A Molecular Phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 Inferred from Multiple Nuclear and Chloroplast Regions

Total Page:16

File Type:pdf, Size:1020Kb

A Molecular Phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 Inferred from Multiple Nuclear and Chloroplast Regions YMPEV 5128 No. of Pages 8, Model 5G 28 February 2015 Molecular Phylogenetics and Evolution xxx (2015) xxx–xxx 1 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev 2 Short Communication 6 4 A molecular phylogeny of Aeridinae (Orchidaceae: Epidendroideae) 7 5 inferred from multiple nuclear and chloroplast regions a,b,1 a,1 b a,b,c,⇑ a,⇑ 8 Long-Hai Zou , Jiu-Xiang Huang , Guo-Qiang Zhang , Zhong-Jian Liu , Xue-Ying Zhuang 9 a College of Forestry, South China Agricultural University, Guangzhou, China 10 b Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of 11 Shenzhen, Shenzhen, China 12 c The Center for Biotechnology and Biomedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China 1314 15 article info abstract 1730 18 Article history: The subtribe Aeridinae, which contains approximately 90 genera, is one of the most diverse and 31 19 Received 12 August 2014 taxonomically puzzling groups in Orchidaceae. In the present study, the phylogenetic relationships of 32 20 Revised 6 January 2015 Aeridinae were reconstructed utilizing five DNA sequences (ITS, atpI-H, matK, psbA-trnH, and trnL-F) from 33 21 Accepted 17 February 2015 211 taxa in 74 genera. The results of the phylogenetic analyses indicate that Aeridinae is monophyletic 34 22 Available online xxxx and that the subtribe can primarily be grouped into 10 clades: (1) Saccolabium clade, (2) Chiloschista 35 clade, (3) Phalaenopsis clade, (4) Thrixspermum clade, (5) Vanda clade, (6) Aerides clade, (7) Trichoglottis 36 23 Keywords: clade, (8) Abdominea clade, (9) Gastrochilus clade, and (10) Cleisostoma clade. In our examination, most 37 24 Aeridinae genera of Aeridinae were well-supported as monophyletic, and several genera, namely, Pteroceras, 38 25 cpDNA 26 Molecular phylogenetics Cleisostoma, Vandopsis, Diploprora, Malleola, and Robiquetia, were found to be polyphyletic as currently 39 27 ITS circumscribed. In addition, several classifications of intra-genera, such as the subgenus Codonosepalum 40 28 Orchidaceae of Taeniophyllum and the section Gastrochilus of Gastrochilus, were also revealed to be paraphyletic. 41 29 Due to the many questions raised by our phylogenies, the present study may serve as a reference for 42 future taxonomic studies of Aeridinae. 43 Ó 2015 Published by Elsevier Inc. 44 45 46 47 48 1. Introduction addressed relationships in the group. With the exception of several 63 studies focusing on some individual groups, such as the Aerides– 64 49 The subtribe Aeridinae (=Sarcanthinae), a monopodial group Vanda alliance (e.g., Kocyan et al., 2008; Gardiner et al., 2013; 65 50 with approximately 1350 species in approximately 90 genera that Xiang et al., 2012; Zhang et al., 2013) and Phalaenopsis (e.g., 66 51 are primarily distributed throughout the warm-temperate and tro- Padolina et al., 2006; Tsai et al., 2010; Yukawa et al., 2005), the phy- 67 52 pical areas of Asia, Australia, and the eastern Pacific islands, forms a logeny of Aeridinae was reconstructed by Topik et al. (2005) and 68 53 large proportion of tribe Vandeae in Orchidaceae (Chase et al., Topik et al. (2012) based on the analyses of two DNA regions (ITS 69 54 2003). Historically, several orchidologists have attempted to trace and matK) in 75 taxa belonging to 62 genera and 82 taxa belonging 70 55 the spine of the relationships among the genera in Aeridinae based to 66 genera, respectively. Both studies suggested that the mono- 71 56 on the characteristics of the column foot (Schlechter, 1913) and phyly of Aeridinae was tentatively supported. However, the topolo- 72 57 pollinium numbers (Dressler, 1993; Holttum, 1959; Senghas, gies between the two studies are inconsistent in 14 major clades in 73 58 1988). However, both the column foot and pollinium numbers have the former study and 11 clades in the latter. Moreover, many inner 74 59 independently evolved several times in this group (Topik et al., branch nodes with weak support were observed in the phylogenetic 75 60 2005), which indicates that these morphological characteristics trees, and many unexpected relationships were found in both stud- 76 61 are useless for determining the phyletic lines of the subtribe. Recent ies. As these findings indicated, these relationships may have 77 62 phylogenetic analyses that relied on nucleotide sequences have resulted from sparse samplings. In fact, sparse samplings may give 78 rise to negative effects on phylogenetic analyses, such as low sup- 79 ⇑ Corresponding authors at: Shenzhen Key Laboratory for Orchid Conservation port values and abnormal systematic relationships (Soltis et al., 80 and Utilization, The National Orchid Conservation Center of China and The Orchid 2011). Moreover, based on the sparse samplings, the examination 81 Conservation and Research Center of Shenzhen, Shenzhen, China (Z.-J. Liu). of the monophyly of many genera was not possible. Hence, satisfac- 82 E-mail addresses: [email protected] (Z.-J. Liu), [email protected] tory conclusions regarding the phylogenetic relationships within 83 (X.-Y. Zhuang). Aeridinae cannot yet be elucidated. 84 1 These authors contributed equally to this work. http://dx.doi.org/10.1016/j.ympev.2015.02.014 1055-7903/Ó 2015 Published by Elsevier Inc. Please cite this article in press as: Zou, L.-H., et al. A molecular phylogeny of Aeridinae (Orchidaceae: Epidendroideae) inferred from multiple nuclear and chloroplast regions. Mol. Phylogenet. Evol. (2015), http://dx.doi.org/10.1016/j.ympev.2015.02.014 YMPEV 5128 No. of Pages 8, Model 5G 28 February 2015 2 L.-H. Zou et al. / Molecular Phylogenetics and Evolution xxx (2015) xxx–xxx 85 In the present study, to avoid the negative effects resulting from phorchis lowii was sister to Cleisomeria + Monanthochilus (Abdomi- 140 86 sparse taxon sampling, we focused on facilitating a more accurate nea clade) with weak support (PP 50); (b) the ITS analysis strongly 141 87 reconstruction of the phylogenetic relationships of Aeridinae by supported Abdominea + Microsaccus + Cleisomeria + Monanthochilus 142 88 improving the samplings in both species (and genera) and DNA (Abdominea clade) as sister to Thrixspermum (PP 100), but the cpDNA 143 89 sequences. A total of 211 species in 74 genera and five DNA mark- analysis showed that the Abdominea clade and Dimorphorchis lowii 144 90 ers (ITS, matK, trnL-F, psbA-trnH, and atpI-H) were employed. The form an independent clade; (c) Tsiorchis was found to be sister to 145 91 objective of the present study was to clarify the generic relation- Pendulorchis (PP 94) in the Vanda clade through the ITS analysis 146 92 ships within subtribe Aeridinae. but emerged as sister to the Saccolabium clade in the cpDNA analysis 147 with weak support (PP 50); and (d) in the Gastrochilus clade, the ITS 148 149 93 2. Materials and methods analysis supported the inclusion of Haraella retrocalla in Pomatocal- pa, but the cpDNA analysis indicated that Haraella is sister to 150 151 94 2.1. Taxon sampling Gastrochilus with PP 100. These conflicts between the distinct gen- omes may be a result of intergeneric hybridization in the evolution 152 153 95 A total of 219 species in 81 genera, including 211 species in 74 of Aeridinae (Zhang et al., 2013). 96 genera from subtribe Aeridinae, were analyzed. According to the 154 97 classification of Vandeae proposed by Chase et al. (2003), three 3.2. Combined analyses 98 species from subtribe Angraecinae, two species from subtribe Aer- 155 99 angidinae, and three species from subtribe Polystachyinae were The BI analyses yielded better-supported trees than those 156 100 chosen as the outgroup. Fresh specimens of 92 species were inferred by maximum parsimony. Hence, the BI consensus tree 157 101 obtained from cultivation and wild collection. The GenBank acces- (Figs. 1 and 2) inferred from the combined dataset was chosen 158 102 sion numbers of the newly produced sequences and other DNA for the discussion of phylogenetic relationships. All of the topolo- 159 103 samples obtained from GenBank are listed in Table A1. gies indicate that Aeridinae is monophyletic. Our results recognize 10 well-distinguished clades: (1) Saccolabium clade, (2) Chiloschista 160 clade, (3) Phalaenopsis clade, (4) Thrixspermum clade, (5) Vanda 161 104 2.2. Collection of DNA sequences clade, (6) Aerides clade, (7) Trichoglottis clade, (8) Abdominea clade, 162 (9) Gastrochilus clade, and (10) Cleisostoma clade. 163 105 Total genomic DNA extractions, polymerase chain reaction 106 (PCR) assays and DNA sequencing were performed using the proto- (1) The Saccolabium clade (PP 100) comprises 33 species from 164 107 cols suggested by Zhang et al. (2013). The primers employed for 22 genera. It is subdivided into three subclades: Pteroceras 165 108 the amplification and sequencing of the five DNA regions investi- subclade, Sarcochilus subclade, and Saccolabium subclade. 166 109 gated in this study are listed in Table A2. Editing, identification, The Pteroceras subclade, which is sister to the other two sub- 167 110 and alignment of the DNA sequences were performed according clades, includes five genera: Pteroceras, Brachypeza, Grosour- 168 111 to Zhang et al. (2013). dya, Ascochilopsis, and Ascochilus. Pteroceras emerges as 169 paraphyletic because P. decipiens is allied with Ascochilus 170 112 2.3. Phylogenetic analyses emarginatus but not with Pteroceras semiteretifolium. With 171 weak support (PP 61), the Sarcochilus subclade contains Sar- 172 113 Phylogenetic analyses based on maximum parsimony (MP) and cochilus, Gunnarella, Drymoanthus, Rhinerrhiza, Bogoria, and 173 114 ⁄ Bayesian inference (BI) were performed with PAUP version 4.0b10 Taeniophyllum. The Saccolabium subclade comprises 11 gen- 174 115 (Swofford, 2002) and MrBayes 3.2.2 (Ronquist et al., 2012), respec- era: Parapteroceras, Biermannia, Pennilabium, Saccolabium, 175 116 tively. Missing data were coded with ‘‘?’’ in the MP analyses and Hymenorchis, Amesiella, Tuberolabium, Ceratocentron, Dyakia, 176 117 excluded from the BI calculation.
Recommended publications
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • Global Research on Ultramafic (Serpentine) Ecosystems
    van der Ent, et al. 2015. Published in Australian Journal of Botany. 63:1-16. Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia): a summary and synthesis A,E,H B,C D E Antony van der Ent , Nishanta Rajakaruna , Robert Boyd , Guillaume Echevarria , Rimi RepinF and Dick WilliamsG ACentre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Qld, Australia. BCollege of the Atlantic, 105 Eden Street, ME 04609, USA. CEnvironmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa. DDepartment of Biological Sciences, 101 Rouse Life Sciences Bldg, Auburn University, AL 36849, USA. ELaboratoire Sols et Environnement, UMR 1120, Université de Lorraine – INRA, France. FSabah Parks, KK Times Square, Coastal Highway, 88100 Kota Kinabalu, Malaysia. GAustralian Journal of Botany, CSIRO Tropical Ecosystems Research Centre, Australia. HCorresponding author. Email: [email protected] Abstract. Since 1991, researchers from approximately 45 nations have participated in eight International Conferences on Serpentine Ecology (ICSE). The Conferences are coordinated by the International Serpentine Ecology Society (ISES), a formal research society whose members study geological, pedological, biological and applied aspects of ultramafic (serpentine) ecosystems worldwide. These conferences have provided an international forum to discuss and synthesise multidisciplinary research, and have provided opportunities for scientists in distinct fields and from different regions of the world to conduct collaborative and interdisciplinary research. The 8th ICSE was hosted by Sabah Parks in Malaysia, on the island of Borneo, and attracted the largest delegation to date, 174 participants from 31 countries. This was the first time an ICSE was held in Asia, a region that hosts some of the world’s most biodiverse ultramafic ecosystems.
    [Show full text]
  • Seidenfaden Malaysia: 0.65 These Figures Are Surprisingly High, They Apply to Single Only. T
    BIOGEOGRAPHY OF MALESIAN ORCHIDACEAE 273 VIII. Biogeographyof Malesian Orchidaceae A. Schuiteman Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands INTRODUCTION The Orchidaceae outnumber far other in Malesia. At how- by any plant family present, accurate estimate of the of Malesian orchid is difficult to make. ever, an number species Subtracting the numberofestablishedsynonyms from the numberof names attributed to Malesian orchid species results in the staggering figure of 6414 species, with a retention of 0.74. This is ratio (ratio of ‘accepted’ species to heterotypic names) undoubtedly a overestimate, of the 209 Malesian orchid have been revised gross as most genera never their entire from availablerevisions estimate realis- over range. Extrapolating to a more tic retention ratio is problematic due to the small number of modern revisions and the different of treated. If look for Malesian of nature the groups we comparison at species wide ofretention ratios: some recently revised groups, we encounter a range Bulbophylluw sect. Uncifera (Vermeulen, 1993): 0.24 Dendrobium sect. Oxyglossum (Reeve & Woods, 1989): 0.24 Mediocalcar (Schuiteman, 1997): 0.29 Pholidota (De Vogel, 1988): 0.29 Bulbophyllum sect. Pelma (Vermeulen, 1993): 0.50 Paphiopedilum (Cribb, 1987, modified): 0.57 Dendrobium sect. Spatulata (Cribb, 1986, modified): 0.60. Correspondingly, we find a wide rangeof estimates for the ‘real’ numberof known Male- sian orchid species: from 2050 to 5125. Another approach would be to look at a single area, and to compute the retention ratio for the orchid flora of that area. If we do this for Java (mainly based on Comber, 1990), Peninsular Malaysia & Singapore (Seidenfaden & Wood, 1992) and Sumatra (J.J.
    [Show full text]
  • Somerset's Ecological Network
    Somerset’s Ecological Network Mapping the components of the ecological network in Somerset 2015 Report This report was produced by Michele Bowe, Eleanor Higginson, Jake Chant and Michelle Osbourn of Somerset Wildlife Trust, and Larry Burrows of Somerset County Council, with the support of Dr Kevin Watts of Forest Research. The BEETLE least-cost network model used to produce Somerset’s Ecological Network was developed by Forest Research (Watts et al, 2010). GIS data and mapping was produced with the support of Somerset Environmental Records Centre and First Ecology Somerset Wildlife Trust 34 Wellington Road Taunton TA1 5AW 01823 652 400 Email: [email protected] somersetwildlife.org Front Cover: Broadleaved woodland ecological network in East Mendip Contents 1. Introduction .................................................................................................................... 1 2. Policy and Legislative Background to Ecological Networks ............................................ 3 Introduction ............................................................................................................... 3 Government White Paper on the Natural Environment .............................................. 3 National Planning Policy Framework ......................................................................... 3 The Habitats and Birds Directives ............................................................................. 4 The Conservation of Habitats and Species Regulations 2010 ..................................
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Lankesteriana ISSN: 1409-3871 Lankester Botanical Garden, University of Costa Rica Gyeltshen, Choki; Dalström, Stig; Gyeltshen, Nima; Tobgay, Kezang A new spotted Chiloschista (Orchidaceae: Aeridinae) from Bhutan Lankesteriana, vol. 19, no. 1, 2019, pp. 23-29 Lankester Botanical Garden, University of Costa Rica DOI: https://doi.org/10.15517/lank.v19i1.37030 Available in: https://www.redalyc.org/articulo.oa?id=44366682005 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative LANKESTERIANA 19(1): 23—29. 2019. doi: http://dx.doi.org/10.15517/lank.v19i1.37030 A NEW SPOTTED CHILOSCHISTA (ORCHIDACEAE: AERIDINAE) FROM BHUTAN CHOKI GYELTSHEN1, STIG DALSTRÖM2.5, NIMA GYELTSHEN3 & KEZANG TOBGAY4 1 Senior Biodiversity Officer, National Biodiversity Centre, Ministry of Agriculture and Forests, Serbithang, Thimphu, Royal Government of Bhutan 2 2304 Ringling Boulevard, unit 119, Sarasota FL 34237, USA; Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica; National Biodiversity Centre, Serbithang, Royal Government of Bhutan 3 Biodiversity Supervisor, Royal Botanic Garden, National Biodiversity Centre, Ministry of Agriculture and Forests, Serbithang, Thimphu, Royal Government of Bhutan 4 Biodiversity Officer, Royal Botanic Garden, National Biodiversity Centre, Serbithang, Thimphu, Royal Government of Bhutan 5 Corresponding author: [email protected] ABSTRACT. A new species of Chiloschista from a restricted area in Bhutan is described and illustrated. It is compared with C. parishii from Myanmar and Thailand, which has similarly colored flowers and from which it differs by the larger flowers, 15–18 mm versus 8–10 mm, and the lack of a glandular and pubescent, erect and curved callus lobe inside the lip, which is generally seen in other similarly colored species of this genus.
    [Show full text]
  • Jones Cross 2006 Index
    AN INDEX AND ORCHID SPECIES CROSS REFERENCE TO JONES, D.L. (2006) A Complete Guide to Native Orchids of Australia including the Island Territories Compiled by David Gillingham - A.N.O.S. (Qld) Kabi Group Inc. Contents: Page 1: Contents Explanations/Introduction References General Comments Page 2: The Jones "Dendrobium Alliance" - Comments, Notes, Cross Index Page 3: The Jones "Bulbophyllum Alliance" - Cross Index Page 4: The Jones "Vanda Alliance" - Notes, Cross Index Page 5: The Jones "Miscellaneous Epiphytes" - Notes, Cross Index Page 6: The Dendrobium speciosum/Thelychiton speciosus Complex Explanations/Introduction: There can be little doubt that David Jones's (2006) book A Complete Guide to Native Orchids of Australia including the Island Territories provides probably the most current and most comprehensive coverage of Australia's native orchids available between one set of covers. However whether, and to what extent, the very substantial taxonomic restructure presented in the book is accepted by the professional botanical community, only time will tell. In the meantime, while many orchid growers will enthusiastically embrace these new taxonomies, many others will exercise their valid right to continue labelling their orchids using the older taxa, waiting for the dust to settle on the scientific debate. In either regard there are difficulties for users of Jones's book, in their attempt to relate many of these new taxa to older species descriptors. The individual species entries in the text provide no prior taxonomic information whatever; and the index is of limited assistance, and far from complete regarding taxonomic descriptors commonly used over the past decade or so.
    [Show full text]
  • Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
    KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula.
    [Show full text]
  • Molecularphylogeneticsof Phalaenopsis(Orchidaceae)
    The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. GeoboL 56 (2): 14]-161 (200S)・ Molecular Phylogenetics of Phalaenopsis (Orchidaceae)and allied Genera: Re-evaluation of Generic Concepts TOMOHISA YUKAWAi, KOICHI KITA2, TAKASHI HANDA2, TOPIK HIDAYAT3 and MOTOMHTo3 i71sukuba 21hstitute Botanical Garcien, Nlational Scienee Mtiseum, Amakuho, Tyuketba, 305-OO05. Jopan; of 3Graduate Agricultnre andforestn)). Uhivensity qf'Tgukuba, fennodai, 71yukuba, 305-857Z Japan; Schoot ofArts and Seience, Uhivensity of7bdy,o, Kbmaba, 7bkyo, J53-8902, JZu)an, Molecular phylogenetic analyscs were performed using data sets derived from DNA sequences ofthe plastid genome (matK and trnK introns) and the nuelear genome (rDNA ITS) in an examination ofrela- tionships of all sections ofPhataenqpsis and closely related gcnera. The fo11owing insights were pro- vided: (1) The genera Lesliea and IVbthodoritis are nested within Phalaenopsis, (2) Phalaenopsis subgenus Aphyilae and section EsmeJ'aldd, often treated as thc independent genera Kirrgidium and Doritis respectively, are also nested within Phalaenqpsis. (3) Two subgenera of Phalaenqpsis, namely, Phalaenopsis and 1larishianae, are not monophyletic. (4) Phalaenopsis sections Deliciosae, SZautqglottis, Amboinenses and Zehrinae are not monophyletic. (5) lnconsistencies bctween the plastid and nuclear lineages indicate a hybrid origin ofPhalaenopsis minus and Phalaenopsis phitmpinensis. (6) In light of these findings, and to accommodate phylogenetic integrity and stability in nomenclature, we adopt a broadly defincd Doritis characterized by the possession of fbur pollinia, an explicit character state. Key words: Doritis,introgression, ITS, mati(l moleculag Orchidaceae, Ahalaenopsis, phylogcnctics, tttnK Phakzenopsis Blume is an orchid genus to which 62 tion ofthe genus has been thoroughly reviewed by species are currently assigned (Christenson 2001).
    [Show full text]
  • Gastrochilus Deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a New Species from Taiwan
    Taiwania 63(4): 360-365, 2018 DOI: 10.6165/tai.2018.63.360 Gastrochilus deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a new species from Taiwan Tian-Chuan HSU1, Szu-I HSIEH2,*, Jin-Hua WU3 , Hsin-Chieh HUNG4 1. Botanicial Garden Division, Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 10066, Taiwan. 2. Department of Forestry, The Affiliated Taichung Agricultural Vocational Senior High School of National Chung Hsing University, No. 283, Taichung Rd., Taichung City, 401, Taiwan. 3. Nantou Forest District Office, Forestry Bureau, No. 456, Shiguan Rd., Caotun Town, Nantou 542, Taiwan. 4. Dr. Cecilia Koo Botanic Conservation and Environmental Protection Foundation, No. 31, Tongsing Rd., Gaoshu Township, Pingtung County 906, Taiwan. *Corresponding author’s email: [email protected] (Manuscript received 9 August 2018; accepted 16 October 2018; online published 30 October 2018) ABSTRACT: A new species, Gastrochilus deltoglossus, is described and illustrated from Taiwan. This species is characterized by the presence of pendulous stems, leaves without awned apex, 3.5–4.0 mm tall subconical hypochile, and broadly deltoid, ciliate, adaxially sparsely short-hairy epichile that are approximately as wide as hypochile. Notes on its distribution, ecology, conservation status and taxonomic affinities are presented. KEY WORDS: Gastrochilus ciliaris, Gastrochilus raraensis, Orchidaceae, Taiwan, Taxonomy. INTRODUCTION Gastrochilus without flowers in a mid-altitudinal mixed forest of central Taiwan. As Gastrochilus species are Gastrochilus D. Don (Orchdaceae: Aeridinae, typically hardly identifiable without flower, these plants Vandeae, Epidendroideae,) is a monopodial orchid were regularly monitored by the third author in field until genus comprising ca. 65 species widely distributed June 2018 when some blooms were observed.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • 182. BIERMANNIA King & Pantling, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 66
    Flora of China 25: 487–488. 2009. 182. BIERMANNIA King & Pantling, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 66: 591. 1897. 胼胝兰属 pian zhi lan shu Chen Xinqi (陈心启 Chen Sing-chi); Jeffrey J. Wood Herbs, epiphytic, small, monopodial. Stems short, enclosed in leaf sheaths. Leaves several, linear, ± fleshy, jointed and sheathing at base, unequally bilobed, lobules acute. Inflorescence lateral, racemose, rather short, several flowered; floral bracts small. Flowers usually opening successively, short-lived, resupinate, small. Sepals and petals free, subequal; lateral sepals attached to column base, usually broader. Petals shorter than sepals; lip sessile, narrowly but firmly adnate to column foot at a right angle, sides enveloping or parallel with column, base with a small slitlike opening leading to a small hidden pouch, spur absent, 3-lobed; lateral lobes parallel to or ± embracing column; mid-lobe linear to narrowly ovate. Column short or rather long, usually stout, with a short foot; pollinia 2, waxy, subglobose, slightly grooved or with a small cavity, attached by a common broadly linear-oblong stipe to a solitary viscidium. About nine species: China, India, Indonesia, Peninsular Malaysia, Thailand, Vietnam; one species in China. 1. Biermannia calcarata Averyanov, Bot. Zhurn. (Moscow & trifid-tipped. Column ca. 2 mm; stipe ca. 0.5 mm. Fl. Jul–Sep. Leningrad) 73: 429. 1988. Epiphytic on trees in forests; ca. 800 m. SW Guangxi [Vietnam]. 胼胝兰 pian zhi lan Stems ca. 5 mm, base with several fleshy roots. Leaves basal, 4 or 5, oblong-lanceolate, 3–5 × ca. 1 cm, unequally bilobed. Inflorescence pendulous, 5–12 mm, 3–6-flowered; peduncle and rachis slightly flattened; floral bracts 1–3 mm.
    [Show full text]
  • J.F. Veldkamp (Continued from Page 104)
    BIBLIOGRAPHY: BRYOPHYTES 165 XVI. Bibliography J.F. Veldkamp (continued from page 104) * Books have been marked with an asterisk. BRYOPHYTES AKIYAMA, H. 1988. Studies onLeucodon (Leucodontaceae, Musci)and related genera in East Asia III. Notes on the systematic position of Pterogonium. Acta Phytotax. Geo- bot. 39: 73-82, 4 fig. — To Isobryales near Anomodon. ASAKAWA, Y. 1988. Chemicalevolution of mono- and sesquiterpenoids ofliverworts. J. Hattori Bot. Lab. 64: 97-108, 16 fig. BISCHLER, H. 1989. MarchantiaL.: subg. Chlamidium (Nees) Bischl. sect. Papillatae Bischl. sect. nov. en Asie et en Ocianie. Cryptog., Bryol. Lichenol. 10: 61-79, 9 fig, 3 tab. (In French, Engl. summ.). — Marchantia emarginata group, 2 species, 5 sub- species. - — 1988. Marchantiapaleacea Bertol. Karyotype analysis. Beih. Nova Hedw. 90 (1988) 95-100, 2 fig, 1 tab. — 1988. Relationships in the order Marchantiales (Hepaticae). J. Hattori Bot. Lab. 64: 47-57, 3 tab. BUCK, W.R. 1988. Another view ofthe familial delimitationofthe Hookeriales. J. Hattori Bot. Lab. 64: 29-36,1 fig. — 5 families; key; descriptions. CAP, T. & C. GAO. 1988. Studies ofChinese bryophytes. (2). Trematodon Michx. (Mus- ci, Dicranaceae). J. Hattori Bot. Lab. 65: 323-334, 6 fig, 1 tab. — 2 species, 1 Male- sian; descriptions. CATCHESIDE, D.G. 1988. The mosses of the Northern territory, Australia. J. Adelaide Bot. Gard. 11: 1-17, 4 — 95 54 new records, fig. species, keys to some genera. CHANDRA, V., et al. 1987. Calobryales: Distribution andphytogeographical discussion. Geophytology 17: 227-232, 1 map. * EDDY, A. 1988. A handbook ofMalesian mosses. 1. Sphagnales to Dicranales. iii, 204 165 British London. ISBN 0-567-01038-7.
    [Show full text]