Expedition Report Transport Indonesian Seas, Upwelling, and Mixing Physics (TRIUMPH) 2019
Expedition Report Transport Indonesian seas, Upwelling, and Mixing Physics (TRIUMPH) 2019 Leg 1 & Leg 2 (37 Days) November 18th – December 24th 2019 Prepared by: Center of Deep-Sea Research, Indonesia Institute of Science LIPI (CDSR LIPI), Indonesia The First Institute of Oceanography, MNR (FIO MNR), China University of Maryland (UMD), USA Version 1, December, 24th 2019 EXPEDITION REPORT OF THE PROJECT: “TRansport Indonesian seas, Upwelling, and Mixing PHysics (TRIUMPH) 2019” Executive Summary The Indonesian seas provide a low-latitude pathway for the transfer of warm, relatively low salinity Pacific waters into the Indian Ocean, known as the Indonesia Through-flow (ITF) which has impacts on the basin budgets of the Pacific and the Indian Oceans. Indonesian seas host the strongest equatorial convective center that drives the global tropical circulation (Walker Circulation), which affects Madden-Julian Oscillation (MJO), Asian-Australian monsoon and interacts with El Niño-Southern Oscillation (ENSO). Indonesia Through-Flow (ITF), flow through several waters in Indonesia seas like Seram Sea, Banda Sea, Makassar Strait, Lombok Strait and Eastern Indian Ocean which classified as deep ocean. The Makassar Strait, Lifamatola Strait / Seram Sea, and Karimata Strait are three main inflow passages and Lombok, Alas, Sape Straits, and Timor passage are the exit pathways of the ITF which transmit water masses from the Pacific Ocean to the Indian Ocean and also transform the water mass by mixing and intensive internal-wave generation. The deep ocean is a dynamic, yet poorly explored system that provides critical climate regulation, host a wealth of hydrocarbon, mineral, and genetic resources, and represent a vast repository for biodiversity.
[Show full text]