Nuclear DNA Contents of Phalaenopsis Sp. and Doritis Pulcherrima

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear DNA Contents of Phalaenopsis Sp. and Doritis Pulcherrima J. AMER. SOC. HORT. SCI. 126(2):195–199. 2001. Nuclear DNA Contents of Phalaenopsis sp. and Doritis pulcherrima Sandy Lin and Hsiao-Ching Lee Department of Life Science, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China Wen-Huei Chen Department of Horticulture, Taiwan Sugar Research Institute, Tainan, 701, Taiwan, Republic of China Chi-Chang Chen and Yen-Yu Kao Department of Botany, National Taiwan University, Taipei, 10764, Taiwan, Republic of China Yan-Ming Fu and Yao-Huang Chen Department of Horticulture, Taiwan Sugar Research Institute, Tainan, 701, Taiwan, Republic of China Tsai-Yun Lin1 Department of Life Science, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China ADDITIONAL INDEX WORDS. Orchidaceae, endoreduplication, flow cytometry, genome size ABSTRACT. Nuclear DNA contents were estimated by flow cytometry in 18 Phalaenopsis Blume species and Doritis pulcherrima Lindl. DNA amounts differed 6.07-fold, from 2.74 pg/diploid nuclear DNA content (2C) in P. sanderiana Rchb.f. to 16.61 pg/2C in P. parishii Rchb.f. Nuclear DNA contents of P. aphrodite Rchb.f. clones, W01-38 (2n = 2x = 38), W01-41 (2n = 3x = 57), and W01-22 (2n = 4x = 76), displayed a linear relationship with their chromosome numbers, indicating the accuracy of flow cytometry. Our results also suggest that the 2C-values of the Phalaenopsis sp. correlate with their chromosome sizes. The comparative analyses of DNA contents may provide information to molecular geneticists and systematists for genome analysis in Phalaenopsis. Endoreduplication was found in various tissues of P. equestris at different levels. The highest degree of endoreduplication in P. equestris was detected in leaves. Phalaenopsis Blume sp. are among the most beautiful of all 1992). A better understanding of karyotypes and DNA contents of orchids. The genera Phalaenopsis and Doritis Sw. belong to the Phalaenopsis will aid in the development of new cultivars that will Orchidaceae, subfamily Epidendroideae, tribe Vandeae, subtribe improve the level of production. Haploid nuclear DNA contents of Aeridinae. Phalaenopsis comprises over 45 species in nine sections angiosperms are highly variable, differing over 600-fold (Bennett indigenous throughout most of Asia (Sweet, 1980). These species and Leitch, 1995; Bennett et al., 1982). Although intraspecific are distributed from India, south China, Thailand, Malaysia and variation in genome size occurs due to environmental influences, Indonesia to the Philippines, New Guinea, and Australia. All species common chromosome polymorphisms, and spontaneous aberra- of Phalaenopsis have the same chromosome number (2n = 38) with tions, DNA content per genome is fairly constant, both between cells chromosome sizes ranging from 1.5 to 3.5 µm (Arends, 1970). of an individual and between different individuals of the same Phalaenopsis sp. can be divided into large, medium and small species (Greilhuber, 1998; Greilhuber and Obermayer, 1997). Ac- chromosome groups, according to their chromosome sizes. curate determination of genome size provides basic information for Phalaenopsis, occurring in the Philippines, have smaller symmetric breeders and molecular geneticists. Comparisons of amounts of chromosomes, while those found outside of the Philippines, have nuclear DNA are also useful in cytotaxonomic and evolutionary larger asymmetric chromosomes (Shindo and Kamemoto, 1963). studies. The rapid technique of flow cytometry is widely used in Species of the genus Doritis have a very wide distribution, ranging studies of cell cycle analysis, chromosome ploidy, and nuclear DNA from the Himalayas of northern India, through Thailand and Burma, content in biological systems (Jones et al., 1998; Lysák et al., 1999; to Malaysia and Indonesia (Teuscher, 1977). Doritis pulcherrima Ormerod, 1994). In this study we examined the nuclear DNA Lindl. is synonymous with P. pulcherrima (Lindl.) J. J. Smith contents in 18 Phalaenopsis sp. and D. pulcherrima using a flow (Christenson, 1995; Sweet, 1980) and has been used extensively in cytometer. breeding with Phalaenopsis to produce Doritaenopsis such as Endoreduplication is widespread in large numbers of higher Doritaenopsis Asahi obtained by Baron Toshita Iwasaki in 1923 plants (Cebolla et al., 1999; Gendreau, et al., 1999; Grafi and from D. pulcherrima and P. lindenii Loher. Larkins, 1995; Sun et al., 1999). Sturdier flowers and better forms Interspecific hybridization and chromosome doubling are tech- may accompany an increase in ploidy in orchids. Although chromo- niques often applied to produce new cultivars of orchids (Arditti, some doubling is a technique for breeders to obtain new cultivars, little is known regarding the mechanism of endoreduplication in orchids. Use of flow cytometry in determining polyploidy is fast and Received for publication 11 Apr. 2000. Accepted for publication 12 Sept. 2000. We thank Cindy Buschena, Albert H. Markhart III, and Cheng-Teh Wang for makes determining polyploidy easier. We also demonstrate the insightful discussions, Anne Chao and Rouh-Jane Chou for statistical advice, and occurrence of endoreduplication in different tissues of P. equestris. the National Science Council and the Taiwan Sugar Corporation, Republic of China for grants NSC 87-TSC-B-007-001 and NSC 88-TSC-B-007-001. The cost Materials and Methods of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertise- ment solely to indicate this fact. PLANT MATERIAL. Samples of young leaves or other organs of 1Professor and corresponding author; e-mail: [email protected]. 18 nursery bred Phalaenopsis sp. and D. pulcherrima were obtained from the Taiwan Sugar Research Institute (TSRI). SE of the peak, which was calculated from the SD. Phalaenopsis aphrodite used in the experiments is native in Taiwan. DETERMINATION OF CHROMOSOME NUMBER. Root tips 0.8 cm in Plants were maintained in a growth chamber at 14 h days/10 h nights length were severed and pretreated in 2 mM 8-hydroxyquinoline of 26/25 °C with a 14-h photoperiod of 300 µmol·m–2 ·s–1 provided for 4 h at 18 to 20 ºC. After fixing in a 3:1 mixture of 95% ethanol by fluorescent light. Day/night relative humidity was 80% /90%. and glacial acetic acid overnight, samples were washed twice Plants were watered every 2 days and fertilized monthly with with sterile distilled water and incubated in 1 M HCl at 60 ºC for Hoagland’s solution. 7 min. Samples were washed again and stained with 0.5% basic PREPARATION OF NUCLEI SUSPENSION. Suspensions of nuclei fuchsin for 2 h in the dark, and then treated with 1% pectinase for were prepared according to the protocol of Arumuganathan and 40 min. Subsequently, the root tips were squashed and stained Earle (1991) with some modifications. Phalaenopsis sp. contain with 1% acetic orcein to determine chromosome numbers. large amounts of calcium oxalate crystals in their cells. The presence of crystals decreases the yield of intact nuclei. Conse- Results quently, a relatively high level of underlying debris and chemical residue that might fluoresce contaminate the samples. Therefore, NUCLEAR DNA CONTENTS OF Phalaenopsis SP. AND Doritis pulcherrima. a cotton filter was designed to remove the crystals. Cosmetic Flow cytometric analysis of isolated nuclei resulted in histograms of cotton was cut into 5 × 1-cm pieces, wetted with MgSO4 buffer the relative nuclear DNA content containing peaks corresponding to containing 10 mM MgSO4•7H2O, 50 mM KCl, 5 mM Hepes (pH 8), the G0/G1 nuclei of leaves of the internal reference standard P. and rolled up loosely. The cotton ball was inserted into a 5 mL sativum (Fig. 1A) and P. aphrodite W01-38 (Fig. 1B), W01-41 (Fig. pipette tip and rinsed with 6 mL MgSO4 buffer to remove floating 1C), and W01-22 (Fig. 1D) as illustrated in Fig. 1. Systematically, fibers. One hundred fifty milligrams of tissue from healthy plants three peaks were found in Phalaenopsis, corresponding to 2C, 4C, was cut into 0.5 mm pieces using a scalpel in 3 mL of solution A and 8C nuclei (Fig. 1B). Genome sizes of 18 Phalaenopsis sp. and in a petri dish (35 × 10 mm) on ice. Solution A contained MgSO4 D. pulcherrima are listed in Table 1. Chromosome numbers for all buffer with 6.5 mM dithiothreitol, 0.25% Triton X-100 and 0.1 the orchids examined and stained by basic fuchsin and acetic orcein mg·mL–1 propidium iodide (Calbiochem, La Jolla, Calif.). The were confirmed to be 2n = 2x = 38 except for the P. aphrodite W01- homogenate was filtered through the cotton column into a 15 mL 41 (2n = 3x = 57) and W01-22 (2n = 4x = 76). There was a 6.07–fold centrifuge tube. Four milliliters of solution A was added to the variation in genome size within 18 Phalaenopsis species, ranging cotton filter to elute the nuclei. The eluted nuclei were centrifuged from 2.74 pg/2C for P. sanderiana to 16.61 pg/2C for P. parishii. at 100 gn for 10 min and the supernatant was discarded. The pellet The genome size is small for P. aphrodite (2.80 pg/2C), P. sanderiana was resuspended in 400 µL solution B that is solution A with 1.25 (2.74 pg/2C), and P. stuartiana (3.13 pg/2C) in section Phalaenopsis µg·mL–1 RNase (DNase-free) and incubated for 15 min at 37 °C. and P. equestris (3.37 pg/2C) in section Stauroglottis. The nuclear Nuclei isolated from Pisum sativum L. ‘Minerva Maple’ were DNA content of section Amboinenses ranged from 5.28 pg/2C for used as an internal reference standard (IRS) for each sample P. gigantea to 14.50 pg/2C for P. amboinensis W25-08. Among the (Johnston et al., 1999). Seeds of P. sativum were kindly provided eight species in section Zebrinae, the variation is 2.92-fold, ranging by the Royal Botanic Gardens, Kew, United Kingdom.
Recommended publications
  • An Integrated Orchid Functional Genomics Database
    Orchidstra: An Integrated Orchid Functional Genomics Database Special Focus Issue Chun-lin Su1,3, Ya-Ting Chao1,3, Shao-Hua Yen1, Chun-Yi Chen1, Wan-Chieh Chen1, Yao-Chien Alex Chang2 and Ming-Che Shih1,* 1Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan 2Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan. 3These authors contributed equally to this work. *Corresponding author: E-mail: [email protected]; Fax, +886-2-26515693. (Received November 9, 2012; Accepted January 5, 2013) A specialized orchid database, named Orchidstra (URL: Abbreviations: BLAST, basic local alignment search tool; – Databases http://orchidstra.abrc.sinica.edu.tw), has been constructed CAM, crassulacean acid metabolism; EIF5A, eukaryotic trans- to collect, annotate and share genomic information for lation initiation factor 5A; EST, expressed sequence tag; GO, orchid functional genomics studies. The Orchidaceae is a Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and large family of Angiosperms that exhibits extraordinary bio- Genomes; miRNA, microRNA; NGS, next-generation sequen- diversity in terms of both the number of species and their cing; SRA, sequence read archive; TSA, transcriptome distribution worldwide. Orchids exhibit many unique biolo- shotgun assembly. gical features; however, investigation of these traits is cur- rently constrained due to the limited availability of genomic information. Transcriptome information for five orchid spe- Introduction cies and one commercial hybrid has been included in the Orchidaceae, the orchid family, diverged from the Liliaceae Orchidstra database. Altogether, these comprise >380,000 and Amaryllidaceae, is the largest family of Angiosperms, with non-redundant orchid transcript sequences, of which >800 genera and >25,000 species.
    [Show full text]
  • INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.F.)
    UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES Département de Biologie et Ecologie Végétales Mémoire pour l’obtention du Diplôme d’Etudes Approfondies (D.E.A.) En Biologie et Ecologie Végétales OPTION : ECOLOGIE VEGETALE INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.f.) Présenté par RANDRIANINDRINA Veloarivony Rence Aimée (Maître ès Sciences) Soutenu publiquement le, 31 Janvier 2008 Devant la Commission de jury composée de : Président : Pr. RAJERIARISON Charlotte Examinateurs : Dr. RABAKONANDRIANINA Elisabeth Dr. FALINIAINA Lucien Rapporteurs : Dr. RAKOUTH Bakolimalala Dr. EDWARD Louis Jr. 1 UNIVERSITE D’ANTANANARIVO FACULTE DES SCIENCES Département de Biologie et Ecologie Végétales Mémoire pour l’obtention du Diplôme d’Etudes Approfondies (D.E.A.) En Biologie et Ecologie Végétales OPTION : ECOLOGIE VEGETALE INVENTAIRE DES ORCHIDEES DE TALATAKELY PARC NATIONAL DE RANOMAFANA ETUDES MORPHOLOGIQUE ET MOLECULAIRE DE CINQ ESPECES DU GENRE Aerangis (Rchb.f.) Présenté par RANDRIANINDRINA Veloarivony Rence Aimée (Maître ès Sciences) Soutenu publiquement le, 31 Janvier 2008 Devant la Commission de jury composée de : Président : Pr. Charlotte RAJERIARISON Examinateurs : Dr. Elisabeth RABAKONANDRIANINA Dr Lucien. FALINIAINA Rapporteurs : Dr. Bakolimalala RAKOUTH Dr. Louis Jr. EDWARD 2 REMERCIEMENTS En premier lieu, nous voudrions rendre gloire à Dieu pour sa bienveillance et sa bénédiction. Mené à terme ce mémoire, est le fruit de la collaboration entre
    [Show full text]
  • Phylogenetic Placement and Taxonomy of the Genus Hederorkis (Orchidaceae)
    RESEARCH ARTICLE Phylogenetic Placement and Taxonomy of the Genus Hederorkis (Orchidaceae) Joanna Mytnik-Ejsmont1*, Dariusz L. Szlachetko1, Przemysław Baranow1, Kevin Jolliffe2, Marcin Górniak3 1 Department of Plant Taxonomy and Nature Conservation, The University of Gdansk, Wita Stwosza 59, PL- 80-308, Gdańsk, Poland, 2 Cousine Island, Conservation Department, Seychelles, 3 Department of Molecular Evolution, The University of Gdansk, Wita Stwosza 59, PL-80-308, Gdańsk, Poland * [email protected] a11111 Abstract Three plastid regions, matK, rpl32-trnL and rpl16 intron and the ITS1-5.8S-ITS2 nuclear ri- bosomal DNA were used to demonstrate a phylogenetic placement of the genus Hederorkis OPEN ACCESS (Orchidaceae) for the first time. The taxonomic position of this genus has been unclear thus far. The phylogenetic and morphological relations of Hederorkis to the most closely related Citation: Mytnik-Ejsmont J, Szlachetko DL, Baranow genera Sirhookera, Adrorhizon, Bromheadia and Polystachya are also discussed. A hypoth- P, Jolliffe K, Górniak M (2015) Phylogenetic Placement and Taxonomy of the Genus Hederorkis esis concerning an origin and evolution of Hederorkis is proposed. Hederorkis is an epiphyt- (Orchidaceae). PLoS ONE 10(4): e0122306. ic two-leaved orchid genus with lateral inflorescence, non-resupinate flowers, elongate doi:10.1371/journal.pone.0122306 gynostemium and rudimentary column foot. It is native to the Indian Ocean Islands. Two Academic Editor: Christos A. Ouzounis, Hellas, species of Hederorkis are recognized worldwide, H. scandens endemic to Mauritius and Ré- GREECE union and H. seychellensis endemic to Seychelles. For each of the species treated a full Received: May 19, 2014 synonymy, detailed description and illustration are included.
    [Show full text]
  • Molecularphylogeneticsof Phalaenopsis(Orchidaceae)
    The JapaneseSocietyJapanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. GeoboL 56 (2): 14]-161 (200S)・ Molecular Phylogenetics of Phalaenopsis (Orchidaceae)and allied Genera: Re-evaluation of Generic Concepts TOMOHISA YUKAWAi, KOICHI KITA2, TAKASHI HANDA2, TOPIK HIDAYAT3 and MOTOMHTo3 i71sukuba 21hstitute Botanical Garcien, Nlational Scienee Mtiseum, Amakuho, Tyuketba, 305-OO05. Jopan; of 3Graduate Agricultnre andforestn)). Uhivensity qf'Tgukuba, fennodai, 71yukuba, 305-857Z Japan; Schoot ofArts and Seience, Uhivensity of7bdy,o, Kbmaba, 7bkyo, J53-8902, JZu)an, Molecular phylogenetic analyscs were performed using data sets derived from DNA sequences ofthe plastid genome (matK and trnK introns) and the nuelear genome (rDNA ITS) in an examination ofrela- tionships of all sections ofPhataenqpsis and closely related gcnera. The fo11owing insights were pro- vided: (1) The genera Lesliea and IVbthodoritis are nested within Phalaenopsis, (2) Phalaenopsis subgenus Aphyilae and section EsmeJ'aldd, often treated as thc independent genera Kirrgidium and Doritis respectively, are also nested within Phalaenqpsis. (3) Two subgenera of Phalaenqpsis, namely, Phalaenopsis and 1larishianae, are not monophyletic. (4) Phalaenopsis sections Deliciosae, SZautqglottis, Amboinenses and Zehrinae are not monophyletic. (5) lnconsistencies bctween the plastid and nuclear lineages indicate a hybrid origin ofPhalaenopsis minus and Phalaenopsis phitmpinensis. (6) In light of these findings, and to accommodate phylogenetic integrity and stability in nomenclature, we adopt a broadly defincd Doritis characterized by the possession of fbur pollinia, an explicit character state. Key words: Doritis,introgression, ITS, mati(l moleculag Orchidaceae, Ahalaenopsis, phylogcnctics, tttnK Phakzenopsis Blume is an orchid genus to which 62 tion ofthe genus has been thoroughly reviewed by species are currently assigned (Christenson 2001).
    [Show full text]
  • Gastrochilus Deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a New Species from Taiwan
    Taiwania 63(4): 360-365, 2018 DOI: 10.6165/tai.2018.63.360 Gastrochilus deltoglossus (Orchidaceae: Epidendroideae: Vandeae: Aeridinae), a new species from Taiwan Tian-Chuan HSU1, Szu-I HSIEH2,*, Jin-Hua WU3 , Hsin-Chieh HUNG4 1. Botanicial Garden Division, Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 10066, Taiwan. 2. Department of Forestry, The Affiliated Taichung Agricultural Vocational Senior High School of National Chung Hsing University, No. 283, Taichung Rd., Taichung City, 401, Taiwan. 3. Nantou Forest District Office, Forestry Bureau, No. 456, Shiguan Rd., Caotun Town, Nantou 542, Taiwan. 4. Dr. Cecilia Koo Botanic Conservation and Environmental Protection Foundation, No. 31, Tongsing Rd., Gaoshu Township, Pingtung County 906, Taiwan. *Corresponding author’s email: [email protected] (Manuscript received 9 August 2018; accepted 16 October 2018; online published 30 October 2018) ABSTRACT: A new species, Gastrochilus deltoglossus, is described and illustrated from Taiwan. This species is characterized by the presence of pendulous stems, leaves without awned apex, 3.5–4.0 mm tall subconical hypochile, and broadly deltoid, ciliate, adaxially sparsely short-hairy epichile that are approximately as wide as hypochile. Notes on its distribution, ecology, conservation status and taxonomic affinities are presented. KEY WORDS: Gastrochilus ciliaris, Gastrochilus raraensis, Orchidaceae, Taiwan, Taxonomy. INTRODUCTION Gastrochilus without flowers in a mid-altitudinal mixed forest of central Taiwan. As Gastrochilus species are Gastrochilus D. Don (Orchdaceae: Aeridinae, typically hardly identifiable without flower, these plants Vandeae, Epidendroideae,) is a monopodial orchid were regularly monitored by the third author in field until genus comprising ca. 65 species widely distributed June 2018 when some blooms were observed.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Phalaenopsis[I]
    A peer-reviewed version of this preprint was published in PeerJ on 12 May 2016. View the peer-reviewed version (peerj.com/articles/2017), which is the preferred citable publication unless you specifically need to cite this preprint. Huang J, Lin C, Cheng T, Huang Y, Tsai Y, Cheng S, Chen Y, Lee C, Chung W, Chang BC, Chin S, Lee C, Chen F. 2016. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017 https://doi.org/10.7717/peerj.2017 The genome and transcriptome of the Phalaenopsis yield insights into floral organ development and flowering regulation Jian-Zhi Huang, Chih-Peng Lin, Ting-Chi Cheng, Ya-Wen Huang, Yi-Jung Tsai, Shu-Yun Cheng, Yi-Wen Chen, Chueh-Pai Lee, Wan- Chia Chung, Bill Chia-Han Chang, Shih-Wen Chin, Chen-Yu Lee, Fure-Chyi Chen Phalaenopsis orchid is an important potted flower with high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima ‘B8802’, a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal the key role of PhAGL6b in the regulation of flower organ development involves alternative splicing. We also show gibberellin pathways that regulate the expression of genes control flowering time during the stage in reproductive phase change induced by cool temperature.
    [Show full text]
  • ORCHID POLLINATION ECOLOGY Orchid Pollination Exploring a Fascinating World by Ron Mchatton
    ORCHID POLLINATION ECOLOGY Orchid Pollination Exploring a Fascinating World BY RON MCHATTON [1] The first example of sexual deception in Australian orchids involved the genus Cryptostylis. These orchids are pollinated by male parasitic wasps of the genus Lissopimpla. Here four male Lissopimpla excelsa wasps compete for the favors of a Cryptostylis erecta flower. MARK CLEMENTS [2] Silver-spotted skipper (Epargyreus clarus) pollinating a small purple fringed orchid (Platanthera psycodes) at Mt. Mitchell, North Carolina. The long spurs of the orchid have nectar at their ends and the skipper must push its proboscis deep into the spur to get to the nectar. Note the pollinia attached to the base of JAMES PETRANKA JAMES the skipper’s proboscis. bumblebee species. In this case, pollinia of Den. infundibulum are placed on the head of the bee while that from the Cymbidium, with much longer column, becomes at- tached to the bee’s central thorax. Because the column of the former species is much shorter, only pollinia placed near the front of the bee will be in a position to contact the stigmatic surface of the Dendrobium column as the bee exits the flower (Du Puy and Cribb 2007). Orchids with large gullet flowers such as Cymbidium are typically pollinated by large carpenter bees and bumblebees are known to pollinate Spiranthes and are implicated in the pollination of northern NT NT U U and some high-elevation species where other large bees are less common or active. 3 4 ERIC H ERIC H Some bees gather oils from flowers rather than nectar or pollen and many orchids [3–4] Sobralia [3] and Cattleya [4], two gen- NO ONE IS REALLY SURE HOW LONG have evolved to attract these pollinators.
    [Show full text]
  • PC25 Doc. 32.2
    Original language: English PC25 Doc. 32.2 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-fifth meeting of the Plants Committee Online, 2-4, 21 and 23 June 2021 Species specific matters Maintenance of the Appendices Orchids checklists APPENDIX-II ORCHID CHECKLIST 1. This document has been submitted by the Scientific Authority for Flora of the United Kingdom of Great Britain and Northern Ireland.* 2. The context of this document pertains to PC24 Com. 8 (Rev. by Sec.). The UK Scientific Authority and the United Nations Environment Programme – World Conservation Monitoring Centre (UNEP-WCMC) were to prepare a checklist for Orchidaceae, presenting Appendix I and Appendix II species separately. a) This was to be undertaken by generating an output for Orchidaceae from the World Checklist of Selected Plant Families. The output includes accepted names, synonyms and country-level distribution information. b) The dataset for Orchidaceae was provided by The World Checklist of Selected Plant Families. The World Checklist of Selected Plant Families has become an international collaborative programme with more than 150 contributors from 22 countries. The main goal of the World Checklist of Selected Plant Families is to provide high quality peer reviewed baseline data on all accepted taxa included in each family. c) To make the review of proposed changes manageable, a comparison was undertaken between the World Checklist of Selected Plant Families output and the current CITES nomenclature standard references for Orchidaceae. 3. The Appendix I Orchid Checklist was adopted at the 18th CITES Conference of the Parties (Switzerland, 2019). This checklist and the proposed checklist were compiled using the same methodology.
    [Show full text]
  • Detection of Somaclonal Variation by Random Amplified Polymorphic DNA Analysis During Micropropagation of Phalaenopsis Bellina (Rchb.F.) Christenson
    African Journal of Biotechnology Vol. 9(40), pp. 6632-6639, 4 October, 2010 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.714 ISSN 1684–5315 ©2010 Academic Journals Full Length Research Paper Detection of somaclonal variation by random amplified polymorphic DNA analysis during micropropagation of Phalaenopsis bellina (Rchb.f.) Christenson Khoddamzadeh A. A1, Sinniah U. R1*, Kadir M. A2, Kadzimin S. B1, Mahmood M 3 and Sreeramanan S 4 1Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43300, Serdang, Malaysia. 2Department of Agrotechnology, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43300, Serdang, Malaysia. 3Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43300, Serdang, Malaysia. 4School of Biological Sciences, Universiti Sains Malaysia (USM), Minden Heights, 11800, Georgetown, Penang, Malaysia. Accepted 23 August, 2010 Phalaenopsis bellina (Rchb.f.) Christenson orchid species are known for their beautiful flower shape, graceful inflorescence and fragrance. Protocorm-like bodies (PLBs) of P. bellina were induced from leaf segments. The PLBs were then subjected to proliferation using ½ strength Murashige and Skoog (MS) media with two subcultures at three months intervals. Twelve decamer random amplified polymorphic DNA (RAPD) primers were used to study somaclonal variation among the mother plant, the initially induced PLBs and proliferated PLBs after 3 and 6 months in culture. Eight out of twelve primers produced 172 bands with 18 polymorphic bands in all the treatments. The amplified products varied between 125 to 8000 bp. Among the primers used, P 16 produced the highest number of bands (29), while primer OPU 10 produced the lowest number (15).
    [Show full text]
  • Atlanta Orchid Society Newsletter
    The Atlanta Affiliated with the American Orchid Orchid Society, the Orchid Digest Corporation and the Mid-America Orchid Congress. Society 2001 Recipient of the American Orchid Society’s Distinguished Affiliated Bulletin Societies Service Award Newsletter Editor: Danny Lentz Volume 47: Number 5 www.atlantaorchidsociety.org May 2006 MAY EVENTS The Meeting: 8:00 Monday, May 8 at Atlanta Botanical Garden Greg Allikas, Orchid Photography Greg Allikas has been a commercial photographer in the Palm Beaches and an orchid grower since 1970. He is awards photographer for the AOS West Palm Beach Judging Center, Florida-Caribbean Judging Center in Miami, and many annual south Florida orchid shows. His photos are regularly seen in numerous AOS publications including the annual calendar and the Awards Quarterly and Orchids magazine. He has written articles for both Orchids magazine and Orchid Digest. Two books (“Orchids”, “The World’s Most Beautiful Orchids”) co- authored with Ned Nash feature many of his photos. Greg also has many photos in the latest editions of the Sunset and Ortho books on orchids. In early 2005 he was honored to consult on, and supply photography for a United Nations postal administration endangered species stamp release featuring 12 endangered orchid species. Greg’s web site is www.orchidworks.com AtlOS members can bring plants to sell at the May meeting. Please remember that 10% of sales should be donated to the society. Greengrowers: Henry Everett on Sunday May 28, starting at 2:00 Former Atlanta Orchid Society member (and past-president) Henry Everett has invited us to visit his home this month and see how he grows his orchids.
    [Show full text]
  • Index Sorted by Title
    Index sorted by Title Volume Issue Year Article Title Author Key Words 31 5 1967 12th Western Orchid Congress Jefferies, George Western Orchid Congress 31 5 1967 12th Western Orchid Congress — Photo Flashes Philpott, R. G. Western Orchid Congress 12th World Orchid Conference ... March 1987, 51 4 1987 Eilau, William World Orchid Conference, Tokyo Tokyo, Japan 13th World Orchid Conference, Auckland, New World Orchid Conference, New 54 2 1990 Eilau, William Zealand Zealand 14th World Orchid Conference, Glascow, 57 3 1993 Hetherington, Ernest World Orchid Conference, scotland Scotland, April 26-May 1, 1993, The 1992 Volume of the Orchid Digest is Dedicated 56 1 1992 in Memoriam to D. George Morel (1926-1973), Hetherington, Ernest history, George Morel The 58 4 1994 1994 Orchid Digest Research Grant Digest Staff 1994 orchid, research, grant 1995 Orchid Digest Dec Dedicated to Herb 59 1 1995 Digest Staff Dedication, Herb Hager Hager 72 2 2008 19th World Orchid Conference Hersch, Helen world orchid conference, 19th 2018 Paphiopedilum Guild and the Second 2018, paphiopedilum guild, second 82 2 2018 International World Slipper Orchid Conference Sorokowsky, David international world slipper orchid, Hilo, Hawaii conference 80 3 2016 22nd World Orchid Conference Pridgeon, Alec 22nd World Orchid Conference 84 4 2020 A Checklist of Phramipedium Species Cervera, Frank checklist, phragmipedium 84 3 2020 A New Color Forma for Vanda curvifolia Koopowitz, Harold vanda, curvifolia, new color form A New Species of Lepanthes (Orchidaceae: Larson, Bruno, Portilla, Jose, Medina 85 2 2021 new species, Lepanthes, Ecuador Pleurothallidinae) from South East Ecuador Hugo A New Species of Pleurothallopsis new species, pleurothallopsis, 82 1 2018 (Epidendreae, Epidendroideae, Orchidaceae): Matthews, Luke M.
    [Show full text]