The JapaneseSocietyJapanese Society for Systematics

ISSN 1346-7565 Acta Phytotax. GeoboL 56 (2): 14]-161 (200S)・

Molecular Phylogenetics of ()and allied Genera: Re-evaluation of Generic Concepts

TOMOHISA YUKAWAi, KOICHI KITA2, TAKASHI HANDA2, TOPIK HIDAYAT3 and MOTOMHTo3

i71sukuba 21hstitute Botanical Garcien, Nlational Scienee Mtiseum, Amakuho, Tyuketba, 305-OO05. Jopan; of 3Graduate Agricultnre andforestn)). Uhivensity qf'Tgukuba, fennodai, 71yukuba, 305-857Z Japan; Schoot ofArts and Seience, Uhivensity of7bdy,o, Kbmaba, 7bkyo, J53-8902, JZu)an,

Molecular phylogenetic analyscs were performed using data sets derived from DNA sequences ofthe plastid genome (matK and trnK introns) and the nuelear genome (rDNA ITS) in an examination ofrela- tionships of all sections ofPhataenqpsis and closely related gcnera. The fo11owing insights were pro- vided: (1) The genera Lesliea and IVbthodoritis are nested within Phalaenopsis, (2) Phalaenopsis subgenus Aphyilae and section EsmeJ'aldd, often treated as thc independent genera Kirrgidium and Doritis respectively, are also nested within Phalaenqpsis. (3) Two subgenera of Phalaenqpsis, namely, Phalaenopsis and 1larishianae, are not monophyletic. (4) Phalaenopsis sections Deliciosae, SZautqglottis, Amboinenses and Zehrinae are not monophyletic. (5) lnconsistencies bctween the plastid and nuclear lineages indicate a hybrid origin ofPhalaenopsis minus and Phalaenopsis phitmpinensis. (6) In light of these findings, and to accommodate phylogenetic integrity and stability in nomenclature, we adopt a broadly defincd Doritis characterized by the possession of fbur pollinia, an explicit character state.

Key words: Doritis,introgression, ITS, mati(l moleculag Orchidaceae, Ahalaenopsis, phylogcnctics, tttnK

Phakzenopsis Blume is an orchid genus to which 62 tion ofthe genus has been thoroughly reviewed by species are currently assigned (Christenson 2001). Sweet (1980). In the present study, we fbllow the According to Dressler's classification ofthe Orchid- system proposed by ChristensQn (2001) as this aceae (1993), the genus belongs to subfamily wotk incorporates the most recent data C[fable 1), In Lindl. tribe Vlindeae Lindl. sub- his reyision, Christenson (2001) treated Phalae- tribe Pfitzen The genus occurs from nopsis in a broad sense, sinking the genera Doritis

southern Indiaand SriLanka in the west to New Lindl. and Kingidium P. F. Hunt, both of which

Guinea and northern Australia in the east, It extends have been treated as independent genera by other as far north as southem China and 1faiwan. The authors (e.g. Seidenfaden 1988, Dressler 1993), center of diversity of the genus is Borneo, from intoPhalaenopsis, where 13 species are currently known, This major inconsistency among taxonomists is

Several monographic treatments ofthe genus largely due to different weighting attributed to the have been published notably by Roife (1886), Sweet critical morphological character, pollinium num- (1968-69, 1980) and Christenson (2001). Shim ber. Although polliniurn number has traditionally (1984) revised the generic classification wnh empha- been censidered a heavily weighted character in sis on floral morphology, The history ofclassifica- the classification oforchid genera, its state is not uni-

NII-Electronic Library Service TheTheJapaneseSocietyforPlant Japanese Society for Plant Systematics

142 APG Vbl. S6

TABI,E 1 . Species of Rhalaenopsis and allied genera used for matK-trnK introns and ITS sequencing. Infrageneric classification fo11ows Christenson (2001), 'Sp 'ecles Vbucher Sllbgenus Probescidioidds (Rolfe) Christe]son Phalaenopsis lowii Rchb. f TBG i44316*

Subgenus !{plij,tlae (H. R. Sweet) Christenson Phataenopsis braceana (Hook. f.) Christenson 7BG 144566 Phaldenopsis minus (SeidenE) Christenson 71BG 145839 PhataenopsiswilsoniiRolfe TIBG 144214

Phalaenopsis sp. litkawa 29689 Subgenus ilarishianae (H. R. Sweet) Christenson

Phalaenopsis uppendiculata C. E. Carr 71BG 144305 Phataenqpsis lobbii (Rchb. £ ) Sweet 7BG 78865 Phalaenopsis parishii Rchb. f. 71BG 13388J Subgenus Ilolychiles (Breda) Christenson Section Ilolychilos (Breda) Christenson Phalaenopsis cornu-cervi

Phalaenopsis cochlearis Holttum .71BG 14420P Phalaenopsis kunstleri Hoek. f 71BG137083 Phalaenopsis viridis J. J, Sm. ZEIG 14J055

Phalaenqpsis sp. TBa 14223S

Section Amboinenses H. R. Sweet

Phataenopsis amboinensis J, J. Srn. TZIG133762

Phalaenopsis bastianii Gruss & ROIIke 71BG140637 Phalaenopsis bellina (Rehb. f) Christenson 71BGi18533 Phataenopsis db",et:ytinsis Garay & Christenson llBG144564 Phalaenopsisfasciata Rchb. f 7BG 145 726 Phalaenopsis.fimbriata J, J. Sm, subsp, suneatrana (J. J, Sm.) Christenson 71BGf45860 PhalaenopsisY7oresensisFowlie llBG145748 Phataenopsis gigantea J. J. Sm. 71BG i3 7307 Phalaenopsis hiertrglyphica (Rehb, f) H. R. Sweet ZBGf45743

PhataereopsisJ'avanica J. J. Sm. 71BG 14586S Phalaenopsis luecidemanniana Rchb. f 71BG145733 Phalaenopsis lueddemanniana Rchb. tl var. ochraeea Rchb. E 71EIGI45863 Phalaenopsis maculata Rchb. f. 7BGJ44569 Phalaenopsis mariae Burb. ex R. Warneer & B. S. Williams 7:BGJ41056 Phalaenopsis micholitzii Rolfe TZIG140.566 Phalaenopsih' mode,sta J, J, Sm. 71BG 140664 Phalaenopsis pallenE (Lindl,) Rchb, fi llBG145744 Phalaenopsispttlckra (Rchb, fi) H, R, Sweet 7:BG145761 Phataenopsis reichenbachiana Rchb, f & Sander 7]BG145S75 Phalaenopsis venosa Shim & Fowlie 7BGJ45770 Pkalaen(tpsis violacea Wjtte 71BCf45785 SectionZlebrinaePfitzer

Phalaenopsis inscriptiosinensis Fowlie M(l i44571 Phataencrpsis sumatrana Korth, & Rchb. fi 1:BG i42440 Phalaenopsis tetra,spis Rchb, f 7]BG145841

NII-Electronic Library Service The JapaneseSocietyJapanese Society forforPlant Plant Systematics

August2005 YUKAXMPL et at.: Molecular phylegenctics of Phataen opsis 143

TvLBLE 1.(continued). Speeies Vbucher SubgenusPkalaenopsis

Section IViataercopsis

Phalaenopsis amabitis (L.) Blumc TIIG145847 Phalaenopsis amabilis (L.) Blume subsp. rosenstromii (F, M. Bailey) Christenson 71BG140316 Phalaenqpsis aphrodite Rchb, f (1) 7BC14140S Phaiaenopsis aphrodite Rchb. £ (2) 71]G141I51

Phataenopsisphilijzpinensis Gelamco ex Fowlie & Tleing 7LBG118SS2

Phalaenopsis sanderiana Rchb. E Atagawa s. n.

Phaiaenopsis schilleriana Rchb. f IIBG 0309

Phataenopsis stuartiana Rchb, f, 7BG l45 758 SectionDeliciosaeChristenson

Phaiaenopsis chibae T, Yukawa 71BG115846

Phalaenopsis deticiosa Rchb. f, (1) 7BG145842 Phaiaenopsis dltliciosa Rchb. f. (2) 1;BG144594 Section Esmeralda Rchb. f,

Phaiaenopsispttlcherrima (Lindl.) J. J. Srn. 71BG1J8342 "buyssoniana" Phalaenopsis sp, TBG l45823 Section stauroglottis (Schauer) Benth. Phaiaenopsis equestri.s (Schauer) Rchb. £ 71BG141154 Phalaenopsis cetebensis H, R. Sweet ZBG J45822 Phalaenopsis lindenii I.oher ZBG140568

Allied taxa

Lesliea mirabitis Seiden£ TLBG145844

IVbthodoritis zhojiangensis Z. H. Tsi TBG f3 750i

O"tgroupAmesiella

monticola J.E. Cootes &D. P, Banks 7BG 123790 *TBG series indicate accession nurnbers in living cellection database at Tsukuba Botanical Garden.

fbrm within Phalaenctpyis. The predoininant number shed their leaves during the dry season.

in the genus is two, but the subgenera Proboscidi- Phylogentic relationships in Phataenopsis

oides, Aplryllae and Ftirishianae all have four pol- remain largely unresolyed, Woodward (1951), linia, as do the sections Deliciosae and Esmeralcla Sagawa (1962), Shindo & Kamemoto (1963), footh in subgenus Phalaenopsis). Immense diversity Sagawa & Sheji (1968), Arends (1970), Sheji (1976, in the structure Qf reproductive organs, particularly1980), Aoyama (l993), Aoyama et al. (1994) and that of the labellum and the stipe, has also resulted Kao et at. (200 1 ) investigated cytological characters, in inconsistent interpretations of relationships in Brandange et aL (1971, 1972) examined alkaloid the group, content and Tsai et al. (2003) conducted a molecu- Phalaenopsts also exhibits rematkable diversitylar phylogenetic analysis ofthe intemal transcribed

in terms of ecology. Most species are epiphytes, spacer rcgions of the 18S-26S nuclear ribosomal

though the species of section Esmeralda have a DNA (ITS) in subgenus Phalaenqpsis. ln the present tcrrestrial life form. On the other hand, in sub- study, we compared and combined DNA sequences genera Apilyllae, IZfirishianae and Proboscidioides of a maturase-encoding gene (matK) flanked by

NII-Electronic Library Service TheTheJapaneseSocietyforPlantSystematics Japanese Society for Plant Systematics

1" APG Xlo1. 56

Subgenus Section

811008874 P.arnabilis Phalaenepsis Phalaeriopsis P. amabilis subsp. rosenstromii Phalaenopsis Phalaenopsis P. aphrodite (1) Phalaenopsis Phalaenopsis

6010016 P. aphrodite Phalaenopsis Phalaenopsis 75 (2) P. sznderlana Phalacnopsis Phalaenopsis

313 P. IilldeniiP, Phalacnopsis Stauroglottis celebe]sis Phalacnopsis Stauroglottis lee P. equestris Phalaenopsis Stauroglottis 99 73 P, philippincnsis Phalaenopsis Phaluenopsis loe98 P, stuartiana Phalaenopsis Phulaenopsis

100 P, schilleriana Phalacnopsis Phalaenopsis

P sp.R PolychilosPo]ychilosl'olychi]osPolychilosPolychilosPolyehitosPolyehilosPolychitosPolychilosPolychilosPolychilosPetvchilosPolychilosPolvchilosPolychilosPolychilosPolychilosPolychilosPolychilosPolychilosFuscataeFuscataeFuscataeFuscataeAmboinenses 10064 kunstleri 100g4 P. cochlcaris P. viridisP. leo doweryensis 100 P, giguntea Ambeinenses P. maculata Amboinenses 100 P. amhoinensis Amboinenses 626010096966164P, venosaP. Amboincnsc$ belhnaP. Arnboinenses

violaceaP Amboinenses

fimbriatasubsp.sumatrana Arnboinenses 53 90 R floresensjs Amboinenses go 9686866065 P, inscriptiosincnsis ZebrinaeAmboinenses P.javanicaP.

tetraspis ZebrinacZebrinaeAmboinenses

P. sumatrana

P. modestaP.bustianii Arnboinenses

P. mariaeP. Arnboinenses Iueddemanniana var, ochracea Po]ychilosPolychilosArnboinenses 41 61 P. Iueddemanniana Ambeinenses 56 6299 P. fascialaP. Po]ychilos Arnboinenses

hieroglyphica PolychilosPolychilosArnboincnscs 4349 99 P. reichenbachiuna Amboinenses P. pallensP. Polychilos Amboinenses pu]chraP. Polychilos Ambeinenses 928963 rnicholitzii Polychilos Amboinenses P. pantherina Polychiles PolychilosPolychilosPolychilos 66 P. comu-cervi Polychilos R manniiP. ?olychiles minusLeslieumirabilis AphylLae

nappendiculata Parishianae 58100 50 45 R lobbiiP. PaTishianae 41 10064968310094 parishiiP. Parishianae 99 chibaeP. PhulaenopsLs DeiiciosaeDeHciosaeDeliciosaelkmera]da 93 deliciosa (1) Phalaenopsis R deticiosa (2) Phalaenopsis ''buyssoniana'' R sp, Phalaenopsis 1001005610033 R pulcherrima Phalaenopsis tsmera]da P. sp,R AphyllacAphyllacAphyUaeProboscidioides biaceama

R wilsonii 98 R bwiiNethedoritiszhejiangensis 99

Amcsiclla

FIG.1. Strict consensus of24 most-parsiinenious Fitch trees based upon matK-trnK introns sequences: length=593, consistency index=O,7808 (O.6328 excluding uninfbrmative characters), retentien index of O.8751. Numbers above internQdes indicate bootstrap values from 1,OOO replicatcs ofFitch parsimony analysis (maxtree limit of 1,OOO per replicate), Numbers below intern- odes indicate bootstrap values from 1,OOO replicates ofneighborsioining distance analysis.

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August 2005 YUKAwn et al.: Molecular phylogenetics of Pkalaenopsis 14S

introns ofthe plastid gene imK; the trnK introns and trees were calculated using ACCTRAN optimization

the ITS region from members of all sections of (Swoffbrd & Maddison 1987). Distance trees were Phalaenopsis and closely related genera to clarify obtained using the neighborjoining (NJ) method relationships within the genus. (Saitou & Nei 1 987) with a Kimura two-parameter correction (Kimura 1980), [Ib assess the relative Materials and Methods robustness fbr branches, the bootstrap method

(Felsenstein 1985) was used with 1OOO replicates. We selected 53 representative taxa from all sub-

genera and sections ofPhalaenopsis for inclusion in Results

the study. Lesliea Seidenfl and IVbthodoritis Z. H.

Tsi were also included in the study because mor- Figure 1 shows a strict consensus of24 most parsi- phological characters of these two genera suggest a monious (MP) trees derived from the matK-trnK close relationships with Phalaenopsis (Christensonintrons sequences. The tree had a consistency index 2001). Riraphalaenopsis A, D. Hawkes, a genus (CI) of O.7808 (O.6328 excluding uninfbrrnative also regarded as being closely related to Phalae- characters) and a retention index (RI) ofO.875 1 . In

nopsis, was not included in the study because an ear- this data set topologies with more than 509t6 boot-

lier comprehensive molecular analysis efsubtribe strap support were nearly identical between MP

Aeridinae had revealed wide phylogenetic separation and NJ analyses (Fig. 1), though section Stauro- between the two (Tbpik et al., in press). Based on glottis formed a sister group with three species of the results ofthe same analyses, Amesietla Garay section Phataenopsis (R philippinensis, R schille- was chosen as the eutgroup taxon. [[lable 1 lists the riana and 2 stuartiana) in the NJ tree (83% boot- materia]s used in the phylogenetic analysis. Vbucher strap support). specimens have been deposited at TNS. A strict consensus of 322 MP trees on the

Experimental methods fbllowed those describ- basis ofthe ITS data set is shown in Fig. 2. For this ed in Yukawa et aL (1993, 1996). Sequences were tree, Cl was O.5521 (O,4770 excluding uninformative

determined by amplifying matK, trnK introns and characters) and RI was O.8169; topologies with

the ITS region (including 5.8S rDNA and parts of more than 50% bootstrap support were nearly iden- 1 8S and 26S rDNA) yia the polymerase chain reac- tical between MP and NJ analyses (Fig. 2), although tion (PCR) from a total DNA extract, PCR primers the monophyly oftwo individuals ofPhalaenopsts were as given in Yitkawa et al. (1999) fbr the matKL uphrodite was well supported only in NJ analysis trnK 3' intron and as in Douzery et al. (1999) for (86% bootstrap support). ITS, We developed the fbllowing combination of Analyses ofmatKLtrnK introns sequences pro- primers for the trnK 5' intron: 3914FN: 5'- vided results substantially concordant with those

ATCTGGGTTGCTAACTCAATGG-3' and achieved via analyses ofITS sequences, except fbr

OMAJ]IR: 5'-CAATATGGTCAGAACGGCGTL3'. the positions of Phalaenopsis phigijzpinensis and DNA sequences were aligned manually. Gaps were R minus, In the plastid phylogenyl R phii4zpinensis treated as missing characters, The aligned data file fbrmed a sister group with R stuartiana; in the is available from the first author upon request. nuclear phylegeny, R philippinensis was nested

Parsimony and distance analyses were conducted between the R stuartiana-schilleriana clade and

with PAUP" version 4.0b6 (Swoffbrd 2001). The the R amabilis-aphrodite-sanderiana clade. heuristic option was used to perfbrTn Fitch parsi- Likewise, the plastid phylogcny supported place- meny analyses (Fitch 1971). Branch lengths for ment ofR minus in a clade comprising Lesliea and

NII-Electronic Library Service TheTheJapaneseSocietyforPlantSystematics Japanese Society for Plant Systematics

146 APG Vbl. 56

Subgenus Section

P. amabilis Phalaenepsis Phalaenopsis

P. amabilis subsp ,rosenstromii Phalacnopsis Phalaenopsis R sandcriana Phalaenopsis Phalaenopsis

n aphredite (2) Phalaenopsis Phalaenopsis E aphrodite (1) Phulaenopsis Phalacnopsis Rphilippinensis Phalaenopsis Phalaenopsis ]schilleriana Phalaenopsi$ Phalacnopsis P. stuartiana Phalaenopsis Pha]aenepsis Requestris Phulacnopsis Stau[oglettis RlindeniiP. Phataenopsis Stauroglottis

celebensLs Phalaenopsis Staurog[ottis

R sp.R PolychilosPolychilosPelychilosPotychiloslftiscataeFuscataeFuscatacFuseataeArnboinenses

cochlea ris P. kunstleri

P. viridisP.

doweryensis PoLychilos

R giganteaP. Polychilos Amboinenses maculata Polychilos Amboinenscs P. amhoinensis ?olychilos Amboinenses P. venosaF', Polychilos Amboinenses bellinaR Po]ychilosPolychi]osPo]ychilosPolychilosPolychilosPolychilosPolychilosPolychilosAmboinenses

violaceaP. Arnboincnses

fimbriata subsp.suniatrana Amboinenses P. fl{resensis Amboinense s R livanicaP. timboinenses

inscriptiosinensis ZebrinaeZebrinaeZebrinaeAmboinenses

P, tetraspis Rsumatrana P, modestaRbastianii Po]ychilos Polychiles Amboinenses R mariacR Polychilos Ambeinenses

lueddemanniana var. ochracea PolychilosPolychilosPelychitosPolvchilosPolvchilosPolychilosPolvchilosPolychilosPolychilosPolychiLosPolychilosAmboinenses

P, lueddemanniana Amboinenses P i'asciataP. Amboinenses

hieregLyphica Arnboincnses

P. pallcnsP, Amboinenses pulchraP.reichenbachiana Ambeinenses Amboincnses P.rnicho]itzii Amboinenses P. pantherina Polychi]nsPolychilosPolychilos P, coniu-cervi

P, mannitiR

sp.R AphyllacAphyllacAphy]laeAphyllaeProboscidioides

wilsonii P. braceana P, minusP.

IowiiNothodaritiszhejiangensis

P, appendieu]ata Parishianae P. IobbiiP, Parishianae paTishiiP. Parishianae chibaeP. Phalacnopsis DeliciosacDeHciosaeDeliciosaelsmeraldalsmera]da

deliciosa (L} Phalaenopsis 1'. deticiosa (2) Phalaenopsis Leslieamirubilis

R sp."buyssoniana'' Phalacnopsis R pulcherrima Phalaenopsis Amesiella

Fia2. Strict consellsus ef 322 most-parsimonious Fitch trces based upon ITS sequences: length=585, consistency index=O.5S21 (O.4770 excluding uninformative characters), retention index of O.8]69. Numbers above internedes indicate bootstrap values from 1,OOO replicates ofFiteh parsimony analysis (maxtree limit ef 1,OOO peT Teplicate). Numbers below internodes indicate bootstrap values from 1,OOO replieates ofneighborjoining distance analysis.

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August2005 YUKAWA et al.: Molecular phylogenetics ofPhalaenopsis 147

Phalaenopsis subgenera Ririshianae and Phalae- Discussion

nopsis sections Deliciosae and Esmeiulcla, whereas

the nuclear phylogeny indicated a nested position in Biogeog,up]u;

a clade formed ofIVbthodoritis and Phalaenqpsis The two major clades reeognized in this study are

subgenera Aphyllae and Proboscidioides. characterized by markedly different patterns in geo- In such cases, analyses of combined data sets graphical distrjbution of their constituent species.

excluding problematic taxa provide more resolu- Thus species in Clade 1 are mostly distributed with-

tion and internal support fbr relationships than do in the limits ofMalesia, as defined by van Steenis

individual data sets (e.g., Olmstead & Sweere 1995, (1950). The few exceptions are as fbllows: Phalae- Wongsawad et al, 200], Yukawa 2001, Yukawa et nopsis aphrodite (section Phalaenopsis), which is

al. 2002), We thus conducted a combined analysis ef known from the Philippines and [faiwan; R amabilis

the jnformation derived from matK-trnK introns (section Phalaenqpsis), widely dispersed throughout

and ITS sequences, In this analysis Phalaenopsis the Malesian region, though its range extends also

philippinensis and R minus were excluded. The into northern Australia; R cornu-cervi (section length of the aligned sequence was 3768 base pairs, Pblychilos), a]so very widely distributed, occurring

Figure 3 shows a strict consensus of 896 MP trees from northeastern India to Java and Borneo; and R

from the combined data set. CI was O,6557 (O.5296mannii (section ICblychilos), a close relative efR

excluding uninformative characters) and RI was cornu-cervi fbund throughout the Himalayas and in

O.8297. In this data set, topologies with more than Indochina, R mannii is the only species in Clade 1

50% bootstrap support were almost identical that occurs exclusively outside the Malesian region, between the MP and NJ analyses (Fig. 3), altheugh In contrast, species in Clade 2 are particularly R ceiebensis fbrrned the basal position in the clade diverse in the Himalayas, southern China and

comprising Phaiaenopsis sections Phalaenopsis Indochina, However, there are a few exceptions: R

and Stauroglottis in the MP analysis, whilst it was puleherrima (section Esmeraldo), which also occurs nested between Phalaenopsis sections Rhalaenqpsis in Sumatra and Borneo; R deliciosa (section

and Stauroglottis in the NJ analysis. Delieiosae), the most widely-distributed species in

In the combined analysis, the fo11owing the genus with a range that extends from Sri Lanka insights were provided (Fig. 3): (1) the genera and India to the Philippines and Sulawesi; R Lesliea and Aibthocloritis are nested within the genus aysorensis (section Deliciosae), a species with an Phalaenopsis, (2) Phalaenopsis subgenus ApJryllaeisolated distribution in southern India; and R appen- and section Esmeraldd, often treated as the inde- diculata (subgenus Ptzrishianae), a species record- pendent genera Kingidium and Doritis respectively, ed from the Malay Peninsula and as such the only

C`Malesian" are also nested within Phalaenopsis, (3) Phalae- member ofthis clade. nopsis subgenera Phaiaenopsis and Ptirishianae This distinction in geographical distribution are not monophyletic. (4) Phalaenopsis sections indicates that speciation within Clade 1 has occurred

Dek'ciosae, Staurogibttis, Amboinenses and Zebrinae mostly in Malesia, whilst that in Clade 2 has

are not monophyletic. C5) The genus Phalaenopsis occurred predominantly in the Himalayan and is apparently composed of two major clades, here Indochinese regions. In an attempt to explain this

termed Clade 1 and Clade 2. pattern, two competing hypotheses are proposed.

NII-Electronic Library Service TheTheJapaneseSocietyforPlantSystematics Japanese Society for Plant Systematics

l48 APG M)1, 56

Subgenus Section

Ramabilis Phalaenepsis I'halaenepsis

R amabMs subsp. resenstromii Phalaenopsis Phalaenopsis Rsanderiana Phalaenopsis Phaluenopsis

R aphrodite (2} Phaluenopsis Phalaenopsis E aphrodite Cl) Phalaenopsis Phalaenopsis P.schilleriana Phalaenopsis Phalaenopsis

P. stuartiana Phalaenoptiis Phalaenopsis

P. equestris Phalaenopsig Stauroglottis

P, lindeniiP. Phalaenopsis Stauroglottis

eetebensis Phalaenopsis Stauroglottis

R sp.P. PolyehilosPolychilosPolychilosPotychilosPoLychilosPolvchilosPolychilosPolychilosPolychilosPolychilosPolychilosPDIychilosPolychilosPolychilosPolychilosPo]ychilosPolychilosPe]ychilosPoiychilosPolychilosPolyehilosPolychilosPolychilosPolychilosPolychilosPe]ychilosPo]vchiLosPelvchilosPolychilosPolyehilosPolychilosAphylleeAphyllacAphyllaeFUscataeFuscataeFuscataeFuscataeArnboinenses

cochlearis

P. kunstleri

P. viridis1'.

doweryensis

I'. gigantea1'. Amboinenses maculata Amboinenses

P. amboinensis Amboinenses Qpapto- R venosaRbe]TinaP. Amboinenses Amboinenses violttceaP. Amhoinenscs

tilnbriata subsp.sumatrana Amboinense s P. fl{regensis Ambuinenses P.juvunicaP, Amboinenses

inscriptiesinensis ZebrinaeZebrinaeZcbrinacAmboinenses

P, tetraspis

P, sumatrana

P, medestaP.

bastianii Amboincnses

R mariaeR Amboinenscs

lueddemanniana var, ochracca Amboinenscs

P. Iueddemanniama Amboinenscs P. fasciataP. Arnboinenses

hierogtyphica Amboinenses

R pa]lensP. Amboinemses pulchraP, Amboincnses reichenbaehiana Amboinenses

P. rnicholjtzii Ambainenses

P. pantherina ?olychilosPolychilosPotychitos P. cornu-cervi

P. manniiR

sp.R

wilsonii

P, braceana Nethodoritiszhe.iiangensis

R IowiiLcslieamirabilis Proboscidioides Qgk R sp,''buyssoniana" Phalaenopsis EsmeralduIismeralda R pulcherrima Phalaenopsis R appendiculata Parishianae RlobbiiR Parishianae

parishiiR Parishianae chibaeR I'hu]aenopsis DcliciosaeDeticiosueDeliciosae

deliciosa (I) Phalacnopsis R deliciesa {2) llialacnopsis Amcsiella

FIG, 3. Strict consensus of896 most-parsimonious Fitch trees based upon mati

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August2005 YUKAWAetal.:MolecularphylogeneticsofPhalaenopsis 149

The first invokes cladogenesis of two precursor lin- vegetative organs in Phalaenopsis and allies corre- eages, with subsequent radiation occurring in each lates with pronounced environmental differences

lineage relatively recently, Prior to cladogenesis, between the Malesian and Indochinese regions. For

the only availal)le corridor linking the two lineages instance, in Clade 1, species in sections Amboinen-

in the Malesian and Indochinese regions was the ses, fileiseatae and Zebrinae occur in evergreen

Malay Peninsula, and, consequently, dispersal fbrests under low light levels (Christenson 2001) between the two regions was rare, where the leaves do not have to endure prolonged The second hypothesis emphasizes environ- periods in a desiccating environment (K, Suzuki, menta1 differences between the Malesian and Indo- personal communication). In contrast, species in

chinese regions in demarcating the observed distri-section Ilolychilos have succulent leaves adapted

bution patterns of Clades 1 and 2. The climate of the to bright places high in the forest canopy Malesian region is characterized by rather constant, (Christenson 2001, T. YUkawa, unpublished data), high precipitation throughout the year, In contrast, AccordinglM they are likely to haye been able to

the Indochinese region has a matked dry season. extend the distribution to the Indochinese region

Ancestral stocks in each major clade may have where a definite dry season exists. In Clade 2, mem-

adapted exclusively to one or other of these envi- bers of Phalaenopsis subgenera Aphyllae, furishi-

ronmental condjtions, with subsequent divergence anae and Proboscidioides and the genus IVbtho-

being reinforced through elaboration of specjalized doritis shed their leaves during the dry season. It is

functions in either lineage, interesting to note that the distributions of these

There are three major reasons why the first taxa largely overlap with areas of subtropical mon-

hypothesis shouldbe rejected. First, pair-wise dis- soon climate where pine-deciduous Dipterocarpus

tances of nucleotide divergence between the two forest and lower montane pine-oak forest dominate major clades and taxa in each clade are great, For (Santisuk 1988), As such, the deciduous habit in example, the divergence between Phalaenopsis these groups likely represents an adaptatien to a eguestris in Clade 1 and R putcherrima in Clade 2 seasonally severe water deficit. Moreoyer, these in ITS sequences is 8.7%. Consequently, it is not groups have developed green, flattened roots that

plausible to hypothesize a recent origin ofthe two serve as a photosynthetic organ particularly dur- major clades and subsequent radiation in each clade. ing the deciduous period (Benzing et al, 1983).

Second, corridors linking the Malesian and Indo- Species with vegetative organs suited to special-

chinese regjons were much wider during glacial ized ecological and physiological conditions would periods in the Pleistocene (Morley & Flenley 1987). be less likely to be able to establish in niches in Thus geographical barriers between the two regions mailcedly different climate regimes. We thus support

are negligible, if we take account the time-scale the second hypothesis that attaches importance to

required fbr speciation. Third, long-distance wind environmental factors fbr the advent of a bimodal

dispersal of orchid seeds is frequent (e.g, Ganda- distribution pattern within Phalaenopsis. wijaja & Arditti 1983), The occurrence of R

aphrodite in both the Philippines and Taiwan pro- Mbrphotogy ofneproductive organs vides a good example of long-distance dispersal The enormous morphological diversification of because there is no geologic evidence fbr a past reproductive organs in subtribe Aeridiinae is well

land cormection between Taiwan and the northern documented in studies based both on morphological Philippines during the Teniary (fan 2002). (e.g, Seidenfaden 1988) and macromolecuiar char- On the other hand, morphological evelntion of acters (Ibpik et al. in press).

NII-Electronic Library Service TheTheJapaneseSocietyforPlantSystematics Japanese Society for Plant Systematics

150 APG Xio1. S6

Pel]inium number Deciduousness

P. amabilis 2 evergreen

P. arnabilis subsp. rosenstromii 2 eveTgreen

P. sandcriana 2 overgreen

P. aphrodite (2) 2 evergreen P. aphrodite (1) 2 evergreen Rschilleriana 2 evergreen P, stuartiana 2 evergreen

P. equesnis 2 cvcrgreen

R]indenii 2 cvcrgrcen

Rcelebensis 2 eveTgreen

Rsp. 2 cyergrcen

Rcochlcaris 2 evergreen

Rkunstleri 2 cvcrgreen

Rviridis 2 cvergrccn

Rdoweryensis 2 evergreen

Rgigantea 2 evergreen

nmaculata 2 evergreen

P. ambeinensis 2 cvergrccn Qptpto- P. venosa . 2 evergreen P. bellina 2 evergreen

P. violucea 2 evergreen

Pfimbriatasubasp.sumatrana 2 evergreen

Rflcresensis 2 cvcrgreen

Pjovanica 2 evergreen

P. inscriptiosinensis 2 evergreen

P. tetraspis 2 evergreen P. suinatrana 2 evergreen P. modesta 2 evergreen

P. bastianii 2 evcrgreen

P. rnariae 2 evergreen

P, lueddemanniana var, oehracea 2 evergreen

P. Iueddemanniana 2 evergreen

P.fasciata 2 evcrgrcen

P, hicroglyphica 2 evergrecn

P. pal]ens 2 el,ergreen Rpulchra 2 evergreen

P. reichornbachiana 2 evergreen

Rmlcholitzli 2 evergreen Rpuntherina 2 evergreen

Rcornu-cervi 2 evergreen

Ulnamiii 2 evergreen

P.sp. 4 deeiduou s

P. wilsonii 4 deeiduous

P. braccana 4 deciduous

Nothodoritiszhejiangensi$ 4 deeidueus Rlowii 4 decidueus Leslieamirabilis 4 evergreen ge9N P. sp.''buyssoniana" 4 evergrecn

P. pulcherrima 4 evergreen P. append;culata 4 evergT'een P.IobPii 4 deciduous 4 deciduous k?reEidhuiious Rchibac 4 cvcrgrccn P. dclieiesa(l) 4 cvergrccn ?, deliciosa(2) 4 evergrecn

Amesiella 2 evergreen

FIG.4. Reconstmction ofevolution in pollinium number and deciduousness in Phalaenopsis' and allied genera under ACCTRAN epti- mization. The trec is the str{ct censensus Fitch tree based sequences.

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August 2005 YUKAWA et al,: Molecular phylogenetics ofPhataenopsis 151

The most controversial character in the classi- spur of the labellum, chlorophyllous perianth lobes, fication ofPhalaenopsis and allies is the number of fbur subglobular poilinia and a deciduous habit pollinia (2 or 4) among the members. Part of unite Kingidium (in a narrow sense). IV?)thodoritis is Phalaenopsis subgenus Phalaenopsis (i,e., sections characterized by an appendaged column, an elongate Phalaenopsis and Stauroglottis) and Phalaenopsis stipe, two sub-oblong appendages at the basal part of subgenus folychigos have two pollinia, However, the the labellum, four subglobular pollinia and a decid-

remainder of Rhalaenopsis, Lesliea and IVbthodoritisuous habit. A column with three calli at the base, a

have four pollinia (Fig. 4). The most parsimonious tubular stipe with a flange separating each pair of reconstruction of pollinium number in subtribe pollinia, four subglobular pollinia and an eperculum Aeridinae based en a molecular phylogenetic tree with teeth at the firont characterize Lesliea. Estab- indicated that the apomorphic state in the lishment ofnew genera based solely on their spe- Phalaenopsis group is four <[Ibpik et al, in press), cialized character states may result in para-!poly- this state having arisen once in the lineage leading to phyly ofclosely related genera, ifsynapomorphies Clade 2, namely, Phalaenqpsis subgenera Phalae- which specifically unite their sister groups are not

nopsis (sections Deliciosae and Esmenatdu only), found. In this case, such morphological synapo- Apltyllae, 1larishianae and Proboscidioides, Lesliea morphies of the sister group of each segregated and M)thodoritis (Fig. 4). genus do not exist. Actually, our molecular data Since the poll{nium number of Orchidaceae definitely corroborate the paraphyly of Phaiae- is usually considered to be stable, and because it has nopsis, if we accept Doritis (in a narrow sense), been treated as a cardinal character among taxono- Kingidium (in a narrow sense), IVbthodoritis and mists, the variability in this genus has provoked Lesliea at generic level, much discussion Ce.g,, Yukawa 1996, Christenson

2001). Our results indicate thatthe conservative Morphology ofvegetative organs nature of pollinium number is not a rule but a Phalaenopsis and allied genera comprise both ever- C`dogma" in orchid classification, Actually, variation green and deciduous species, Phalaenopsis sub- in pollinium number is found in other small- to genera ziphyllae, Ilarishianae (except for R uppen- medium-sized monophyletic groups such as 7]iiunia dieulata) and Proboscidioicles, as well as the genus Rchb, f Ce.g,, Seidenfaden 1986) and dymbidiumAibthodbritis, shed their leaves during the dry season Sw. (e.g., YUkawa et aL 2002). (Fig, 4). As mentioned al)ove, the deciduous hal)it in Other reproductive characters such as stmctures this group likely represents an adaptation to a sea-

of the labellum and the stipe are much diversified in sonally severe water deficit. Thc results of this

this group. Emphasis of such characters has fbrmed study suggest that deciduousness likely evolved

the basis for circumscription of small-sized gen- twice-once jn the lineage leading to Phalaenopsis era such as Doritis (in a narrow sense; equivalent to subgenus ]Plarishianae (excluding R appendiculata) Phalaenopsis section Esmexalda in this study), and once in the common ancestor ofPhalaenopsis

Kingidittm (in a narrow sense; equivalent to subgenera Aph.vtlae and Pioboscidioides and genus Phalaenqpsis subgenus Aplryllae in this study), Nbthodoritis (Fig, 4). In association with this char- IVbthodoritis and Legtiea. Doritis (in a narrow sense) acter cvolution, these groups developed green, flat- has thc fo11owing apomorphies: long column-foot tened roots which serve as a photosynthetic organ (about as long as the column), elongate stipe, two particularly during the dry period when the plant linear appendages at the basal part of the Iabellum sheds its leaves. Benzing et al. (1983) showed that and four globular pollinia. An obscure to prominent roots of the deciduous R taenialis (subgenus

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

152 APG Xlo1, 56

Ap]tyUae) have thinner velamina with a decreased cence in Phalaenopsis section Esmeralcla is also number of layers, a 1arger volume of cortical inter- an exceptional character state in the genus, since all cellular space, and more elaborate aeration tissues other species ofPhalaenopsis have patent to pen- than the leafy E amabilis (section Phalaenczpxsis) and dulous inflorescences. There is no doubt that the outgroup genera. It is clear that these anatomical erect inflorescence represents another adaptation alterations facilitate gaseous exchanges in the roots. to the terrestrial life fbrm.

Lij2iform dytologicaicharacters Since every sister group candidate to Phalaenopsis As suggested by Wbodward (1951), Sagawa (1962), is epiphytic (Topik et al. in press), the terrestrial life Shindo & Kamemoto (1963), Sagawa & Shoji fbrrn in Phalaenopsis section Esmencilda rcpresents (1968), Shoji (1976, 1980), and Aoyama (1993), an apomorphic state that arose only once in this Phalaenopsis shows a consistent somatic chromo-

group. Recent phylogenetic analyses have clarified some number of38, except for the tetraploid species,

"btotsonniand' that the Orchidaceae has a terrestria] ancestry P. sp. and a few chance polyploid (Neyland & Urbatsch 1995, Cameron et al. 1999). individuals. In the genus, Shindo & Kamemoto Therefore, evolution from the epiphytic to terrestrial(1963) fbund the fbllowing karyomorphological life fbrm in Pkataenqpsis represents a reversal in the diversification: Phalaenopsis amabiiis (section Orchidaceae as a whole. Yukawa et al. (2002) found Phataenopsis), R schilleriana (section Phalae- the same reversal pattem in another orchid genus, nopsis), 2 equestris (section Stauroglottis), R lin- Clymbidium. These results indicate that the changes denii (section Stauroglotn's) and R lueddemanniana in life fbrms are not necessarily rare evolutionary (section Amboinenses) have small chromosomes events within the Orchidaceae. and relatively symmetrical karyotypes. On the other

The shift to a terrestrial life forrn in Pkalae- hand, R puicherrima (section Esmeratdti), R man- nopsis section Esmeraldu accompanies several mor- nii (section Pblychilos) and R viotacea (section phological changes. Comparisons of anatomical Amboinenses) have 2 to 3 times larger and less characters ofroots in Pkalaenopsis revealed that symmetrical chromosomes than the first group.

Phalaenopsis section Esmeraida has more num- Similar karyomorphological diversification has been

bers of velamen cell layers (T. Yi!kawa & H. described by Shoji (l976), Aoyama (1993) and Motomura, unpublished data) than the epiphytic Kao et aL (200 1), Although these data do not reflect species. Moreoveg Phalaenopsis section Esmeraldti the fu11 species diversity ofthe genus, several evo-

has cy]indrical roots and never exhibits dorsiven- lutionary trends can be hypothesized. Both larger

tralityi as is found in epiphytic Phalaenopsis species. and smaller sizes of chromosomes characterizing

It seems clear that the attached roots of epiphytic several Phalaenopsis species might have been

orchids are absorptive, and that absorption is pro- derived from medium size chromosomes, which moted by thick velamina (Pridgeon 1987). The C3 are characteristic ef most members of subtribe photosynthesis of epiphytic roots in Phalaenopsis Aeridinae, the outgroup ofPhalaenopsis (Shindo & has been documented by Endo & Ikushima (1989),Kamemoto 1963), The results of our phylogenetic

The dorsiventral roots, therefbre, are adaptations analyses indicate that a clade comprising sections

to photosynthesis and water absorption on bark, Phalaenopsis and Stauroglottis is characterized by

Based on these facts, it is likely that changes in small chromosomes and that a clade in section

above-mentioned character states correlate with a Amboinenses including R amboinensis, R venosa

shift in life fbrrns, Furtherrnore, the erect infiores- and R violacea is characterized by large chromo-

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August 2005 YUKAwn et aL: Molecular phylogenetics ofPhalaenopsis 153

somes. On the other hand, we fbund that R cornu- 1978). The relative rate test was conducted fbr the

cervi and R mannii show a close athnity, though above-mentioned two species both in matKLtrnK

their chromosome sizes are greatly differentiated as introns and ITS sequences, Since constancy of sub- indicated by Shoji (1976). These data may suggest stitution rates was not rejected in these samples that evolutionary changes in chromosome size can (P

microspores in artificially-raised Fi hybrids of in the two species. In the Philippines, there are sev-

Phalaenopsis and suggested correlations between eral records ofnatural hybrids involving species in

genome aMnity and karyomorphology. The data section Phalaenopsis, such as P. Xamphitrite revealed that intrasectional hybrids of sections Kraenzl. (putative parents: R sanderiana and R Phalaenopsis, Pblyehilos and Stauroglottis, and stuartiana), P. × intenuedta Lindl. (putative parents: other intersectional hybrids such as Phalaenopsis- R aphrodite and R equestris), P. × leucorrhoda Stauroglottis, Amboinenses-Po lychilos and Rchb. £ (putative parents: R crphrodite and R schil- 1lsmeralda-Ptrrishianae have high percentages of leriana), and P. × veitchiana Rchb. f (putative par- normal microspores. Arends (1970) further stud- ents: R equestris and R schiUeriana). The sister ied chromosome associations at metaphase I ofFi group retationship between R philippinensis and hybrids ofPhalaenopsis. He fbund that intrasec- R stuartiana in the plastid phylogcny indicates that tional hybrids ef section Phalaenopsis and inter- the maternal stock ofR philmpinensis could be an

sectional hybrids ofPhaiaenopsis-STat{roglottis and ancestral species ofR st"artiana becausc maternal

Amboinenses-I]blychilos show high levels ofmeiotic inheritance of plastid DNA has been confimied in chromosome homology whereas intersectionalthe Orchidaceae (Corriveau & Coleman 1988, Sears

hybrids such as Amboinenses-Stauroglottis, Amboi- 1980). However, it is unlikely that the latter is a

nenses-Phataenopsis and fol.vchilos-Stauroglottisdirect parent ofR philippinensis because the native exhibit low levels ofmeiotic chromosome homolo- habitat ofR slttartiana is more than 1 1OOkrn distant

gy. These results are also consistent with the phy- from that ofR philippinensis, and because the diver-

logenetic athnities inferred in the present study. gence in matK-trnK introns was 5 substitutions plus

2 insertionsfdeletions between thc two species, A

inconsisteneies bentJeen ptastid and nttctear lin- nested position ofR phitmpinensis between the R eagesWe stttartiana-schitleriana clade and the R amabilis-

found a discrepancy in the placement of uphrodite-sanderiana clade in the nuclear phy-

Phataenopsis philmpinensis and R minus between logeny may indicate a hybrid origin for this species

inatK-tTnl( introns and ITS trees. There are two bctween these two clades. Ifthis hypothesis is cor-

scenarios to describe inconsistent phytogenetic posi- rect, the paternal parent is assumed to be a species in

tions fbr these two species: one is caused by accel- the R amabilis-aphrodite-sanderiana clade,

eration ofnucleotide substitution rates in the samples Owing to its peculiar morphological characters

concerned and the other is duc to introgressions, in reproductive organs, the phylogenetic position of

The first scenario is based on the notion that Phalaenopsis minus has remained unresolved.

higher rates ofnucleotide substitution in a particu- Christenson (2001) argued in favor of its place- lar lineage tend to draw inaccurate phylogenetic ment in subs,enus zipbytlae because thc presence of estimation in the parsirnony analysis (Felsensteina shallow depression underneath the posterior callus

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

]54 APG XioL 56

ofthe labellum is a character that shares with mem- The other is to circumscribe Phalaenopsis in a nar-

bers of subgenus ApbyUae. Since the plastid phy- row sense. In this option, there are several logical logeny showed that R minus is definitely grouped solutions: for example, Clade 1 can be defined as

within a clade comprising Lesliea and Phalaenopsis Phalaenopsis because it includes the type species, R

subgenera Ririshianae and Phalaenopsis sections amabilis. The broadest circumscription ofClade 2 is

Delieiosae and Esmeraida, the maternal parent to define the clade as a single genus. In this case,

must be a member ofthis clade. Rhalaenopsis minus Doritis becomes the correct name because this is the

has a restricted distribution in north and upper oldest available name, On the other hand, to preserve northeast Thailand where L. mirabilis, R parishii Lesliea and Mmbodoritis at generic level, it becomes (subgenus harishianae), R deticiosa (sectionnecessary to instate several subclades ofClade 2 at Deticiosae) and R pulcherrima (section EsmertildL2) genericlevel. also occur. The mother species or intermediates TIb choose a single classification system arnong

thereog however, are assurned to be extinct or as yet several phylogenetically correct resolutions, prior- undiscovered because the known members of this ity should be placed on nomenclatural stability con- clade exhibit considerable genetic divergence with sistent with the scientific evidence and without the R minus (e.g., 24 substitutions and 3 insertionsldele-superfluous creation ofnames, as clearly stated in tions between R minus and R deliciosa in matK- the Prearnble of the International Code ofBotanical

trnK introns). On the other hand, the nuclear phy- Nomenclature (Greuter et al. 2000). As recognized logeny indicates a nested position of R minus widely, Phalaenopsis and Doritaenopsis (a notho- between the above-mentioned clade and subgenus genus between Phalaenqgrsis and Doritis) are impor- Apltyllae. This suggests that the patennal parent ofR tant ornamental crops with more than 24,OOO notho- minus belongs to subgenus Apltyllae, a proposition taxa. Given this fact, the inclusion of Doritis in supported by the presence of a depression on the Phalaenqpsis would necessitate a lot of name

labellum in both. Ifthe species R tanialis, the sole changes, We therefbre contend that a broad defini-

representative of this subgenus in Thailand, were tion of Phalaenopsts (to include Doritis) would

included in the analysis, a rnore robust concept of violate the aim ofnomenclatural stability,

the parentage ofR minus would likely be estab- As mentioned above, the recognition of sub- lished. clades in Clade 2 at generic level necessitates the establishment ofseveral new genera. For example, Reclassij7cation of'the genus ifwe conserve the genus Nbthodoritis, Phalaenopsis Progressing from the above discussion ofmorpho- lowii should be treated as a monotypic genus. Since

logical characters, it seems straightforward to rec- there are no appropriate available names fbr R lowii

ogriize several small-sized genera within this group. as a monotypic genus, a new generic name would be

As already stated, howcver, such treatments result in needed, We hesitate to establish more small-sized

para-lpolyphyly ofPhaiaenopsis, Based on the cir- genera in subtribe Aeridinae, Furthermore, several

cumscription of Phalaenopsis by Christenson relationships within Clade 2 are only moderately

(2001), the genus becomes a paraphytetic group supported by bootstrap analyses, Very narrow gener- because Lesliea and IVothodoritis are nested within ic concepts in Clade 2 are, therefore, not preferable. Phalaenopsis. There are two altematives fbr the Kingidium P. E Hunt was also sunk into restoration ofmonophyly in Phalaenqpsis: one is to Phalaenopsis by Christcnson (2001). However, a define Phalaenopsis in a broad sense. In this option, generic definition ofKingidium has yet to be stabi-

Lesliea and IVbthodoritis are sunk into Phalaenopsis. lized. Ifthe genus is treated in the broadest sense,

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August 2005 YUKAWA et al. : Molecular phylogcnctics of Phalaenopsis t55

Phalaenopsis subgenus Aphyliae and subgenus Doritis at generic tevel violates the monophyly of

Phalaenopsis section Deliciosae correspond to Phalaenopsis. Increased sampling and additional

Kingidium, Phalaenopsis subgenus Apltyllae is molecular characters in this study provide evidence

equivalent to Kingidium in a narrow sense because ofmore robust relationships and the results show

Hunt (1971) selectedAerides taeniale Lindl. as the that both Phalaenqpsts and DoTitis can be con- Iectotype of the genus Kingidittm, Our results served in an appropriate manner. demonstrate that Phaiaenopsis subgenus Apdyllae Owing to their confiicting positions in the and subgenus Phalaenqpsis section Deticiosae occu- plastid and nuclear lineages, Phalaenqpsis philip- py distant subclades in Clade 2. Consequently, ifwe pinensis and R minus were excluded from the com- maintain Kingidium in a classification of this group, bined analysis, However, the placement ofR philip- we have to deal with it in the narrow sense. A defi- pinensis in Clade 1 and R minus in Clade 2 is

nition ofKingidium based on synapomorphic mor- unambiguous because inconsistencies of these

phoiogical characters is diracult. An apparent species occur within each major clade,

synapomorphy is the distinct spur, though this is ln accordance with this treatment, the circum- lacking in R wilsonii. On the other hand, several scription of genus Phalaenopsis corresponds to species in other subclades in Clade 2, such as R CIade 1, Our results show that several parts of chibae, R deliciosa and Lestiea, possess a spur. Christenson7s infrageneric classification ofPhalae- Leaf deciduousness during the dry season also char- nopsis (2001) are in need of revision, At subgener- acterizes Kingidium in the narrow sense, but this ic level, subgenus Phalaenopsis becomes mono-

character state is also fbund in Phalaenqpsis sub- phylctic provided that sections Deliciosae and

genera Ptxrishianae and Proboscidioides, and the Esmeralda are transferred to Doritis. The mone- genus Mthodoritis. Owing to the lack of good phyly ofsubgenus Ilolychilos is also well supported.

synqpomorphic morphological characters, we there- However, at sectional level, section Amboinenses is

fbre hesitate in resurrecting the genus Kingidium in paraphyletic because sections ftiseatae, folyehilos

our system. and Zebrinae are nested within it. Furthermore,

After re-examination of morphological char- sections Sloauttiglottis and Zebrinae may preve to be acters in Cladc 2, we conclude that it is not possible polyphyletic. Weak to moderate support ofseveral

to characterize every subclade using unambiguous subclades in this study indicates that more molecu-

synapomerphies. Clade 2 as a whole, however, can lar evidence is needed to clarify gectional relation-

be characterized by a distinct synapomorphy, fbur ships in Phalaenopsis. We therefore treat the genus

pollinia. Since this character state is an explicit Phataenopsis as comprising two subgenera, name-

one, circumscription of Clade 2 as a single inde- ly, Phalaenopsis and Pblychiios, without fiirther

pendent genus is the most reasonable solution, As subdivision. In conclusion, we advocate the fo1- mentioned above, we can apply a single generic lowing revised system, largely in accordance with a

naine, Doritis, to all taxa in Clade 2. Some name widely applied concept ofPhalaenopsis and close-

changes are inevitable with this option, but we can ly related genera without major name changes.

conserve established uses efDoritis, Doritaenopsis,

and other inter-generic hybrids using Doritis, in this way. Christenson (2001)'s broad concept of Phalaenopsis was based on phylogenetic trees avail- Nbmenclaturalchanges able at that time (D. Jarre]1, unpublished data). Doritis appendiculata (C. E. Carr) T. YUkawa & K, These trees suggested that the establishment of Kita, comb. nov.

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

156 APG VbL 56

Basionym: Phataenopsis appendiculata C. E. (1908); Kingiella philimpinensis CAmes) Rolfe, Carr, Gard, Bull, Straits Settlem. 5: 16 (1929). Orchid Rev. 25: 197 (l917), Synonym: POlychilos oppendicuiata

Basionym: Phalaenqpsis chibae T. Yukawa, Doritis deliciosa subsp. hookeriana (Gruss & Ann, Tsukuba Bot, Gard, 15: 19 (1996). R6ilke) T, Yukawa & K. Kita, comb. noy Synonym: Kingidium chibae (T. YUkawa) Basionym: Kingidium hookerianum Gruss & Gruss & R611ke, Orchidee (Hamburg) 48: 261 R611ke, Orchidee (Hamburg) 46: 23 (1995). (1997). Synonym: jenalaenopsis deliciosa subsp. hook- eriana (Gruss & R611ke) Chnstenson, Phalaenopsis. Doritis deliciosa (Rchb, f) T. Yinkawa & K. Kita, A Monograph, 223 C2001). comb. nov.

Basionym: Phaiaenopsis deliciosa Rchb. f, Doritis gibbosa (H. R. Sweet) T. YUkawa & K. Bonplandia 2: 93 (1854). Kita, comb. noy. Synonyrns: Kingidium deticiosum (Rchb. f) Basionym: Phalaen(u)sis gih. bvsa H. R. Sweet, H. R. Sweet, Amer. Orchid Soc. Bull. 39: 1095 iimier. Orchid Soc. Bull, 39: 1095 (1970). (1970). Synonym: I]blychilos gibbosa (H. R, Sweet) Aerides latijblia Thwaites, Enum. Pl. Zeyl, Shim, Malayan Nat. J. 36: 25 (1982). 429 (1861); Doritis latijblia (Thwaites) Trimen,

Cat. 89 (1885). Doritis hainanensis (T. Ibng & F. T. Wang) T, Phalaenopsis beUa Teijsm. & Binn., Natuutk. YUkawa & K, Kita, comb. nov. Tijdschr, Ned.-Indie 24: 321 (1862); Kingidium Basionym; Phalaenopsis hainanensis T. [lbng deliciosum var. bellum (Teijsm. & Binn.) Gruss & & F. T. Wang, Acta Phytotax. Sin. 12: 47 (1974). R611ke, Orchidee (Hamburg) 44: 225 (1993), Synonym: Phalaenqp)sis chtLxiongensis E YL Phalaenopsis hebe Rchb. E, Hamburger Liu, Acta B6t. YUnnan, 18: 41 1 (]996). Garten-Blumenzeitung 18: 35 (1862); Doritis hebe (Rchb. f) Schltr., Repert. Spec, Nov. Rengni Veg. Doritis honghenensis (F. Y Liu) T. YUkawa & K, Beih. 1: 968 (1913); Kingielia hebe (Rchb. f) Rolfe, Kita, comb. noy "ll Orchid Rev. 25: 197 (1917), Basionym: Phalaenopsis honghenensis F.

Phalaenopsis wightii Rchb, £ Bot. Zeitung Liu, Acta Bot. YUnnan. 13: 373 , (1991). (Berlin) 20: 214 (1862); Doritis wightii (Rchb. £ ) Benth. & Hook. f., Gen. Pl, 3: 574 <1883); Doritis lobbii (Rchb. f.) T. YUkawa & K. Kita, Kingidium wightii (Rchb, f,) Gruss & R611ke, comb. noy. Orchidee (Hamburg) 46: 23 (1995). Basionym: Phalaenopsis parishii var. Iobbii Phataenopsis amethystina Rchb. f., Gard. Rchb. fi, Refug. Bot, 2: sub t. 85 (1870). Chron. 1865: 602 (1865), Synonyms: Phalaenqpsis lobbii (Rchb. f) H. Phalaenopsis alhoviolacea Ridl,, Trans. Linn, R. Sweet, Genus Phaiaenopsis, 53 (1980); foly- Soc, London, Bot., ser. 2, 3: 373 (1893). chilos lobbii (Rchb. f) Shim, Malayan Nat. J. 36: 25 Doritis philippinensis Ames, Orchid. 2: 235 (1982).

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August 2005 YUKAWA et al.: Molecular phylogcnctics of Phalaenopsis 157

Phalaenopsis listeri Berkeley, Gard. Chron,, Basionym: Phataenopsis nqy{gotensis Saldanha, ser. 3, 1: 280 (1887), nom, nud. Indian Forester 1OO: 572 (l974). Synonyms: Kingidium n4ysorensis (Saldanha) Doritis lobbii f. flava (Gruss & R611ke ex Sathish, Cat. Indian Orchid,, 95 (1994). Christenson) T. YUkawa & K. Kita, comb. nov. Kingidium niveum Sathish, Cat, Indiaii Orchid,, Basionym: Phalaenopsis parishii van lobbii 53 (1994). f .f7ava Gruss & R611ke ex Christenson, Phatae- nopsis, A Monograph, 71 (2001). Doritis parishii (Rchb, £ ) T. Yukawa & K. Kita, Synonym: Phalaenopsis lobbii £ Y7ava (Gruss comb. noy £ & ROIIke ex Christenson) Christenson, Phalae- Basionym: Phalaenqpsis parishii Rchb, , nopsis. A Monograph, 71 (2001). Bot. Zeitung (Berlin) 23: 146 (1865). Synonyms: Grofa parishii (Rchb. f.) A. D. Doritis tobbii C flayilabia (Christenson) T. YUkawa Hawkes, Phytologia 13: 306 (1966); Pblychiles & K. Kha, comb. nov. parishii (Rchb. f,) Shim, Malayan Nat. J. 36i 26 Basionym: Phalaenopsis lobbii fl .fkivilabia (!982). Christenson, Phalaenopsis. A Monograph, 72 Aerides decumbens Griff1, Notu1. Pl, Asiat, 3: (200]), 365 (1851), nomen confusum.

Doritis lowii (Rchb. f) T. Yukawa & K. Kita, comb. Doritis stobartiana (Rchb. f) T, YUkawa & K.

nov. Kita, comb. nev.

Basionym: Phalaenqpsis towii Rchb, f., Bot. Basionym: Phalaenopgis stobartiana Rchb. f, Zeitung (Berlin) 20: 214 (1862). Gard, Chron., n s., 8: 392 (1 877), Synonyms: Pblychilos lowii (Rchb. f) Shim, Synonyms: Phalaenopsis wightii var. stobar- Malayan Nat, J. 36: 24 (1982). tiana (Rchb. f) Burb., The Garden 22: 19 (1882); Parish Rchb. Kingidium stobartianum £ Seiden£ Opera Phalaenopsisprohoscidioides ex (Rchb. ) , f, Xenia Orchid, 2: 139 (1868), nom, nud. Bot. 95: 188 (1988).

Doritis minus (Seidenfi) T. Yukawa & K. Kita, Doritis wilsonii (Rolfe) T, YUkawa & K. Kita, comb. nov. comb. nov.

Basionym: Kingidium mintts Seidenf, Opera Basionym: Phalaenopsis wilsonii Rolfe, Kew Bot, 95: 188 (1988). Bull. 1909: 65 (1909). Synonym: Phalaenopsis minus (Seidenf.) Synonym: Phalaenopsis ininor F, Yl Liu, Acta Christenson, Phalaenopsis. A Monograph, 54 Bot. YUnnan. IO: 119 (1988). (2001). Doritis zhejiangensis (Z, H. Tsi) T, YUkawa & K. Doritis mirabilis (Seidenf) T. Yiikawa & K. Kita, Kita, comb, nov. comb. nov Basionyrn: IVbthodoritis zhev'iangensis Z. H, Basionym: Lestiea mirabilis Seidenf, Opera Tsi, Acta Phytotax, Sin, 27: 59 (1989). Bot 95: 190 (1988). Revised classijication qf'Phalaenepsis and atlied Doritis mysorensis (Saldanha) T. Yukawa & K. generaPhalaenopsis Kita, cemb. nov. Blume, Bljdr. 7: 294 (1825). Z)tpe

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

]58 APG Xlo1. 56

species: EPidendrum amabile L, Phalaenopsis corniRgiana Rchb. f., Gard. Subgenus Phalaenopsis Chron., n. s., 1 1: 620 (1879). Phalaenopsis amabilis (L.) Blumc, Bljdr. 7: Phalaenopsis cornu-ceryi (Breda) Blume &

294 Cl825). Rchb. f,, Hamburger Garten-Blumenzeitung l6: Phalaenopsis Xamphitrite Kraenz]., Gard. 116 (1860). Chron. ser. 3, 11:618 (1892). Phalaenopsis doweryensis Garay & Phalaenopsis aphrodite Rchb. f, Hamburger Christenson, Phalaenqpsis. A Monegraph, 115 Garten-Blumenzeitung 18: 35 (1862). (2001).

Phalaenopsis celebensis H. R. Sweet,Genus PhalaenopsisfasciataRchb, £ , Gard.Chron., Phalaenopsis, 66 (1980), n, s. 18: 134 (1882). Phalaenopsis equestris (Schauer) Rchb. f, Phalaenopsis fimbriata J, J, Sm,, Bull. Jard.

Lmnaea 22: 864 (1850), Bot. Buitenzorg, ser. 3, 3: 300 (1921). Xintermedia Phalaenopsis Lindl,, Paxton's Phalaenopsis floresensis Fowlie, Orchid FL Gard. 3i 162 (1853), Digest 57: 35 (1993).

Phalaenopsis × leucorrhoda Rchb. f, Gard, Phalaenopsis fuscata Rchb,£ , Gard, Chron., Chron. n, s,, 3: 301 (1875), n. s., 2: 6 (1874). Phalaenopsis Xgersenii lindeniiLoher,J.Orch{dees 6: Phalaenopsis (Teijsm. & Binn.) 103 (1895). Rolfe, Orchid Rey. 25: 227 (1917). Phalaenopsis philippinensis Golamco ex Phalaenopsis gigantea J. J. Sm., Bull. Dep. Fowlie & [Pdng, Orchid Digest 51: 92 (1987), Agric. Indes, Neerl. 22: 45 (1909). Pha]aenopsis sanderiana Rchb, £ Flora 65: Phalaenopsis , hieroglyphiea (Rchb. f) H, R. 466 (1882). Sweet, Amer. Orchid Soc, Bull. 38: 36 (1969). Phalaenopsis schilleriana Rchb. E, Ham- Phalaenopsis inscriptiosinensis Fowlie, burger Garten-Blumenzeitung 16: 1 15 (1860). Orchid Digest 47: 11 (1983), Phalaenopsis stuartiana Rchb. f., Gard. Phalaenopsis javanica J, J, Sm., Bull. Jard, Chron,, n, s., 16: 748 (1 881). Bot Buitenzorg, ser. 2, 26: 77 (1918). Phalaenopsis Xveitchiana Rchb. f., Gard. Phalaenopsis kunstleri Hook. f,, FI. Brit, Chron. 1872: 935 (1872). India 6: 30 (1890). Phalaenopsis ]ueddemanniana Rchb, fi, Bot. Subgenus Polychilos (Breda) Christenson, Zeitung (Berlin) 23: 146 (1865). Phalaenopsis. A Monograph, 76 (2001). 7)?pe Phalaenopsis luteola Burb. ex Garay, Pblychilos species: corntt-cervi Breda. Christenson & Gruss, Phalaenopsis. A Monograph,

Phalaenopsis amboinensis J. J. Sm,,Bull. 135 (2001). Dep, Agric. Indes. Neerl, 45[ 23 (191 1). Phalaenopsis maculata Rchb. f., Gard. Phalaenopsis bastianii Gruss & Rdllke, Chron,, n. s,, 16: 134 (1881), Orchidee (Hamburg) 42: 76 (1991). Phalaenopsis mannii Rchb. fi, Gard. Chron. Phalaenopsis bellina (Rchb. f) Christenson, 1871: 902 (1871). Brittonia 47: 58 (1995). Phalaenopsis mariae Buifb. ex Warner & B, S, PhalaenopsisborneEnsis Garay, Lindleyana Williams, Orchid Album 2: t. 80, sub t, 87 (1883), 10: 182(1995), Phalaenepsis micholitzii Rolfe, Kew Bu]]. Phalaenopsis cochlearis Holttum, Orchid Rev. 1920: 130 (1920), 72: 408 (1964). Phalaenopsis modesta J. J. Sm., Icon. Bogor.

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August 2005 YUKAWA et aL/ Molecular phylogenetics Qf Phalaen opsis 159

3: 47, t, 218 (1906), K. Kita, Acta Phytotax. Geobot. 56: 156 (2005). Phalaenopsis pallens (Lindl.) Rchb. f,, Ann, Doritis nobbii (Rchb, f) T. YUkawa & K. Kita, Bot. Syst. 6: 932 (1864). Acta Phytotax. Geobot. 56: 157 (2005). Phalaenopsis pantherina Rchb, f., Bot, Doritis lowii (Rchb, f) T. hkawa & K. Kita, Zeitung (Berlin) 22: 298 (1864), Acta Phytotax. Geobot, 56: 157 (2005). Phalaenopsis pulchra (Rchb, £ ) H. R, Sweet, Doritis minus (Seidenf) T, YUkawa & K, Amer. Orchid Soc. Bul]. 37: 1102 (1968). Kita, Acta Phytotax. Geobot. 56: 157 (2005). Phalaenopsis reichenbachiana Rchb. f. & Doritis mirabilis (Seidenf) T. Yukawa & K. Sander, Gard. Chron., n. s., 18: 586 (1882). Kita, Acta Phytotax. Geobot. 56: 157 (2005). Phalaenopsis robinsonii J. J, Sm., Philipp. Doritis myserensis (Saldanha) T. YUkawa & J. Sci. 12: 259 (1917). K. Kita, Acta Phytotax. Geobot. 56: 157 (2005). Phalaenopsis × singulifiora J. J, Sm., Repert. Doritis parishii (Rchb. f) T. Yiikawa & K. Spec. Nov. Regni Veg. 31: 80 (1932). Kita, Acta Phytotax. Geobot, 56: l57 (2005). Phalaenopsis speciosa Rchb. f, Gard, Chron., Doritis putcherrima Lindl,, Gen. Sp. Orchid. n. s. 15: 562 (1881). PL 178 (1833).

Phalaenopsis £ Kew sumatrana Korth.& Rchb. , Doritisregnieriana (Rchb.fi)Holttum, Hamburger Garten-Blumenzeitung 16: 115 (1860),Bu]1, 19: 212(1965). Phalaenopsis tetraspis Rchb. f, Xenia Orchid, Doritis stobartiana (Rchb. E) T, Yukawa & K, 2i 146 (1868). Kita, Acta Phytotax, Geobot. 56: 157 (2005). Phalaenopsis venosa Shim & Fowlie, Orchid Doritis taenialjs (Lindl,) Hook, fi, Fl. Brit. Digest 47: 125 (1983). India 6: 31 (1 890). Phalaenopsis violacea Witte, Ann. Hort. Bot. Doritis wilsonii (Rolfe) T. YLLkawa & K. Kita, 4: 129 (1860). Acta Phytotax, Geobot. 56: 157 (2005). Phalaenopsis viridis J. J. Sm., Bull. Dep. Doritis zhejiangensis (Z. H. Tsi) T. Yukawa & Agric. Indes. Neerl. 5: 21 (1907), K. Kita, Acta Phytetax. Geobot. 56: 157 (2005),

Doritis Lindl., Gen. Sp. Orchid. Pl. 178 (1833).We would like to thank Atagawa Tropical Garden, Z)tpe species: Doritispulcherrima Lindl. Hidenobu Funakoshi, Hiroshima Botanical Garden, Kyowa Hakko Kogyo Co. Ltd., GeTijiro Ishida, Jun-ichi Doritis appendiculata (C. E. Carr) T. Yulcawa Nagasawa, Pongpakorn Rojanapaiboon, Hideo Shimizu, & K. Kita, Acta Phytotax. Geobot. 56: 155 (2005). rlakahashi, Masakatsu Kazuo Tsukahara and Pheravut

Doritisbraceana Hook, £ , Fl.Brit,Ind, 6: Wongsawad fbr assistancc in obtainSng plant material. 196 (1890). Mikio Aoyama, Stephan Gale, Akihiko Hashimoto and

Doritis chibae (T, YUkawa) T, YUkawa & K, Hiroaki Setoguchi fbr helpfui commcnts, and Tomoko Kita, Acta Phytotax, Geobot. 56: 156 (2005). Fojimoto, Osamu Miikeda and Tetsuya Y}imada for tech- nical assistanee. This study was supported by Doritis deliciosa (Rchb. fi) T. YUkawa & K. partly Grants-in-Aid to Scientific Research from the Japan Kita, Acta Phytotax. Geobet. 56: 156 (2005). Society for the Promotion ot' Science. Doritis gibbosa (H. R. Sweet) T, Mikawa & K Kita, Acta Phytotax. Geobot. 56: 156 (2005). References Doritis hainanensis (T, [Iang & F, T, Wang) T.

YUkawa & K. Kita, Acta Phytotax. Geobet. 56: 156 Aoyama, M. 1 993. Polyploidy in Phataenops'is hybrids.

(2005). Bull. Hiroshima Prefect. Agric. Res. Center ne. 57: Doritis honghenensis (F, Y, Liu) T, Yukawa & 55-62.

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

160 APG Vbl. 56

1994, Morphology of Krakatau: evidence fbr a mode of transport. Ann, , K. Kojima & M. Kobayashi. microspore in Phalaenopsis hybrids. Kinki Chugoku Bot 52: 127-130. Agric. Res. 88: 49-53. Greuter, W., J. McNeill, F. R. Barrie, H. M. Burdet, VL Arends, J. C, 1970. Cytological observation on genome Demoulin, T. S. Filgueiras, D. H. Nicolson, R C, homology in eight interspecific hybrids of Silva, J. E. Skog, R Trehane, N. J. Turland & D. L.

Phalaenopsis, Genetica 41i 88-100. Hawksworth. 2000. International Code ofBetanical Benzing, D. H., W. E. Fricdman, G. Pcterson & A, Nomenclature (Saint Louis Code), Koeltz Scientific Renfrow. 1983. Shootlessness, velamcntous roots, Books, K6nigstein, Germany. and the pre-eminence of Orchidac¢ ac in thc epi- Hunt, P. F. 1971. The eorrect name for Phalaenopsis phytic biotepe, Arner. J. Bot. 7e: 121-133. parishii. Amcr. Orchid Soc. Bull, 40: 1093-1094,

Brandange, S., B. Luning, C, Moberg & E, Sljostrand,Kao, YL, S. Chang, T. Lin, C. Hsieh, Y/ Chen, WL Chen &

1971, Studies ef Orchidaceae alkaloids, pt. 24: a C. Chen. 2001. Differential accumulation ofhete- pyrrolizidine alkaloid from Phalaenopsis cornu- rochromatin as a cause for karyotype variation in cervi Reich. fi Acta Biochem. Pol. 25(1): 349-350. Phalaenopsis orchids. Ann. Bot. 87: 387-395.

& .1972,StudiesonOrchidaceaealka- Kimura, M. simple method estimating evo- 11 1980.A fbr loids, pt. 3O; investigation of fburteen Phalaenqpsis lutionary ratcs of base substitutions through com- species. Acta Chem. Scand, 26(6): 2558-2560. parative studies of nucleotide sequences. J. Mol. Cameron, K. M., M. W. Chase, W, M. Whitten, P. J. EvoL 16i 111-I20. Kores, D. C, Jarell, V A. Albert, T. Yiikawa, H. G. Morlcy, R, J. & J. R. Flenlcy. 1987. Late Cainozoic veg- Hills & D, H, Goldman. 1999. A phy]og¢ nctic analy- etational and errvironmental changes in the Malay sis of the Orchidaceaei evidence from rbcL Archipelago. In: Whitmore, T. C. (ed.) Biogeo- nucleetide sequences. Amer. J. Bot. 86: 208-224. graphical Evolution of The Malay Archipelago, pp. Christenson, E. A. 20el. Phataenopsis. A Monograph. 50-59. Claredon Press, Oxford, UK,

Timber Press, Portland, Oregon, USA. Neyland, R. & L. E. Urbatsch. 1995. A terrestrial origin Corriveau, J, L. & A. W. Coleman. 1988, Rapid screening for the Orchidaceae suggested by a phylogeny method to detect potential biparental inheritance of inferred from ndkF chloroplast gene sequences, plasticl DNA and results fbr over 200 angiosperm Lindleyana 10: 244-25I. spccies, Amer. J, Bot. 75: 1443-1458. Olmstead, G. R. & J. A. Sweere. 1995. Combined data in Douzeryl E, J, R, A. M. Pridgeon, P Kores, H. R Linder, phylogenetic systcmatics: an empirical approach H. Kurzwcil & M. W, Chasc, 1999, Molccular phy- using three molecular data sets in the Solanaceae. logenetics of Diseae (Orchidaceae): A conuibution Syst, Biol. 43: 467-481. from nuclear ribQsomaHTS sequences, Amer. J. Pridgeon, A. M. 1987. The velamen and cxodermis in Bot. 86i 887-899. orchid roots. in: Arditti, J. (ed.) Orchid Biology, Dressler, R. L. I993. Phylogeny and Classification of Reviews and Perspectives, IV pp. 139-192. Cornell the Orchid Family. Dioscorides Press, Portland, University Press, Ithaca, USA. Oregon, USA. Rolfe, R. A. 1 886. A revision of the genus Phalaenopsis. Endo, M. & I. Ikusima. 1 989. Diurnal rhythm and char- Gard, Chron., n. s. 26: 168-170, 212-213, 276-277, actcristics ofphotosynthesis and respiration in the 372, lca'I' and root of a Phataenopsis plant. Pl. Cell Sagawa, Y. 1962. Cytelogical studies of the genus I'hysioL 30: 43-47, Phalaenopsis. Amer. Orchid Soc. Bull. 3 l i 459-465. Felsenstein, J. 1978. Cases in which parsimeny and com- & T. Shoji. 1968. Chremosome numbers in Phatae- patibility methods will be positively misleading. nopsis and Doritis. Bul1. Paeific Orchid Soc, Hawaii Syst. Zool. 27: 401-410. 26: 9-13. . 1985, Confidence limits on phylogenies: an approach Saitou, H, & M. Nei. 1987. The neighborjoining method: using the bootstrap. Evolution 39: 783-791. a new method fbr reconstructing phylogenetic trees.

Fitch, W. M, 1971 , [Ibward defining the course of evolu- Mol. Biol. Evol. 4: 406-425.

tion: minimurn change for a specific tree tepology. Santisuk, T. 1988. An Account of the Vegetation of Syst. Zool. 20: 406-416. Northern Thailand. Franz Steiner VCr]ag, Stuttgart, Gandawijaja, D. & J. Arditti. 1983. The orchids of Germany,

NII-Electronic Library Service The JapaneseSocietyJapanese Society for Plant Systematics

August 2005 YUKAWA et al.: Molccular phylogcnctics of Phalaenopsis 161

-Sears, B. B. 1980. Elimination of plastids during spcr- Tbpik, H,, T, Yukawa & M, Ito, 2005. Molecular phylo- matogenesis and fertilization in thc plant kingdom. genetics of subtribe Aeridmae (Orchidaceae): insights Plasmid 4: 233-255. from plastid matK and nuclear ribosomal ITS Seidenfaden, G. 1986. 0rchid genera in Thailand XIII. sequences. J, Plant Res, in press. Thirty-three epidendroid genera. Opera Botanica Tsai, C, C,, S, C. Huang, P, L. Huang & C. H, Chou, 89: 1-216. 2003. Phylogeny of the genus Phalaenopsis Shim, P. S. I982. A new generic classification in the (Orchidaccac) with cmphasis on the subgcnus Phataenctpsis complcx (Orchidacca¢ ), Malayan Nat, Phalaenopsis based on the sequences of the internal J. 36: 1-28; reprinted in 1984, Malayan Orchid Rev. transcribed spacers 1 and 2 ef rDNA. J. Hort. Sci, 18:48-61. Biotech. 78(6>: 879-887.

Shindo, K. & H, Kamemoto. 1963. Karyotype analysis of Wongsawad. R, T. Handa & T. Yukawa. 2001, Molecular

some speeies of Phaiaenopsis. CyteLogia 28i 390- phylogeny efDendtobium section Dendrobium. ini 398, Nagata, H. & S. Ichihashi. (eds.) Proc. 7th Asia ShQji, T. 1976. Cytological studies on Orchidaceae III: Pacific Orchid Conf,, pp. 209-210. Secretarist of chromosome numbers and karyotypes in APOC7, Chiryu, Japan. Phataenopsis. Senshokutai Kromosomo (Japan) II-3- Wbodward, J, W, 195I. Some chromosome numbers in 4: 91-98. Phalaenqpsis. Amer. Orchid Soc. Bull. 20i 356-358. . i980. Cytelogical studies on Orchidaceae, pt. 4: YUkawa, T. I996. PhalaenQpsis chibae-a new species chromosome numbcrs and karyotypes in the from Vietnam. Ann, Tsukuba Bot. Gard. 15: 19-22. Phalaenopsis alliance 1, Senshokutai Kromosomo , 2001, Molecular phylogeny ofDendrobium, in: (Jap an) 2(17): 481-486. Nagata, H. & S. Ichihashi. (eds.) Proc. 7th Asia Steenis, C. G. G. J. van. 1950. The dclimitation of Pacific Orchid Conf., pp. 69-71. Secrctarist ot' Malaysia and its main plant gcographica] divisions. APOC7, Chiryu, Japan,

Flora Malesiana I, 1: lxx-lxxv, , S, Koga & T, Handa, 1999. DNA uncovers papra- Sweet, H. R. 1968. Revision of the genus Phalaenopsis, phyly ofDendhobium, Jn: Andrews, S., A. G. Leslie pts. 1 and 2. Amer. Orehid Soc. Bull. 37i 867-877, & C, Alexander. (eds.) Taxonomy of Cultivated 1089-ll04. Plants, pp, 351-354, Royal Betanic Gardens, Kew, . 1969. RevisiQn of the genus Phalaenqpsis, pts. 3-8. UK. --, Amer. Orchid Soc. Bull, 38i 33-43, 225-239, 32!- S. Kurita, M. Nishida & M. Hasebe. 1993. 336, 505-519, 681-694, 888-901. Phyiogenetic implicatiens ofchloroplast DNA restric- , 198e. The Genus Rhaiaenopsis. Orchid Digest Corp., tion site variation in subtribe Dendrobiinae Pomona, USA. (Orehidaceae).Lindlayana8:211-221.

SwoffOrd,D. L, 2001. RP(UP":phylogeneticanalysis , K. Miyoshi& J.Ybkoyama, 2002.Molecularphy- using parsimony ('and other methods), version ]ogeny and character evolution of (l),mbidium 4.0b6. Sinauer, Sunderland, USA. (Orchidaceae). Bull, Natn, Sci. Mus., [Ibkyo, Ser. & W. P. Maddison. 1987. Reconstructing ancestral B 28: 129-139. character statcs undcr Wligncr Math. I-I, Ohba, K. M. Camcron & M. W. Chase. 1996. parsimony. , Biosci. 87: 199-229, Chloroplast DNA of subtribe rlan, phylogeny B. C. 2002. The aMnity of moss fioras ef Japan, Dendrobiinae (Orchidaceae): insights from a cem- Tbiwan, and the Philippines revisited: old preblems, bined analysis based on rbcL sequences and rcstric- n ¢ w insight, and more questjons. Acta Phytotax. tion site variation. J. Plant Rcs, 109: 169-176. Geobot. 53: 77-84.

Received 41)rit 7, 2005; accepted.1tine 3, 2005

NII-Electronic Library Service