A More Comprehensive Database for Propeller Performance Validations at Low Reynolds Numbers
Total Page:16
File Type:pdf, Size:1020Kb
A MORE COMPREHENSIVE DATABASE FOR PROPELLER PERFORMANCE VALIDATIONS AT LOW REYNOLDS NUMBERS A Dissertation by Armin Ghoddoussi Master of Science, Wichita State University, 2011 Bachelor of Science, Sojo University, 1998 Submitted to the Department of Aerospace Engineering and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2016 © Copyright 2016 by Armin Ghoddoussi All Rights Reserved A MORE COMPREHENSIVE DATABASE FOR PROPELLER PERFORMANCE VALIDATIONS AT LOW REYNOLDS NUMBERS The following faculty members have examined the final copy of this dissertation for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Doctor of Philosophy with a major in Aerospace Engineering. L. Scott Miller, Committee Chair Klaus Hoffmann, Committee Member Kamran Rokhsaz, Committee Member Charles Yang, Committee Member Hamid Lankarani, Committee Member Accepted for the College of Engineering Royce Bowden, Dean Accepted for the Graduate School Dennis Livesay, Dean iii ACKNOWLEDGEMENTS I would like to express my deepest gratitude to my advisor and mentor, Professor L. Scott Miller for his guidance throughout this project. Also, I am sincerely grateful for the opportunity and help that the department of Aerospace Engineering, NIAR W. H. Beech Wind Tunnel, NIAR Research Machine Shop, NIAR CAD/CAM Lab, Cessna Manufacturing Lab and their generous staff provided. Above all, none of this would be possible without the love and care of my parents, brother and friends. This is dedicated to my family members, Akhtar, Ali and Elcid Ghoddoussi. Thank you for your constant support and patience. iv ABSTRACT Validation is the essential process of evaluating the precision and reliability of analytical or computational solutions. In this dissertation, a series of comprehensive propeller wind tunnel tests were designed for validation of propeller design and analysis techniques. This work focused primarily on small propellers operating at lower Reynolds numbers in the range of 90,000 to 120,000, which is particularly helpful for unmanned aerial vehicle applications. Extensive propeller and experimental apparatus geometries along with test section spatial dimensionality are described. An open-source computer-aided design (CAD) method was used to create the propeller blades, nacelle, and spinner surface outlines, aiming for easy reproduction. Two different propeller designs were tested: a simple propeller with a constant pitch-to-diameter ratio, chord length, and thickness; and a complex propeller with a pitch-to-diameter ratio and chord length as a function of blade radius. Both propellers with a variable pitch of five degrees increment were tested at several angle settings. Critical test section flow field and geometry information that can be used as boundary conditions are also presented in this study. In addition to classical propeller performance plots of thrust and torque coefficients and efficiency against the advance ratio, nacelle surface pressure distribution in terms of coefficients and propeller wake survey results are provided. Two different wind tunnels were utilized to evaluate the experimental and facility bias. Known errors, uncertainties, and instrumental accuracies are quantified and presented here. v TABLE OF CONTENTS Chapter Page 1. INTRODUCTION ..................................................................................................................1 1.1 Propulsive Efficiency in Propeller Design ..................................................................1 1.2 Challenges in Propeller Design and Analysis .............................................................3 1.3 Development in Analysis and Design Methods ..........................................................4 2. MODERN PROPELLER ANALYSIS AND DESIGN ..........................................................9 2.1 Momentum-Blade Element Theory ............................................................................9 2.2 JavaProp ....................................................................................................................15 2.3 Vortex Theory ...........................................................................................................21 2.4 Computational Fluid Dynamics ................................................................................26 2.4.1 CFD Example 1.............................................................................................26 2.4.2 CFD Example 2.............................................................................................29 3. PROBLEMS AND GOALS ..................................................................................................31 3.1 Problems in Propeller Validation ..............................................................................31 3.2 Statement of Objective ..............................................................................................35 3.3 Methods of Approach ................................................................................................35 4. EXPERIMENTAL APPARATUS .........................................................................................37 4.1 Geometry Descriptions .............................................................................................37 4.1.1 Wind Tunnels and Model Installations .........................................................37 4.1.2 Model Propellers ...........................................................................................42 4.1.3 Model Nacelle-Spinner .................................................................................48 4.1.4 Model Setup Assessment ..............................................................................50 4.1.5 System Performance Prediction ....................................................................52 4.2 Data Measurement and Process ................................................................................57 4.2.1 System Calibration ........................................................................................60 4.2.2 Data Corrections and Tares ...........................................................................63 4.2.3 Test Procedure ...............................................................................................64 4.3 System Evaluations ...................................................................................................66 5. RESULTS ..............................................................................................................................74 5.1 Propeller Performance ..............................................................................................74 5.1.1 PD1 Results of Propeller Performance .........................................................74 5.1.2 COMP Results of Propeller Performance .....................................................82 5.2 Nacelle Pressure Distribution ...................................................................................88 5.2.1 PD1 Results of Nacelle Pressure Distribution ..............................................89 vi TABLE OF CONTENTS (continued) Chapter Page 5.2.2 COMP Results of Nacelle Pressure Distribution ........................................103 5.3 Wake Survey ........................................................................................................... 119 5.4 Nacelle-Spinner Effect ............................................................................................131 5.5 Dynamic Tare ..........................................................................................................137 6. CONCLUSIONS.................................................................................................................144 REFERENCES ............................................................................................................................146 APPENDIXES .............................................................................................................................152 Appendix A……………………………………………………………………………….153 Appendix B……………………………………………………………………………….157 vii LIST OF TABLES Table Page 1. Summary of System Accuracy, Precision, and Errors…………………………….……. 67 viii LIST OF FIGURES Figure Page 1. Rotating propeller: (a) front view, (b) velocities and forces on blade element looking toward hub. ....................................................................................................................... 10 2. BART data vs. M-BE analysis of APC Thin-E propellers [24]. ....................................... 14 3. Synthetic drag polar of Clark Y airfoil at different Reynolds numbers [22]. ................... 18 4. JavaProp validation results compared with NACA TR-594, designated blade angle at 0.75R [22]. ........................................................................................................................ 21 5. Vortex theory, JavaProp, and propeller 5868-9 experimental results [39] comparison, with designated blade angle at 0.75R. ............................................................................... 25 6. Combined propeller/nacelle/wing grid domain [28]. ........................................................ 27 7. Propeller/nacelle pressure distribution at Mach 0.15, 6650 rpm: (a) α = 0°, (b) α = 10°, data digitized from [26]. ............................................................................................ 28 8. Propeller/nacelle/wing