Introduction to Ocean Renewable Energy Tidal Turbine
Total Page:16
File Type:pdf, Size:1020Kb
Introduction to Ocean Renewable Energy Tidal turbine Ahmad Mukhlis Firdaus Dphil Candidate in Marine Renewable Energy, University of Oxford Pengajar di Prodi Teknik Kelautan, ITB Studium Generale ITERA November 16th, 2020 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites in Indonesia Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites in Indonesia Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Tidal Phenomenon ALKA #4 Online Sharing Session: Introduction to Ocean Energy Tidal Barrage Single mode operation Dual mode operation La Rance Tidal Barrage, France Swansea Tidal Lagoon, UK (concept) ALKA #4 Online Sharing Session: Introduction to Ocean Energy Device Concept Cross flow turbine Axial flow turbine (Oxford) Axial flow turbine open hydro Transverse axis turbine (Kepler Other type; tidal sail Cross flow turbine (ITB) Turbine –Oxford) ALKA #4 Online Sharing Session: Introduction to Ocean Energy Field Test of Turbine ALKA #4 Online Sharing Session: Introduction to Ocean Energy ALKA #4 Online Sharing Session: Introduction to Ocean Energy ALKA #4 Online Sharing Session: Introduction to Ocean Energy Field Testing (Suramadu Bridge) ALKA #4 Online Sharing Session: Introduction to Ocean Energy Field Testing ALKA #4 Online Sharing Session: Introduction to Ocean Energy Major player and turbine scale Simec Atlantis Sabella Tocardo Hammerfest Andrytz Hydro ALKA #4 Online Sharing Session: Introduction to Ocean Energy Major player and turbine scale Orbital Schottel ALKA #4 Online Sharing Session: Introduction to Ocean Energy Turbine Parts ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites in Indonesia Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait References ALKA #4 Online Sharing Session: Introduction to Ocean Energy How do we calculate the Power Production? Undisturbed kinetic flux Black and Veatch 2005 uses significant impact factor (SIF) 1 3 Where푷 = P 흆풖is extracted∞ 푨풕 휼power,풕휼품풆풏 is free stream tidal current velocity, At is the frontal area of the turbine, 2 generator efficiency. t is turbine efficiency and ugen∞ This illustration shows the kinetic flux Illustration using undisturbed kinetic flux is problematic when we have many turbine in the field Illustration of the flow field when the turbine is installed ALKA #4 Online Sharing Session: Introduction to Ocean Energy Power extraction by the turbine(s) The maximum extractable power from the turbines (Lanchester-Betz Limit) How do we change α4 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Power Coefficient and Thrust Coefficient Thrust Coefficient Pmax at Pmax Betz Limit = 16/27 CP=0.5 or 84% Pmax CT only 67% of Thrust at Pmax ALKA #4 Online Sharing Session: Introduction to Ocean Energy Turbine in a Channel (Garrett and Cummins 2005) Turbine Head difference resistance Bed Friction Term Turbine resistance maximum average power Bed Friction Term ALKA #4 Online Sharing Session: Introduction to Ocean Energy Turbine in a Channel (Garrett and Cummins 2007) Introducing Blockage ratio Turbine Swept Area B= Turbine Swept Area Channel Cross Section Area ALKA #4 Online Sharing Session: Introduction to Ocean Energy Turbine in a channel CP an CT curve on turbine in a channel (Garret and Cummins 2007) B=0.4 B=0.4 B=0.1 Betz Limit = 16/27 B=0.1 It shows for tidal turbines could achieve higher performance than Betz Limit It means if we have B=1, the Pmax goes up to infinity 16 −2 3 푃푚푎푥 = 1 − 퐵 휌푢′ 퐴푑 27 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Considering water surface deformation (Houlsby et. al 2008) ALKA #4 Online Sharing Session: Introduction to Ocean Energy CP and CT if Froude number is considered in the calculation C based on Houlsby et. al CP based on Houlsby et. al T 2008 2008 C based on Garrett P C based on Garrett and Cummins 2008 T B= 0.4 and Cummins 2007 B= 0.4 B= 0.1 B= 0.1 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Power Capping and Thrust Capping Power Capping Thrust Capping ALKA #4 Online Sharing Session: Introduction to Ocean Energy Capacity Factor Cut Out Mean Velocity Average _ Power(After _ Capping) CF PowerCut _ Out Pcap CF ave Pcap ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait Regional Impact ALKA #4 Online Sharing Session: Introduction to Ocean Energy Identified Potential Sites, Based on ASELI 2012 1.Riau Strait 10. Mansuar Strait 2.Sunda Strait 7. Larantuka Strait 6. Molo Strait 9. Pantar Strait 3.Toyopakeh Strait 8. Boleng Strait 4. Lombok Strait 5. Alas Strait ALKA #4 Online Sharing Session: Introduction to Ocean Energy Medan Jakarta Surabaya Consist of 17,480 islands 70 % of territory is Ocean Indonesia ALKA #4 Online Sharing Session: Introduction to Ocean Energy NOAA Nightlight Map of Indonesia Papua Sumatra Java ALKA #4 Online Sharing Session: Introduction to Ocean Energy Types of Tide AK AO F 1 1 AM 2 AS2 Formzhal number F ≤ 0.25 = Semidiurnal 0.25 < F ≤ 1 = Mixed diurnal, mainly semidiurnal 1 < F ≤ 3 = Mixed diurnal, mainly diurnal F > 3 = Diurnal ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites in Indonesia Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Draper, S., Adcock, T.A.A., Borthwick, A.G.L., Houlsby, G. T. (2014) “ Estimate of the tidal stream power resource of the Pentland Firth” Renewable Energy 63 (2014) 650-657 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Coles, D.S., Blunden, L.S., Bahaj, A.S. (2017) “Assessment of the energy extraction potential at tidal sites around the Channel Islands”. Energy 124, 171-186 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites in Indonesia Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Identified Potential Sites, Based on ASELI 2012 1.Riau Strait 10. Mansuar Strait 2.Sunda Strait 7. Larantuka Strait 6. Molo Strait 9. Pantar Strait 3.Toyopakeh Strait 8. Boleng Strait 4. Lombok Strait 5. Alas Strait ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites in Indonesia Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Lombok Strait Tidal Energy ALKA #4 Online Sharing Session: Introduction to Ocean Energy Potential locations based on the average kinetic power Average Kinetic Power 08 o 30' S <0.25 kW/m2 0.50 kW/m2 08 o 40' S 1.00 kW/m2 2 08 o 50' S 1.50 kW/m >2.00 kW/m2 115o 10' E 115o 20' E 115o 30' E 115o 40' E 115o 50' E 116o 00' E = kinetic power (W/m2), = seawater density ( ) 1 3 퐸 = velocity (m/s) 퐸 = 휌푣 3 2 휌 1,025 kg/m 푣 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Example Power extraction at A. Badung Straits Power variation with wake coefficient ALKA #4 Online Sharing Session: Introduction to Ocean Energy The available power for the different scenarios Lombok Straits Badung Toyopakeh Lombok Total Strait Strait Strait Blockage Fencelength (m) 13,894 994 25,009 Ratio Power Power Power Power fraction Location (MW) (MW) (MW) (MW) B =0.1 Badung Strait (A) 39.2 - - 39.2 100% Toyopakeh Strait (B) - 4.4 - 4.4 100% Lombok Strait (C) - - 292.8 292.8 100% AB 39.3 4.4 - 43.7 100% BC - 4.4 266.6 270.9 91% AC 39.1 - 266.9 306.0 92% ABC 39.3 4.4 267.1 310.8 92% B =0.4 Badung Strait (A) 231.6 - - 231.6 100% Toyopakeh Strait (B) - 21.8 - 21.8 100% Lombok Strait (C) - - 1,834.7 1,834.7 100% AB 252.3 25.0 - 277.3 109% BC - 22.7 1,757.7 1,780.4 96% AC 245.5 - 1,771.9 2,017.4 98% ABC 252.0 24.6 1,777.1 2,053.7 98% ALKA #4 Online Sharing Session: Introduction to Ocean Energy Flow field changes A A B C B Flow field changes for turbines Flow field changes for turbines installed in all straits, Nusa Penida installed only in sites A and B (A), Toyopakeh (B) and Lombok (C). ALKA #4 Online Sharing Session: Introduction to Ocean Energy Flow field changes ALKA #4 Online Sharing Session: Introduction to Ocean Energy Outline Introduction to the tidal turbine technology Basic principle of tidal energy extraction Potential Sites in Indonesia Sites-sites interaction Indonesian Case 1: Lombok Strait Indonesian Case 2: Larantuka Strait References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Source: Palmerah Tidal Bridge-Technical Feasibility Report ALKA #4 Online Sharing Session: Introduction to Ocean Energy The Turbines Source: Palmerah Tidal Bridge-Technical Feasibility Report ALKA #4 Online Sharing Session: Introduction to Ocean Energy Larantuka Bridge Plan 08 o 17' 30" S Average Kinetic Power <0.50 kW/m2 1.00 kW/m2 08 o 20' 00" S 1.50 kW/m2 2.50 kW/m2 >5.00 kW/m2 08 o 22' 30" S 123 o 00' 00" E 123 o 05' 00" E Firdaus, A.