The Orchid Society of Karnataka (TOSKAR) Newsletter – June 2016 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orquídeas Christian Demetrio Associação Orquidófila Piracicabana ORQUIPIRA - 1998 Classificação
Orquídeas Christian Demetrio Associação Orquidófila Piracicabana ORQUIPIRA - 1998 Classificação: • Domínio: Eukariota • Reino: Plantae • Divisão: Magnoliophyta (Angiospermas) • Classe: Liliopsida (Monocotiledoneas) • Ordem: Asparagales • Família: Orchidaceae Família: Orchidaceae • Subfamílias: Apostasioidea Vanilloidea Cypripedioidea Orchidoidea Epidendroidea Distribuição: Gênero tipo – Lineu 1753 Orchis Espécie tipo: Orchis militaris Família Orchidaceae • 850 gêneros • 25.000 espécies • Mais de 100.000 híbridos registrados (RHS) Orchidaceae - Brasil Gêneros: 221 Espécies: 2491 Subespécies: 10 Variedades: 17 Orchidaceae in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB179>. Acesso em: 04 Abr. 2017 Caracterização da Família • Características gerais das monocotiledôneas • Estrutura floral: simetria bilateral Pétalas e sépalas semelhantes Labelo Coluna Polínia Ressupinação • Raízes com velame (epífitas) • Sementes diminutas X micorriza (Mycorrhyzum) Folhas: paralelinérvicas Sobralia spp Raízes fasciculadas Velame Estrutura Floral Sépala dorsal ou superior Pétalas Lóbulos laterais Sépalas laterais ou inferiores Lóbulo medial Estrutura Floral 1 – Sépala Dorsal; 2 – Pétalas; 3 – Sépalas Laterais; 4 – Lóbulo Frontal; 5 – Labelo; 6 – Ovário; 7 – Coluna; 8 – Estigma; 9 – Antena Coluna Políneas Antera Estigma Ressupinação Angraecum scottianum não ressupina Laelia purpurata ressupina Classificação pelo tipo de crescimento Simpodial Classificação pelo -
The Orchid MADS-Box Genes Controlling Floral Morphogenesis
Review Article Special Issue: Evolution of MADS-box genes in Monocots TheScientificWorldJOURNAL (2006) 1, 109–120 TSW Development and Embryology ISSN 1537-744X; DOI 10.1100/tswde.2006.321 The Orchid MADS-Box Genes Controlling Floral Morphogenesis Wen-Chieh Tsai1 and Hong-Hwa Chen1,2,* 1Department of Life Sciences and 2Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan E-mail: [email protected] Received May 15, 2006; Accepted June 29, 2006; Published July 14, 2006 Orchids are known for both their floral diversity and ecological strategies. The versatility and specialization in orchid floral morphology, structure, and physiological properties have fascinated botanists for centuries. In floral studies, MADS-box genes contributing to the now famous ABCDE model of floral organ identity control have dominated conceptual thinking. The sophisticated orchid floral organization offers an opportunity to discover new variant genes and different levels of complexity to the ABCDE model. Recently, several remarkable research studies done on orchid MADS-box genes have revealed the important roles on orchid floral development. Knowledge about MADS-box genes’ encoding ABCDE functions in orchids will give insights into the highly evolved floral morphogenetic networks of orchids. KEYWORDS: orchids, MADS-box genes, ABCDE model, floral development, floral morphogenetic networks INTRODUCTION With more than 270,000 known species, angiosperms are by far the most diverse and widespread group of plants. The ancestry of the angiosperm is still uncertain. The fossil records show that the angiosperms appear at the early Cretaceous period, about 130 million years ago. By the end of the Cretaceous, 65 million years ago, the angiosperms had radiated and become the dominant plants on Earth, as they are today. -
Nordic Journal of Botany NJB1230 Rokaya, M
Nordic Journal of Botany NJB1230 Rokaya, M. B., Raskoti, B. B., Timsina, B. and Münzbergová, Z. 2013. An annotated checklist of the orchids of Nepal. – Nord. J. Bot. 31: 511–550. Supplementary material Supplementary material Appendix 1. Table A1. Different names of orchids used in various literature. Present checklist Rajbhandari and Baral (2010) Rajbhandari and Dahal (2004) Press et al. (2000) Hara et al. (1978) Aerides multiflora Roxb. Aerides multiflorum Roxb. Aerides multiflorum Roxb. Aerides multiflora Roxb. Aerides multiflora Roxb. Androcorys pugioniformis (Lindl. – Androcorys pugioniformis Herminium pugioniforme Herminium pugioniforme ex Hook. f.) K. Y. Lang (Lindl. ex Hook. f.) K. Y. Lang Lindl. ex Hook. f. Lindl. ex Hook. f. Bhutanthera albomarginata (King Bhutanthera albomarginata (King Bhutanthera albomarginata Habenaria albomarginata Habenaria albomarginata and Prantl.) Renz and Prantl.) Renz (King and Prantl.) Renz King and Prantl. King and Prantl. Bulbophyllum polyrrhizum Lindl. Bulbophyllum polyrrhizum Lindl. Bulbophyllum polyrrhizum Bulbophyllum polyrhizum Bulbophyllum polyrhizum Lindl. Lindl. Lindl. Bulbophyllum reptans (Lindl.) – – Sunipia racemosa (Sm.) Tang Sunipia racemosa (Sm.) Lindl. ex Wall. & F. T. Wang Tang & F. T. Wang Bulbophyllum rolfei (Kuntze) Bulbophyllum rolfei (Kuntze) Bulbophyllum rolfei (Kuntze) Bulbophyllum dyerianum Bulbophyllum dyerianum Seidenf. Seidenf. Seidenf. (King and Prantl.) Seidenf. (King and Prantl.) Seidenf. Bulbophyllum sterile (Lam.) Suresh Bulbophyllum sterile (Lam.) Bulbophyllum sterile (Lam.) Bulbophyllum caudatum Bulbophyllum caudatum Suresh Suresh Lindl. Lindl. Bulbophyllum yunnanense Rolfe – Bulbophyllum otoglossum Bulbophyllum otoglossum Bulbophyllum otoglossum Tuyama Tuyama Tuyama Calanthe davidii Franch. – – Calanthe pachystalix Rchb. f. Calanthe pachystalix Rchb. ex Hook. f. f. ex Hook. f. Calanthe sylvatica (Thouars) Lindl. – Calanthe sylvatica (Thouars) Calanthe masuca (D. Don) Calanthe masuca (D. Don) Lindl. -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
PGR Diversity and Economic Utilization of Orchids
Int.J.Curr.Microbiol.App.Sci (2019) 8(10): 1865-1887 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 10 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.810.217 PGR Diversity and Economic Utilization of Orchids R. K. Pamarthi, R. Devadas, Raj Kumar, D. Rai, P. Kiran Babu, A. L. Meitei, L. C. De, S. Chakrabarthy, D. Barman and D. R. Singh* ICAR-NRC for Orchids, Pakyong, Sikkim, India ICAR-IARI, Kalimpong, West Bengal, India *Corresponding author ABSTRACT Orchids are one of the highly commercial crops in floriculture sector and are robustly exploited due to the high ornamental and economic value. ICAR-NRC for Orchids Pakyong, Sikkim, India, majorly focused on collection, characterization, K e yw or ds evaluation, conservation and utilization of genetic resources available in the country particularly in north-eastern region and developed a National repository of Orchids, Collection, Conservation, orchids. From 1996 to till date, several exploration programmes carried across the Utilization country and a total of 351 species under 94 genera was collected and conserved at Article Info this institute. Among the collections, 205 species were categorized as threatened species, followed by 90 species having breeding value, 87 species which are used Accepted: in traditional medicine, 77 species having fragrance and 11 species were used in 15 September 2019 traditional dietary. Successful DNA bank of 260 species was constructed for Available Online: 10 October 2019 future utilization in various research works. The collected orchid germplasm which includes native orchids was successfully utilized in breeding programme for development of novel varieties and hybrids. -
Toskar Newsletter
TOSKAR NEWSLETTER A Quarterly Newsletter of the Orchid Society of Karnataka (TOSKAR) Vol. No. 4; Issue: ii; 2017 THE ORCHID SOCIETY OF KARNATAKA www.toskar.org ● [email protected] From the Editor’s Desk TOSKAR NEWSLETTER 21st June 2017 The much-awaited monsoon has set in and it is a sight to see EDITORIAL BOARD shiny green and happy leaves and waiting to put forth their best (Vide Circular No. TOSKAR/2016 Dated 20th May 2016) growth and amazing flowers. Orchids in tropics love the monsoon weather and respond with a luxurious growth and it is also time for us (hobbyists) to ensure that our orchids are fed well so that Chairman plants put up good vegetative growth. But do take care of your Dr. Sadananda Hegde plants especially if you are growing them in pots and exposed to continuous rains, you may have problems! it is alright for mounted plants. In addition, all of us have faced problems with Members snails and slugs, watch out for these as they could be devastating. Mr. S. G. Ramakumar Take adequate precautions with regard to onset of fungal and Mr. Sriram Kumar bacterial diseases as the moisture and warmth is ideal for their multiplication. This is also time for division or for propagation if Editor the plants have flowered. Dr. K. S. Shashidhar Many of our members are growing some wonderful species and hybrids in Bangalore conditions and their apt care and culture is Associate Editor seen by the fantastic blooms. Here I always wanted some of them Mr. Ravee Bhat to share their finer points or tips for care with other growers. -
New Combinations in Dendrobium (Orchidaceae)
New combinations in Dendrobium (Orchidaceae) André Schuiteman1 and Peter B. Adams2 1. Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK; e-mail: [email protected] 2. School of Botany, University of Melbourne, Victoria 3010, and National Herbarium of Victoria, Birdwood Avenue, South Yarra, Victoria 3141, Australia; e-mail: [email protected] Corresponding author – André Schuiteman Abstract Introduction Molecular phylogenetics of Subtribe Molecular phylogenies of subtribe Dendrobiinae based on chloroplast Dendrobiinae (Orchidaceae – and nuclear markers consistently show that the commonly accepted Epidendroideae) have revealed genera Cadetia, Diplocaulobium, Flickingeria and Grastidium are all that Cadetia, Diplocaulobium, Flickingeria and Grastidium are nested nested within one of the two main clades of Dendrobium (Yukawa et within Dendrobium as traditionally al. 1993, 1996, 2000, 2001; Clements 2003, 2006; Burke et al. 2008). circumscribed. We consider that Recognition of these genera thus renders Dendrobium paraphyletic. there are compelling reasons, based This implies that either Dendrobium should be split up into many, on evidence and the desirability of potentially dozens, of smaller genera (as advocated by Clements and nomenclatural stability, to recombine these genera as well as Euphlebium Jones 2002; Clements 2006), or that the four satellite genera mentioned and Epigeneium (among others) within above should be included in a more broadly circumscribed genus Dendrobium. New combinations Dendrobium. We consider the first alternative to be undesirable, and are presented where species do not support the second alternative for the following main reasons: presently have valid Dendrobium names. 1. At present the phylogenies do not show enough resolution. Beyond the division into two strongly supported clades, Asian Keywords: Dendrobiinae, Flickingeria, Cadetia, Diplocaulobium, Epigeneium and Australasian (Clements 2003), there is no obvious way to split up Dendrobium into monophyletic groups. -
March - May 2002 REGISTRATIONS
NEW ORCHID HYBRIDS March - May 2002 REGISTRATIONS Supplied by the Royal Horticultural Society as International Cultivar Registration Authority for Orchid Hybrids NAME PARENTAGE REGISTERED BY (O/U = Originator unknown) AËRIDOVANDA Diane de Olazarra Aër. lawrenceae x V. Robert's Delight R.F. Orchids ANGULOCASTE Shimazaki Lyc. Concentration x Angcst. Olympus Kokusai(J.Shimazaki) ASCOCENDA Adkins Calm Sky Ascda. Meda Arnold x Ascda. Adkins Purple Sea Adkins Orch.(O/U) Adkins Purple Sea Ascda. Navy Blue x V. Varavuth Adkins Orch.(O/U) Gold Sparkler Ascda. Crownfox Sparkler x Ascda. Fuchs Gold R.F. Orchids Marty Brick V. lamellata x Ascda. Motes Mandarin Motes Mary Zick V. Doctor Anek x Ascda. Crownfox Inferno R.F. Orchids Mary's Friend Valerie Ascda. John De Biase x Ascda. Nopawan Motes Thai Classic V. Kultana Gold x Ascda. Fuchs Gold How Wai Ron(R.F.Orchids) BARDENDRUM Cosmo-Pixie Bard. Nanboh Pixy x Bark. skinneri Kokusai Pink Cloud Epi. centradenium x Bark. whartoniana Hoosier(Glicenstein/Hoosier) Risque Epi. Phillips Jesup x Bark. whartoniana Hoosier(Glicenstein/Hoosier) BRASSOCATTLEYA Ernesto Alavarce Bc. Pastoral x C. Nerto R.B.Cooke(R.Altenburg) Maidosa Bc. Maikai x B. nodosa S.Benjamin Nobile's Pink Pitch Bc. Pink Dinah x Bc. Orglade's Pink Paws S.Barani BRASSOLAELIOCATTLEYA Angel's Glory Bl. Morning Glory x C. Angelwalker H & R Beautiful Morning Bl. Morning Glory x Lc. Bonanza Queen H & R Castle Titanic Blc. Oconee x Lc. Florália's Triumph Orchidcastle Clearwater Gold Blc. Waikiki Gold x Blc. Yellow Peril R.B.Cooke(O/U) Copper Clad Lc. Lee Langford x Blc. -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
How to Cite Complete Issue More Information About This Article
Lankesteriana ISSN: 1409-3871 Lankester Botanical Garden, University of Costa Rica Gyeltshen, Choki; Dalström, Stig; Gyeltshen, Nima; Tobgay, Kezang A new spotted Chiloschista (Orchidaceae: Aeridinae) from Bhutan Lankesteriana, vol. 19, no. 1, 2019, pp. 23-29 Lankester Botanical Garden, University of Costa Rica DOI: https://doi.org/10.15517/lank.v19i1.37030 Available in: https://www.redalyc.org/articulo.oa?id=44366682005 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative LANKESTERIANA 19(1): 23—29. 2019. doi: http://dx.doi.org/10.15517/lank.v19i1.37030 A NEW SPOTTED CHILOSCHISTA (ORCHIDACEAE: AERIDINAE) FROM BHUTAN CHOKI GYELTSHEN1, STIG DALSTRÖM2.5, NIMA GYELTSHEN3 & KEZANG TOBGAY4 1 Senior Biodiversity Officer, National Biodiversity Centre, Ministry of Agriculture and Forests, Serbithang, Thimphu, Royal Government of Bhutan 2 2304 Ringling Boulevard, unit 119, Sarasota FL 34237, USA; Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica; National Biodiversity Centre, Serbithang, Royal Government of Bhutan 3 Biodiversity Supervisor, Royal Botanic Garden, National Biodiversity Centre, Ministry of Agriculture and Forests, Serbithang, Thimphu, Royal Government of Bhutan 4 Biodiversity Officer, Royal Botanic Garden, National Biodiversity Centre, Serbithang, Thimphu, Royal Government of Bhutan 5 Corresponding author: [email protected] ABSTRACT. A new species of Chiloschista from a restricted area in Bhutan is described and illustrated. It is compared with C. parishii from Myanmar and Thailand, which has similarly colored flowers and from which it differs by the larger flowers, 15–18 mm versus 8–10 mm, and the lack of a glandular and pubescent, erect and curved callus lobe inside the lip, which is generally seen in other similarly colored species of this genus. -
Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation. -
Orchid-List USA Autumn 2013.Pub
www.hengduanbiotech.com e-mail: [email protected] Orchid-List USA, Autumn 2013 (We attend the 2013 Fall Mid-America Orchid Show and Sale in Dayton , Ohio, October 19-20) Welcome at Hengduan Mts. Biotechnology! Hengduan Mts. Biotechnology is a German-Chinese company dedicated to the conservation and cul- tivation of native Chinese orchids. Our base is in Sichuan, Southwest China, in one of the biodiversity hotspots of the world, the Hengduan Mountains System (synonym Mountains of Southwest China), home to about 400 orchid species and the Giant Panda. Our laboratory and subtropical nursery in Chengdu, Sichuan’s capital, as well as the alpine nursery beds in North Sichuan are the tools for in vitro propagation and subsequent raising of a wide range of Chinese orchids, with our specialty be- ing slipper orchids (Cypripedium & Paphiopedilum, but also Phragmipedium and Mexipedium). We create also orchid hybrids and our modern laboratory is further engaged in the production of fruit crop plants and medicinal herbs. Hengduan Mts. Biotechnology is registered with the State Forestry Agency (SFA, the CITES authority of the Peoples Republic of China), as in-vitro propagation facility of CITES appendix I & II orchids and grower of these artificially produced plants. We legally export flasks as well as seedlings of all stages from recently deflasked to flowering size of Paphiopedilum, Cypripedium and many other types of or- chids to North America, the European Union, Japan and other countries. Because the paperwork for every single export involves 7 different governmental agencies with 12 steps, and requires at least 3 months (usually more), we only export once or twice a year to a given region.