip, which is generally seen in other similarly colored species of this genus. -
Jones Cross 2006 Index
AN INDEX AND ORCHID SPECIES CROSS REFERENCE TO JONES, D.L. (2006) A Complete Guide to Native Orchids of Australia including the Island Territories Compiled by David Gillingham - A.N.O.S. (Qld) Kabi Group Inc. Contents: Page 1: Contents Explanations/Introduction References General Comments Page 2: The Jones "Dendrobium Alliance" - Comments, Notes, Cross Index Page 3: The Jones "Bulbophyllum Alliance" - Cross Index Page 4: The Jones "Vanda Alliance" - Notes, Cross Index Page 5: The Jones "Miscellaneous Epiphytes" - Notes, Cross Index Page 6: The Dendrobium speciosum/Thelychiton speciosus Complex Explanations/Introduction: There can be little doubt that David Jones's (2006) book A Complete Guide to Native Orchids of Australia including the Island Territories provides probably the most current and most comprehensive coverage of Australia's native orchids available between one set of covers. However whether, and to what extent, the very substantial taxonomic restructure presented in the book is accepted by the professional botanical community, only time will tell. In the meantime, while many orchid growers will enthusiastically embrace these new taxonomies, many others will exercise their valid right to continue labelling their orchids using the older taxa, waiting for the dust to settle on the scientific debate. In either regard there are difficulties for users of Jones's book, in their attempt to relate many of these new taxa to older species descriptors. The individual species entries in the text provide no prior taxonomic information whatever; and the index is of limited assistance, and far from complete regarding taxonomic descriptors commonly used over the past decade or so. -
Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula. -
Molecularphylogeneticsof Phalaenopsis(Orchidaceae)
The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. GeoboL 56 (2): 14]-161 (200S)・ Molecular Phylogenetics of Phalaenopsis (Orchidaceae)and allied Genera: Re-evaluation of Generic Concepts TOMOHISA YUKAWAi, KOICHI KITA2, TAKASHI HANDA2, TOPIK HIDAYAT3 and MOTOMHTo3 i71sukuba 21hstitute Botanical Garcien, Nlational Scienee Mtiseum, Amakuho, Tyuketba, 305-OO05. Jopan; of 3Graduate Agricultnre andforestn)). Uhivensity qf'Tgukuba, fennodai, 71yukuba, 305-857Z Japan; Schoot ofArts and Seience, Uhivensity of7bdy,o, Kbmaba, 7bkyo, J53-8902, JZu)an, Molecular phylogenetic analyscs were performed using data sets derived from DNA sequences ofthe plastid genome (matK and trnK introns) and the nuelear genome (rDNA ITS) in an examination ofrela- tionships of all sections ofPhataenqpsis and closely related gcnera. The fo11owing insights were pro- vided: (1) The genera Lesliea and IVbthodoritis are nested within Phalaenopsis, (2) Phalaenopsis subgenus Aphyilae and section EsmeJ'aldd, often treated as thc independent genera Kirrgidium and Doritis respectively, are also nested within Phalaenqpsis. (3) Two subgenera of Phalaenqpsis, namely, Phalaenopsis and 1larishianae, are not monophyletic. (4) Phalaenopsis sections Deliciosae, SZautqglottis, Amboinenses and Zehrinae are not monophyletic. (5) lnconsistencies bctween the plastid and nuclear lineages indicate a hybrid origin ofPhalaenopsis minus and Phalaenopsis phitmpinensis. (6) In light of these findings, and to accommodate phylogenetic integrity and stability in nomenclature, we adopt a broadly defincd Doritis characterized by the possession of fbur pollinia, an explicit character state. Key words: Doritis,introgression, ITS, mati(l moleculag Orchidaceae, Ahalaenopsis, phylogcnctics, tttnK Phakzenopsis Blume is an orchid genus to which 62 tion ofthe genus has been thoroughly reviewed by species are currently assigned (Christenson 2001). -
Gastrochilus Deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a New Species from Taiwan
Taiwania 63(4): 360-365, 2018 DOI: 10.6165/tai.2018.63.360 Gastrochilus deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a new species from Taiwan Tian-Chuan HSU1, Szu-I HSIEH2,*, Jin-Hua WU3 , Hsin-Chieh HUNG4 1. Botanicial Garden Division, Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 10066, Taiwan. 2. Department of Forestry, The Affiliated Taichung Agricultural Vocational Senior High School of National Chung Hsing University, No. 283, Taichung Rd., Taichung City, 401, Taiwan. 3. Nantou Forest District Office, Forestry Bureau, No. 456, Shiguan Rd., Caotun Town, Nantou 542, Taiwan. 4. Dr. Cecilia Koo Botanic Conservation and Environmental Protection Foundation, No. 31, Tongsing Rd., Gaoshu Township, Pingtung County 906, Taiwan. *Corresponding author’s email: [email protected] (Manuscript received 9 August 2018; accepted 16 October 2018; online published 30 October 2018) ABSTRACT: A new species, Gastrochilus deltoglossus, is described and illustrated from Taiwan. This species is characterized by the presence of pendulous stems, leaves without awned apex, 3.5–4.0 mm tall subconical hypochile, and broadly deltoid, ciliate, adaxially sparsely short-hairy epichile that are approximately as wide as hypochile. Notes on its distribution, ecology, conservation status and taxonomic affinities are presented. KEY WORDS: Gastrochilus ciliaris, Gastrochilus raraensis, Orchidaceae, Taiwan, Taxonomy. INTRODUCTION Gastrochilus without flowers in a mid-altitudinal mixed forest of central Taiwan. As Gastrochilus species are Gastrochilus D. Don (Orchdaceae: Aeridinae, typically hardly identifiable without flower, these plants Vandeae, Epidendroideae,) is a monopodial orchid were regularly monitored by the third author in field until genus comprising ca. 65 species widely distributed June 2018 when some blooms were observed. -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
182. BIERMANNIA King & Pantling, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 66
Flora of China 25: 487–488. 2009. 182. BIERMANNIA King & Pantling, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 66: 591. 1897. 胼胝兰属 pian zhi lan shu Chen Xinqi (陈心启 Chen Sing-chi); Jeffrey J. Wood Herbs, epiphytic, small, monopodial. Stems short, enclosed in leaf sheaths. Leaves several, linear, ± fleshy, jointed and sheathing at base, unequally bilobed, lobules acute. Inflorescence lateral, racemose, rather short, several flowered; floral bracts small. Flowers usually opening successively, short-lived, resupinate, small. Sepals and petals free, subequal; lateral sepals attached to column base, usually broader. Petals shorter than sepals; lip sessile, narrowly but firmly adnate to column foot at a right angle, sides enveloping or parallel with column, base with a small slitlike opening leading to a small hidden pouch, spur absent, 3-lobed; lateral lobes parallel to or ± embracing column; mid-lobe linear to narrowly ovate. Column short or rather long, usually stout, with a short foot; pollinia 2, waxy, subglobose, slightly grooved or with a small cavity, attached by a common broadly linear-oblong stipe to a solitary viscidium. About nine species: China, India, Indonesia, Peninsular Malaysia, Thailand, Vietnam; one species in China. 1. Biermannia calcarata Averyanov, Bot. Zhurn. (Moscow & trifid-tipped. Column ca. 2 mm; stipe ca. 0.5 mm. Fl. Jul–Sep. Leningrad) 73: 429. 1988. Epiphytic on trees in forests; ca. 800 m. SW Guangxi [Vietnam]. 胼胝兰 pian zhi lan Stems ca. 5 mm, base with several fleshy roots. Leaves basal, 4 or 5, oblong-lanceolate, 3–5 × ca. 1 cm, unequally bilobed. Inflorescence pendulous, 5–12 mm, 3–6-flowered; peduncle and rachis slightly flattened; floral bracts 1–3 mm. -
J.F. Veldkamp (Continued from Page 104)
BIBLIOGRAPHY: BRYOPHYTES 165 XVI. Bibliography J.F. Veldkamp (continued from page 104) * Books have been marked with an asterisk. BRYOPHYTES AKIYAMA, H. 1988. Studies onLeucodon (Leucodontaceae, Musci)and related genera in East Asia III. Notes on the systematic position of Pterogonium. Acta Phytotax. Geo- bot. 39: 73-82, 4 fig. — To Isobryales near Anomodon. ASAKAWA, Y. 1988. Chemicalevolution of mono- and sesquiterpenoids ofliverworts. J. Hattori Bot. Lab. 64: 97-108, 16 fig. BISCHLER, H. 1989. MarchantiaL.: subg. Chlamidium (Nees) Bischl. sect. Papillatae Bischl. sect. nov. en Asie et en Ocianie. Cryptog., Bryol. Lichenol. 10: 61-79, 9 fig, 3 tab. (In French, Engl. summ.). — Marchantia emarginata group, 2 species, 5 sub- species. - — 1988. Marchantiapaleacea Bertol. Karyotype analysis. Beih. Nova Hedw. 90 (1988) 95-100, 2 fig, 1 tab. — 1988. Relationships in the order Marchantiales (Hepaticae). J. Hattori Bot. Lab. 64: 47-57, 3 tab. BUCK, W.R. 1988. Another view ofthe familial delimitationofthe Hookeriales. J. Hattori Bot. Lab. 64: 29-36,1 fig. — 5 families; key; descriptions. CAP, T. & C. GAO. 1988. Studies ofChinese bryophytes. (2). Trematodon Michx. (Mus- ci, Dicranaceae). J. Hattori Bot. Lab. 65: 323-334, 6 fig, 1 tab. — 2 species, 1 Male- sian; descriptions. CATCHESIDE, D.G. 1988. The mosses of the Northern territory, Australia. J. Adelaide Bot. Gard. 11: 1-17, 4 — 95 54 new records, fig. species, keys to some genera. CHANDRA, V., et al. 1987. Calobryales: Distribution andphytogeographical discussion. Geophytology 17: 227-232, 1 map. * EDDY, A. 1988. A handbook ofMalesian mosses. 1. Sphagnales to Dicranales. iii, 204 165 British London. ISBN 0-567-01038-7.