A Propeller Design and Analysis Capability Evaluation for High Altitude Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flexible Fluidic Actuators for Soft Robotic Applications
University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2019 Flexible Fluidic Actuators for Soft Robotic Applications Weiping Hu Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Research Online is the open access institutional repository for the University of -
The Close-Packed Triple Helix As a Possible New Structural Motif for Collagen
The close-packed triple helix as a possible new structural motif for collagen Jakob Bohr∗ and Kasper Olseny Department of Physics, Technical University of Denmark Building 307 Fysikvej, DK-2800 Lyngby, Denmark Abstract The one-dimensional problem of selecting the triple helix with the highest volume fraction is solved and hence the condition for a helix to be close-packed is obtained. The close-packed triple helix is ◦ shown to have a pitch angle of vCP = 43:3 . Contrary to the conventional notion, we suggest that close packing form the underlying principle behind the structure of collagen, and the implications of this suggestion are considered. Further, it is shown that the unique zero-twist structure with no strain- twist coupling is practically identical to the close-packed triple helix. Some of the difficulties for the current understanding of the structure of collagen are reviewed: The ambiguity in assigning crystal structures for collagen-like peptides, and the failure to satisfactorily calculate circular dichroism spectra. Further, the proposed new geometrical structure for collagen is better packed than both the 10=3 and the 7=2 structure. A feature of the suggested collagen structure is the existence of a central channel with negatively charged walls. We find support for this structural feature in some of the early x-ray diffraction data of collagen. The central channel of the structure suggests the possibility of a one-dimensional proton lattice. This geometry can explain the observed magic angle effect seen in NMR studies of collagen. The central channel also offers the possibility of ion transport and may cast new light on various biological and physical phenomena, including biomineralization. -
An Experimental Investigation of Helical Gear Efficiency
AN EXPERIMENTAL INVESTIGATION OF HELICAL GEAR EFFICIENCY A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of the Ohio State University By Aarthy Vaidyanathan, B. Tech. * * * * * The Ohio State University 2009 Masters Examination Committee: Dr. Ahmet Kahraman Approved by Dr. Donald R Houser Advisor Graduate Program in Mechanical Engineering ABSTRACT In this study, a test methodology for measuring load-dependent (mechanical) and load- independent power losses of helical gear pairs is developed. A high-speed four-square type test machine is adapted for this purpose. Several sets of helical gears having varying module, pressure angle and helix angle are procured, and their power losses under jet- lubricated conditions are measured at various speed and torque levels. The experimental results are compared to a helical gear mechanical power loss model from a companion study to assess the accuracy of the power loss predictions. The validated model is then used to perform parameter sensitivity studies to quantify the impact of various key gear design parameters on mechanical power losses and to demonstrate the trade off that must take place to arrive at a gear design that is balanced in all essential aspects including noise, durability (bending and contact) and power loss. ii Dedicated to all those before me who had far fewer opportunities, and yet accomplished so much more. iii ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Ahmet Kahraman, who has been instrumental in fostering interest and enthusiasm in all my research endeavors. His encouragement throughout the course of my studies was invaluable, and I look to him for guidance in all my future undertakings. -
A Simplified Model for a Small Propeller with Different Airfoils Along the Blade
A simplified model for a small propeller with different airfoils along the blade Kamal A. R. Ismail1) and *Célia V. A. G. Rosolen2) 1), 2) State University of Campinas, Faculty of Mechanical Engineering, Department of Energy, Rua Mendeleiev, 200, Cidade Universitária “Zeferino Vaz”, 13083-860 - Barão Geraldo - Campinas - SP, Brasil 1) [email protected] ABSTRACT The flow through the rotor of a propeller is complex due to the rotor wake interaction. Varieties of methods with different simplifications were used to represent the flow field and its interaction with the rotor. The impact of these simplifications on the precision of the predicted results and computation time were evaluated. These methods include momentum theory, blade element theory, lifting line theory, finite volume methods, panel methods, boundary element methods and CFD analysis. The objective of the present work is to propose a robust and simple method to calculate the aerodynamic characteristics of the propeller with relatively good precision. Both the momentum theory and blade element theory were used in home built FORTRAN code and the predicted results were validated against results from the Panel method and available experimental measurements showing acceptable agreement. Furthermore, the numerical code was used to investigate the effect of incorporating three different blade sections on the power and thrust coefficients. 1. INTRODUCTION Small and medium size rotors are used in many recent applications as in propulsion of small airplanes, unmanned aerial vehicles (UAV), autonomous underwater vehicle (AUV), and small wind turbines and ducted propellers. Understanding rotor action and interaction with wake flow field are important aspects to better formulate and predict the performance of propeller rotors and wind turbines. -
Marine Propellers and Propulsion to Jane and Caroline Marine Propellers and Propulsion
Marine Propellers and Propulsion To Jane and Caroline Marine Propellers and Propulsion Second Edition J S Carlton Global Head of MarineTechnology and Investigation, Lloyd’s Register AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier Butterworth-Heinemann is an imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 1994 Second edition 2007 Copyright © 2007, John Carlton. Published by Elsevier Ltd. All right reserved The right of John Carlton to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone ( 44) (0) 1865 843830; fax ( 44) (0) 1865 853333; email: [email protected]. Alternatively+ you can submit your+ request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the published for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data Carlton, J. -
पेटेंट कार्ाालर् Official Journal of the Patent Office
पेटᴂट कार्ाालर् शासकीर् जर्ाल OFFICIAL JOURNAL OF THE PATENT OFFICE नर्र्ामर् सं. 20/2018 शुक्रवार दिर्ांक: 18/05/2018 ISSUE NO. 20/2018 FRIDAY DATE: 18/05/2018 पेटᴂट कार्ाालर् का एक प्रकाशर् PUBLICATION OF THE PATENT OFFICE The Patent Office Journal No. 20/2018 Dated 18/05/2018 18529 INTRODUCTION In view of the recent amendment made in the Patents Act, 1970 by the Patents (Amendment) Act, 2005 effective from 01st January 2005, the Official Journal of The Patent Office is required to be published under the Statute. This Journal is being published on weekly basis on every Friday covering the various proceedings on Patents as required according to the provision of Section 145 of the Patents Act 1970. All the enquiries on this Official Journal and other information as required by the public should be addressed to the Controller General of Patents, Designs & Trade Marks. Suggestions and comments are requested from all quarters so that the content can be enriched. ( Om Prakash Gupta ) CONTROLLER GENERAL OF PATENTS, DESIGNS & TRADE MARKS 18TH MAY, 2018 The Patent Office Journal No. 20/2018 Dated 18/05/2018 18530 CONTENTS SUBJECT PAGE NUMBER JURISDICTION : 18532 – 18533 SPECIAL NOTICE : 18534 – 18535 EARLY PUBLICATION (DELHI) : 18536 – 18540 EARLY PUBLICATION (MUMBAI) : 18541 – 18545 EARLY PUBLICATION (CHENNAI) : 18546 – 18564 EARLY PUBLICATION ( KOLKATA) : 18565 PUBLICATION AFTER 18 MONTHS (DELHI) : 18566 – 18732 PUBLICATION AFTER 18 MONTHS (MUMBAI) : 18733 – 18837 PUBLICATION AFTER 18 MONTHS (CHENNAI) : 18838 – 19020 PUBLICATION AFTER 18 MONTHS (KOLKATA) : 19021 – 19196 WEEKLY ISSUED FER (DELHI) : 19197 – 19235 WEEKLY ISSUED FER (MUMBAI) : 19236 – 19251 WEEKLY ISSUED FER (CHENNAI) : 19252 – 19295 WEEKLY ISSUED FER (KOLKATA) : 19296 – 19315 APPLICATION FOR RESTORATION OF PATENT : 19316 NO. -
A More Comprehensive Database for Propeller Performance Validations at Low Reynolds Numbers
A MORE COMPREHENSIVE DATABASE FOR PROPELLER PERFORMANCE VALIDATIONS AT LOW REYNOLDS NUMBERS A Dissertation by Armin Ghoddoussi Master of Science, Wichita State University, 2011 Bachelor of Science, Sojo University, 1998 Submitted to the Department of Aerospace Engineering and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2016 © Copyright 2016 by Armin Ghoddoussi All Rights Reserved A MORE COMPREHENSIVE DATABASE FOR PROPELLER PERFORMANCE VALIDATIONS AT LOW REYNOLDS NUMBERS The following faculty members have examined the final copy of this dissertation for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Doctor of Philosophy with a major in Aerospace Engineering. L. Scott Miller, Committee Chair Klaus Hoffmann, Committee Member Kamran Rokhsaz, Committee Member Charles Yang, Committee Member Hamid Lankarani, Committee Member Accepted for the College of Engineering Royce Bowden, Dean Accepted for the Graduate School Dennis Livesay, Dean iii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my advisor and mentor, Professor L. Scott Miller for his guidance throughout this project. Also, I am sincerely grateful for the opportunity and help that the department of Aerospace Engineering, NIAR W. H. Beech Wind Tunnel, NIAR Research Machine Shop, NIAR CAD/CAM Lab, Cessna Manufacturing Lab and their generous staff provided. Above all, none of this would be possible without the love and care of my parents, brother and friends. This is dedicated to my family members, Akhtar, Ali and Elcid Ghoddoussi. Thank you for your constant support and patience. -
A Review of Propeller Modelling Techniques Based on Euler Methods
Series 01 Aerodynamics 05 A Review of Propeller Modelling Techniques Based on Euler Methods G.J.D. Zondervan Delft University Press A Review of Propeller Modelling Techniques 8ased on Euler Methods 8ibliotheek TU Delft 111111111111 C 3021866 2392 345 o Series 01: Aerodynamics 05 \ • ":. 1 . A Review of Propeller Modelling Techniques Based on Euler Methods G.J.D. Zondervan Delft University Press / 1 998 Published and distributed by: Delft University Press Mekelweg 4 2628 CD Delft The Netherlands Telephone +31 (0)152783254 Fax +31 (0)152781661 e-mail: [email protected] by order of: Faculty of Aerospace Engineering Delft University of Technology Kluyverweg 1 P.O. Box 5058 2600 GB Delft The Netherlands Telephone +31 (0)152781455 Fax +31 (0)152781822 e-mail: [email protected] website: http://www.lr.tudelft.nl! Cover: Aerospace Design Studio, 66.5 x 45.5 cm, by: Fer Hakkaart, Dullenbakkersteeg 3, 2312 HP Leiden, The Netherlands Tel. + 31 (0)71 512 67 25 90-407-1568-8 Copyright © 1998 by Faculty of Aerospace Engineering All rights reserved . No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the publisher: Delft University Press. Printed in The Netherlands Contents 1 Introduction 4 1.1 Future propulsion concepts 4 1.2 Introduction in the propeller slipstream interference problem 6 2 Propeller modelling 7 2.1 Propeller aerodynarnics -
Design of a Variable Pitch, Energy-Harvesting Propeller for In-Flight Power Recuper- Ation on Electric Aircraft
Design of a Variable Pitch, Energy-Harvesting Propeller for In-Flight Power Recuper- ation on Electric Aircraft J.M.F.van Neerven Technische Universiteit Delft DESIGNOFA VARIABLE PITCH, ENERGY-HARVESTING PROPELLER FOR IN-FLIGHT POWER RECUPERATION ON ELECTRIC AIRCRAFT by J.M.F.van Neerven in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at Delft University of Technology, to be defended publicly on Monday November 30, 2020 at 14:00 PM. Student nr.: 4231899 Supervisor: Dr. ir. T. Sinnige Thesis committee: Dr. ir. T. Sinnige, TU Delft Prof. dr. ir. G. Eitelberg, TU Delft Prof. dr. ir. Simao Ferreira, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. PREFACE This research project about energy recuperation technology on electric aircraft concludes my Master of Sci- ence in Aerospace Engineering at Delft University of Technology. Energy harvesting on electric aircraft is a relatively new research area which is under rapid development, with the main aim to improve the energy per- formance of these aircraft. This report presents the findings regarding the influence a constant/variable pitch and/or RPM propeller on an electric aircraft on the overall energy consumption over a complete mission. I would like to thank several people who contributed to this achievement. First of all, I would like to thank Tomas Sinnige and Leo Veldhuis, who supervised me during the project, for providing excellent feedback and being very attentive and supportive at all times. Furthermore, I would like to thank all the basement students in the HSL for always ensuring a motivational and social study environment. -
Flexible Fluidic Actuators for Soft Robotic Applications
University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2019 Flexible Fluidic Actuators for Soft Robotic Applications Weiping Hu University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Hu, Weiping, Flexible Fluidic Actuators for Soft Robotic Applications, Doctor of Philosophy thesis, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, 2019. https://ro.uow.edu.au/theses1/717 Research Online is the open access institutional repository for the University of Wollongong. -
Propeller Blade Element Momentum Theory with Vortex Wake Deflection
27TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES PROPELLER BLADE ELEMENT MOMENTUM THEORY WITH VORTEX WAKE DEFLECTION M. K. Rwigema School of Mechanical, Industrial and Aeronautical Engineering University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa Keywords: Blade Element Momentum, Propeller, Vortex Wake, Wake Deflection Abstract propeller disk/cross-sectional slip-stream S area (m2) Various propeller theories are treated in developing a model that analyses the t time (s) aerodynamic performance of an aircraft U resultant velocity at blade element (m/s) propeller along with the construct and V flow velocity (m/s) behaviour of the resultant slip-stream. Blade thrust axis location downstream from x element momentum theory is used as a low- propeller (m) order aerodynamic model of the propeller and α local angle of attack (rad) is coupled with a vortex wake representation of β local element pitch angle (rad) the slip-stream to relate the vorticity distributed γ strength of distributed annular vorticity throughout the slip-stream to the propeller (m/s) forces. strength of distributed swirl vorticity γ s (m/s) strength of bound vorticity on propeller Nomenclature Γ (m2/s) blade φ angular coordinate around propeller disk a axial induction factor (rad) ϕ local inflow angle (rad) a′ tangential induction factor σ ′ local solidity c chord length (m) 3 ρ air density (kg/m ) C drag coefficient Ω propeller rotational speed (rad/s) D C lift coefficient Subscripts: L C thrust coefficient T ∞ free-stream x at station -
Chapter 7 Resistance and Powering of Ships
COURSE OBJECTIVES CHAPTER 7 7. RESISTANCE AND POWERING OF SHIPS 1. Define effective horsepower (EHP) conceptually and mathematically 2. State the relationship between velocity and total resistance, and velocity and effective horsepower 3. Write an equation for total hull resistance as a sum of viscous resistance, wave making resistance and correlation resistance. Explain each of these resistive terms. 4. Draw and explain the flow of water around a moving ship showing the laminar flow region, turbulent flow region, and separated flow region 5. Draw the transverse and longitudinal wave patterns when a displacement ship moves through the water 6. Define Reynolds number with a mathematical formula and explain each parameter in the Reynolds equation with units 7. Be qualitatively familiar with the following sources of ship resistance: a. Steering Resistance b. Air and Wind Resistance c. Added Resistance due to Waves d. Increased Resistance in Shallow Water 8. Read and interpret a ship resistance curve including humps and hollows 9. State the importance of naval architecture modeling for the resistance on the ship's hull 10. Define geometric and dynamic similarity 11. Write the relationships for geometric scale factor in terms of length ratios, speed ratios, wetted surface area ratios and volume ratios 12. Describe the law of comparison (Froude’s law of corresponding speeds) conceptually and mathematically, and state its importance in model testing 13. Qualitatively describe the effects of length and bulbous bows on ship resistance i 14. Be familiar with the momentum theory of propeller action and how it can be used to describe how a propeller creates thrust 15.