Introduction to Ocean Renewable Energy Tidal turbine

Ahmad Mukhlis Firdaus Dphil Candidate in Marine Renewable Energy, University of Oxford Pengajar di Prodi Teknik Kelautan, ITB

Studium Generale ITERA November 16th, 2020 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites in  Sites-sites interaction  Indonesian Case 1:  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites in Indonesia  Sites-sites interaction  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Tidal Phenomenon ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Tidal Barrage

Single mode operation

Dual mode operation

La Rance Tidal Barrage, France

Swansea Tidal Lagoon, UK (concept) ALKA #4 Online Sharing Session: Introduction to Ocean Energy Device Concept

Cross flow turbine Axial flow turbine (Oxford) Axial flow turbine open hydro

Transverse axis turbine (Kepler Other type; tidal sail Cross flow turbine (ITB) Turbine –Oxford) ALKA #4 Online Sharing Session: Introduction to Ocean Energy Field Test of Turbine ALKA #4 Online Sharing Session: Introduction to Ocean Energy ALKA #4 Online Sharing Session: Introduction to Ocean Energy ALKA #4 Online Sharing Session: Introduction to Ocean Energy Field Testing (Suramadu Bridge) ALKA #4 Online Sharing Session: Introduction to Ocean Energy Field Testing ALKA #4 Online Sharing Session: Introduction to Ocean Energy Major player and turbine scale

Simec Atlantis Sabella

Tocardo Hammerfest Andrytz Hydro ALKA #4 Online Sharing Session: Introduction to Ocean Energy Major player and turbine scale

Orbital Schottel ALKA #4 Online Sharing Session: Introduction to Ocean Energy Turbine Parts ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites in Indonesia  Sites-sites interaction  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy How do we calculate the Power Production?

Undisturbed kinetic flux

Black and Veatch 2005 uses significant impact factor (SIF)

1 3 Where푷 = P 흆풖is extracted∞ 푨풕 휼power,풕휼품풆풏 is free stream tidal current velocity, At is the frontal area of the turbine,  2  generator efficiency. t is turbine efficiency and ugen∞

This illustration shows the kinetic flux Illustration using undisturbed kinetic flux is problematic when we have many turbine in the field

Illustration of the flow field when the turbine is installed ALKA #4 Online Sharing Session: Introduction to Ocean Energy Power extraction by the turbine(s)

The maximum extractable power from the turbines (Lanchester-Betz Limit)

How do we change α4 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Power Coefficient and Thrust Coefficient

Thrust Coefficient Pmax at Pmax Betz Limit = 16/27

CP=0.5 or 84% Pmax CT only 67% of Thrust at Pmax ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Turbine in a Channel (Garrett and Cummins 2005) Turbine Head difference resistance

Bed Friction Term Turbine resistance

maximum average power

Bed Friction Term ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Turbine in a Channel (Garrett and Cummins 2007)

Introducing Blockage ratio Turbine Swept Area B= Turbine Swept Area Channel Cross Section Area ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Turbine in a channel CP an CT curve on turbine in a channel (Garret and Cummins 2007)

B=0.4

B=0.4 B=0.1

Betz Limit = 16/27 B=0.1

It shows for tidal turbines could achieve higher performance than Betz Limit

It means if we have B=1, the Pmax goes up to infinity 16 −2 3 푃푚푎푥 = 1 − 퐵 휌푢′ 퐴푑 27 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Considering water surface deformation (Houlsby et. al 2008) ALKA #4 Online Sharing Session: Introduction to Ocean Energy

CP and CT if Froude number is considered in the calculation C based on Houlsby et. al CP based on Houlsby et. al T 2008 2008

C based on Garrett P C based on Garrett and Cummins 2008 T B= 0.4 and Cummins 2007 B= 0.4

B= 0.1 B= 0.1 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Power Capping and Thrust Capping

Power Capping

Thrust Capping ALKA #4 Online Sharing Session: Introduction to Ocean Energy Capacity Factor

Cut Out Mean Velocity

Average _ Power(After _ Capping) CF  PowerCut _ Out Pcap CF  ave Pcap ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites  Sites-sites interaction  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  Regional Impact ALKA #4 Online Sharing Session: Introduction to Ocean Energy Identified Potential Sites, Based on ASELI 2012

1.Riau Strait 10. Mansuar Strait

2. 7. Larantuka Strait 6. Molo Strait 9. Pantar Strait 3.Toyopakeh Strait 8. Boleng Strait 4. Lombok Strait 5. ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Medan Jakarta Surabaya

Consist of 17,480 islands 70 % of territory is Ocean Indonesia ALKA #4 Online Sharing Session: Introduction to Ocean Energy

NOAA Nightlight Map of Indonesia

Papua Sumatra

Java ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Types of Tide

AK  AO F  1 1 AM 2  AS2 Formzhal number F ≤ 0.25 = Semidiurnal 0.25 < F ≤ 1 = Mixed diurnal, mainly semidiurnal 1 < F ≤ 3 = Mixed diurnal, mainly diurnal F > 3 = Diurnal ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites in Indonesia  Sites-sites interaction  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Draper, S., Adcock, T.A.A., Borthwick, A.G.L., Houlsby, G. T. (2014) “ Estimate of the tidal stream power resource of the Pentland Firth” Renewable Energy 63 (2014) 650-657 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Coles, D.S., Blunden, L.S., Bahaj, A.S. (2017) “Assessment of the energy extraction potential at tidal sites around the Channel Islands”. Energy 124, 171-186 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites in Indonesia  Sites-sites interaction  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Identified Potential Sites, Based on ASELI 2012

1.Riau Strait 10. Mansuar Strait

2.Sunda Strait 7. Larantuka Strait 6. Molo Strait 9. Pantar Strait 3.Toyopakeh Strait 8. Boleng Strait 4. Lombok Strait 5. Alas Strait ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites in Indonesia  Sites-sites interaction  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy Lombok Strait Tidal Energy ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Potential locations based on the average kinetic power

Average Kinetic Power 08 o 30' S <0.25 kW/m2

0.50 kW/m2 08 o 40' S

1.00 kW/m2

2 08 o 50' S 1.50 kW/m

>2.00 kW/m2 115o 10' E 115o 20' E 115o 30' E 115o 40' E 115o 50' E 116o 00' E

= kinetic power (W/m2), = seawater density ( ) 1 3 퐸 = velocity (m/s) 퐸 = 휌푣 3 2 휌 1,025 kg/m 푣 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Example Power extraction at A. Badung Straits

Power variation with wake coefficient ALKA #4 Online Sharing Session: Introduction to Ocean Energy

The available power for the different scenarios Lombok Straits

Badung Toyopakeh Lombok Total Strait Strait Strait Blockage Fencelength (m) 13,894 994 25,009 Ratio Power Power Power Power fraction Location (MW) (MW) (MW) (MW) B =0.1 Badung Strait (A) 39.2 - - 39.2 100% Toyopakeh Strait (B) - 4.4 - 4.4 100% Lombok Strait (C) - - 292.8 292.8 100% AB 39.3 4.4 - 43.7 100% BC - 4.4 266.6 270.9 91% AC 39.1 - 266.9 306.0 92% ABC 39.3 4.4 267.1 310.8 92%

B =0.4 Badung Strait (A) 231.6 - - 231.6 100% Toyopakeh Strait (B) - 21.8 - 21.8 100% Lombok Strait (C) - - 1,834.7 1,834.7 100% AB 252.3 25.0 - 277.3 109% BC - 22.7 1,757.7 1,780.4 96% AC 245.5 - 1,771.9 2,017.4 98% ABC 252.0 24.6 1,777.1 2,053.7 98% ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Flow field changes

A A B C B

Flow field changes for turbines Flow field changes for turbines installed in all straits, Nusa Penida installed only in sites A and B (A), Toyopakeh (B) and Lombok (C). ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Flow field changes ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Potential Sites in Indonesia  Sites-sites interaction  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Source: Palmerah Tidal Bridge-Technical Feasibility Report ALKA #4 Online Sharing Session: Introduction to Ocean Energy

The Turbines

Source: Palmerah Tidal Bridge-Technical Feasibility Report ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Larantuka Bridge Plan

08 o 17' 30" S Average Kinetic Power <0.50 kW/m2

1.00 kW/m2 08 o 20' 00" S 1.50 kW/m2

2.50 kW/m2

>5.00 kW/m2 08 o 22' 30" S 123 o 00' 00" E 123 o 05' 00" E

Firdaus, A. M., Houlsby, G. T. and Adcock, T. A.A., 2019. Tidal resources in Larantuka Strait, Proceedings of the Institution of Civil Engineers - Energy 2020 173:2, 81-92 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Electricity production for low blockage ratio B=0.1

(a) Two months of available power in time series (b) First neap spring cycle of the available power (dashed line box in Fig. 4(a))

Firdaus, A. M., Houlsby, G. T. and Adcock, T. A.A., 2019. Tidal resources in Larantuka Strait, Proceedings of the Institution of Civil Engineers - Energy 2020 173:2, 81-92 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Tidal energy resources in Larantuka

Low blockage ratio (B=0.1) High blockage ratio (B=0.4)

Fence Length (m) 702.61665.61 665.16 507.80 663.79 Scheme A1A2A3A4A5 Total α4 Cross Section (m 16,480.4213,900.56 13,708.63 12,337.51 16,116.73 MWMWMWMWMWMW Scheme A1A2A3A4A5 Total A1 16.90 - - - - 16.90 0.49 MWMWMWMWMWMW α4 A2 -19.06 - - - 19.06 0.53 A1 3.56- - - - 3.56 0.36 A2 -4.67 - - - 4.67 0.38 A3 -- 19.32 - - 19.32 0.56 A3 -- 4.96 - - 4.96 0.38 A4 -- - 22.52 - 22.52 0.60 A4 -- - 5.40 - 5.40 0.38 A5 -- - - 16.12 16.12 0.50 A5 -- - - 3.87 3.87 0.38 A1A210.39 14.71 - - - 25.10 0.60 A1A23.04 4.42 - - - 7.46 0.40 A2A3- 12.13 14.17 - - 26.30 0.60 A2A3- 4.13 4.52 - - 8.64 0.41 A2A4- 13.11 - 17.96 - 31.07 0.60 A2A4- 4.20 - 5.04 - 9.25 0.40 A2A5- 4.43 - - 3.63 8.06 0.40 A2A5- 14.07 - - 11.26 25.33 0.60 A1A2A3A42.52 3.63 3.97 4.43 - 14.55 0.44 A1A2A3A45.28 7.43 8.58 10.20 - 31.49 0.60 A1A2A3A4A52.41 3.48 3.82 4.27 2.85 16.84 0.45 A1A2A3A4A54.50 6.32 7.29 8.65 5.40 32.16 0.60

Firdaus, A. M., Houlsby, G. T. and Adcock, T. A.A., 2019. Tidal resources in Larantuka Strait, Proceedings of the Institution of Civil Engineers - Energy 2020 173:2, 81-92 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Firdaus, A. M., Houlsby, G. T. and Adcock, T. A.A., 2019. Tidal resources in Larantuka Strait, Proceedings of the Institution of Civil Engineers - Energy 2020 173:2, 81-92 ALKA #4 Online Sharing Session: Introduction to Ocean Energy Tidal fences impact to regional flow field Larantuka case

Firdaus, A. M., Houlsby, G. T. and Adcock, T. A.A., 2019. Tidal resources in Larantuka Strait, Proceedings of the Institution of Civil Engineers - Energy 2020 173:2, 81-92 ALKA #4 Online Sharing Session: Introduction to Ocean Energy

Outline  Introduction to the tidal turbine technology  Basic principle of tidal energy extraction  Uniqueness of Indonesia tidal  Sites-sites interaction  Potential Sites in Indonesia  Indonesian Case 1: Lombok Strait  Indonesian Case 2: Larantuka Strait  References ALKA #4 Online Sharing Session: Introduction to Ocean Energy References

• Betz, A. (1920) Das Maximum der Theoretisch Moglichen Ausnutzung des Windes durch Wind- motoren. Zeitschrift für das gesamte Turbinenwesen, 26: 307-309. • Draper, S., Borthwick, A.G.L. and Houlsby, G.T. (2013) Energy potential of a tidal fence deployed near a coastal headland. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1985): 20120176. • Firdaus, A. M., Houlsby, G. T. and Adcock, T. A.A., 2019. Tidal resources in Larantuka Strait, Proceedings of the Institution of Civil Engineers - Energy 2020 173:2, 81-92 • Firdaus, A.M., Houlsby, G.T., and Adcock, T.A.A., (2019), Estimating Tidal Turbine Resource in Lombok Straits, Indonesia. Proceedings of 13th European Wave and Tidal Energy Conference, Naples, Italy September 1st – September 6th • Firdaus, A. M., and Houlsby, G.T., 2018. Tidal Asymmetry and its Effect on Capacity Factor of Tidal Resource. Oxford Tidal Energy Workshop, March 2018. • Firdaus, A. M., Houlsby, G. T., and Adcock, T. A. A (2017), Opportunities for Tidal Stream Energy in Indonesian Waters. European Wave and Tidal Energy Conference (EWTEC) 2017 • Houlsby, G.T., Draper, S., and Oldfield, M.L.G. (2008) Application of Linear Momentum Actuator Disc Theory to Open Channel Flow, Technical Report, Department of Engineering Science, University of Oxford, U.K • Lanchester, F. (1915) A contribution to the theory of propulsion and the screw propeller. Transactions of the Institute of Naval Architects, 57: 98-116. • Technical Note Peta Potensi Energi Laut Kementrian Energi dan Sumberdaya Mineral (ESDM)- Asosiasi Energi laut Indonesia (ASELI), 2014 • Nugorho D. Y., Firdaus A. M., Krisnaldi Idris, Sofyan Muji Permana, Daniel Fitzgerald, Abdul Qohar hadzami, 2013. Drag Release ARC Blade to increase efficiency in vertical axis Marnine Current Turbine. Jurnal Teknik Kelautan, Vol. 8 No. 1 April 2013, ISSN 1907-767X.