The Seasonal Variability of Sea Surface Temperature and Chlorophyll-A Concentration in the South of Makassar Strait
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lombok Island, Sumbawa Island, and Samalas Volcano
ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part. Almost 800 years after the eruption, the geomorphological impact of this eruption on the island of Lombok remains unknown, whereas its overall climatic and societal consequences are now better understood. A combination of stratigraphic information, present-day topography, geophysical measurement with two-dimensional resistivity profiling technique, local written sources, as well as laboratory and computational analysis, were used to obtain detailed information concerning geomorphic impacts of the 1257 CE eruption of Samalas volcano on the coastal area along the Alas Strait in West Nusa Tenggara Province, Indonesia. This study provides new information related to the geomorphic impact of a major eruption volcanic in coastal areas, in this case, on the eastern part of Lombok and the western coast of Sumbawa. In the first place, the study result shows that since the 1257 CE eruption, the landscape on the eastern part of Lombok is still evolved until the present time. -
CSIRO Report Template
OCEANS AND ATMOSPHERE Bioregions of the Indian Oceans Piers K Dunstan, Donna Hayes, Skipton N C Woolley, Lamona Bernawis, Scott D Foster, Emmanuel Chassot, Eugenie Khani, Rowana Walton , Laura Blamey, Uvicka Bristol, Sean Porter, Arul Ananthan Kanapatipillai, Natasha Karenyi, Babin Ingole, Widodo Pranowo, RA Sreepada, Mohamed Shimal, Natalie Bodin, Shihan Mohamed, Will White, Peter Last, Nic Bax, Mat Vanderklift, Rudy Kloser, Rudy Kloser, Leo Dutra and Brett Molony Bioregions of the Indian Oceans | i Citation Dunstan et al. 2020. Bioregions of the Indian Ocean. CSIRO, Australia. Copyright © Commonwealth Scientific and Industrial Research Organisation 20XX. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important disclaimer CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. CSIRO is committed to providing web accessible content wherever possible. -
Summary: This Manuscript Contributes a Reconstruction of Paleo Sea-Level Position at 24 Points in Time Throughout the Mid to Late Holocene
cp-2019-63 Review Feb. 2020 Late Holocene (0-6ka) sea-level changes in the Makassar Strait, Indonesia (Bender et al.) Summary: This manuscript contributes a reconstruction of paleo sea-level position at 24 points in time throughout the mid to late Holocene. Authors interpret the new sea-level index points from the age, elevation, and paleo-water depth interpretation of fossil fringing reefs across SE Sulawesi near Makassar, Indonesia. In contrast to other coral-based reconstructions of past sea- level changes, but in keeping with other Holocene reconstructions from the SW Pacific (e.g. Hallmann et al., 2018), authors evaluate fossil reef growth in a fascinating morphology – microatolls – highlighting the potential for reconstructing past sea-level in great detail using this approach. Additionally, authors combine new data with previous data from two other islands near Makassar (recalculated results of three previous studies to directly compare them), which demonstrate higher-than-present relative (local) sea-level (RSL) during the late Holocene. Results and methods described here underscore the importance of evaluating fossil microatolls in the context of nearby living microatolls. Authors directly compare the elevations of fossil microatolls with their modern counterparts to evaluate the relationship between highest living coral (HLC) and the tidal cycle. Similar to previous works, this study finds that this relationship varies greatly on small spatial scales. To reconstruct paleo sea-level from fossil microatoll elevation requires the assumption that the relationship between HLC and the tidal cycle at that site has remained the same since the microatoll formed. Wisely, this study does not attempt to “connect the dots” and provide an RSL curve, but instead provides sea-level index points that can be compared with other Holocene RSL reconstructions and RSL predictions from GIA modeling. -
1 Investigation of the Energy Potential from Tidal Stream
INVESTIGATION OF THE ENERGY POTENTIAL FROM TIDAL STREAM CURRENTS IN INDONESIA Kadir Orhan1, Roberto Mayerle1, Rangaswami Narayanan1 and Wahyu Widodo Pandoe2 In this paper, an advanced methodology developed for the assessment of tidal stream resources is applied to several straits between Indian Ocean and inner Indonesian seas. Due to the high current velocities up to 3-4 m/s, the straits are particularly promising for the efficient generation of electric power. Tidal stream power potentials are evaluated on the basis of calibrated and validated high-resolution, three-dimensional numerical models. It was found that the straits under investigation have tremendous potential for the development of renewable energy production. Suitable locations for the installation of the turbines are identified in all the straits, and sites have been ranked based on the level of power density. Maximum power densities are observed in the Bali Strait, exceeding around 10kw/m2. Horizontal axis tidal turbines with a cut-in velocity of 1m/s are considered in the estimations. The highest total extractable power resulted equal to about 1,260MW in the Strait of Alas. Preliminary assessments showed that the power production at the straits under investigation is likely to exceed previous predictions reaching around 5,000MW. Keywords: renewable energy; tidal stream currents; numerical model; Indonesia INTRODUCTION The global energy supply is facing severe challenges in terms of long-term sustainability, fossil fuel reserve exhaustion, global warming and other energy related environmental concerns, geopolitical and military conflicts surrounding oil rich countries, and secure supply of energy. Renewable energy sources such as solar, wind, wave and tidal energy are capable of meeting the present and future energy demands with ease without inflicting any considerable damage to global ecosystem (Asif et al. -
Tropical Cyclone Cempaka 'Visiting' Indonesia Right After Facing Bali's
Tropical Cyclone Cempaka ‘Visiting’ Indonesia Right after facing Bali's Mount Agung eruption, Indonesia encounters another natural event when tropical cyclone ‘Cempaka’ hits Indonesia on 27th November 2017. Jakarta- Tropical Cyclone Warning Center (TCWC) Jakarta detected a tropical cyclone developing very close to the Southern Coast of Java. The tropical cyclone named ‘Cempaka’, has made BMKG to warn the public to prepare for extreme weather impacts for the next three days. BMKG inform the public that there are some extreme conditions causes by Cempaka such as heavy reainfall, strong winds and thunderstorms that will hit some areas of Indonesia. These heavy rains with strong winds up to 30 knots will hit Jakarta, West Java, Central Java Tengah, Yogyakarta, East Java, Kangean Island, Bali, Nusa Tenggara, and the Southern part of Java Sea. TCWC Jakarta predicts that Cempaka will remain for the next two to three days. TCWC also sending alert to public about high wave potential cause by this cyclone that up to 2.5 - 6 meters in, South Coast of East Java, the Eastern part of Java Sea, Bali Waters, Bali Strait, Alas Strait, Southern part of Lombok Strait, and Sumbawa Sea. BMKG issued warning to the public and advised people to remain calm but be aware about the following impacts that can be caused by the cyclone, such as floods, landslides, flash floods, puddles, strong winds, fallen trees, and slippery roads. Flight activities at several airports in Java may also be affected due to heavy rain and strong winds. Due to possible high sea waves, people and passing vessels are encouraged to remain on alert, especially traditional fishermen operating in the Southern Waters of Java. -
Bay of Bengal: from Monsoons to Mixing Ocethe Officiala Magazinen Ogof the Oceanographyra Societyphy
The Oceanography Society Non Profit Org. THE OFFICIAL MAGAZINE OF THE OCEANOGRAPHY SOCIETY P.O. Box 1931 U.S. Postage Rockville, MD 20849-1931 USA PAID Washington, DC ADDRESS SERVICE REQUESTED Permit No. 251 OceVOL.29, NO.2,a JUNEn 2016 ography Register now to attend this conference for international scientific profes- sionals and students. Virtually every facet of ocean color remote sensing and optical oceanography will be presented, including basic research, technological development, environmental management, and policy. October 23–28, 2016 | Victoria, BC, Canada Registration is open! The oral presentation schedule is available on the conference website Submission of abstracts for poster presentation remains open through summer 2016. www.oceanopticsconference.org Bay of Bengal: From Monsoons to Mixing OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Susanto, R.D., Z. Wei, T.R. Adi, Q. Zheng, G. Fang, B. Fan, A. Supangat, T. Agustiadi, S. Li, M. Trenggono, and A. Setiawan. 2016. Oceanography surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography 29(2):264–272, http://dx.doi.org/10.5670/oceanog.2016.31. DOI http://dx.doi.org/10.5670/oceanog.2016.31 COPYRIGHT This article has been published in Oceanography, Volume 29, Number 2, a quarterly journal of The Oceanography Society. Copyright 2016 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. -
The Malay Archipelago
BOOKS & ARTS COMMENT The Malay Archipelago: the land of the orang-utan, and the bird of paradise; a IN RETROSPECT narrative of travel, with studies of man and nature ALFRED RUSSEL WALLACE The Malay Macmillan/Harper Brothers: first published 1869. lfred Russel Wallace was arguably the greatest field biologist of the nine- Archipelago teenth century. He played a leading Apart in the founding of both evolutionary theory and biogeography (see page 162). David Quammen re-enters the ‘Milky Way of He was also, at times, a fine writer. The best land masses’ evoked by Alfred Russel Wallace’s of his literary side is on show in his 1869 classic, The Malay Archipelago, a wondrous masterpiece of biogeography. book of travel and adventure that wears its deeper significance lightly. The Malay Archipelago is the vast chain of islands stretching eastward from Sumatra for more than 6,000 kilometres. Most of it now falls within the sovereignties of Malaysia and Indonesia. In Wallace’s time, it was a world apart, a great Milky Way of land masses and seas and straits, little explored by Europeans, sparsely populated by peoples of diverse cul- tures, and harbouring countless species of unknown plant and animal in dense tropical forests. Some parts, such as the Aru group “Wallace paid of islands, just off the his expenses coast of New Guinea, by selling ERNST MAYR LIB., MUS. COMPARATIVE ZOOLOGY, HARVARD UNIV. HARVARD ZOOLOGY, LIB., MUS. COMPARATIVE MAYR ERNST were almost legend- specimens. So ary for their remote- he collected ness and biological series, not just riches. Wallace’s jour- samples.” neys throughout this region, sometimes by mail packet ship, some- times in a trading vessel or a small outrigger canoe, were driven by a purpose: to collect animal specimens that might help to answer a scientific question. -
VIII-16 Sulu-Celebes Sea: LME #37
VIII East Asian Seas 309 VIII-16 Sulu-Celebes Sea: LME #37 S. Heileman The Sulu-Celebes Sea LME is comprised of the Sulu and Celebes Seas, which are separated from each other by a deep trough and a chain of islands known as the Sulu Archipelago. The LME is bounded by northern Borneo (Malaysia), the southwest coast of the Philippines and Sulawesi Island (northern coast of Indonesia), but most of the LME falls within the archipelagic waters of either the Philippines or Indonesia. The LME covers an area of about one million km2, of which 1.03% is protected, and contains 6.17% and 0.22% of the world’s coral reefs and sea mounts, respectively (Sea Around Us 2007). A complex oceanography results from the Celebes’ strong currents, deep sea trenches, seamounts and active volcanic islands. The LME’s tropical climate is governed by the monsoon regime. During the southwest monsoon months, the northern and central parts of the region are affected by typhoons, which bring intense rains and destructive winds to coastal areas. There are more than 300 major watersheds and 14 major estuaries in the region. A report pertaining to this LME is UNEP (2005). I. Productivity The Sulu-Celebes Sea LME is considered a Class II, moderate productivity ecosystem (150-300 gCm-2yr-1). The tropical climate, warm waters, ocean currents and upwellings make this LME one of the world’s most biologically diverse marine environments. Located near the confluence of three major biogeographic zones and within the Indo- West Pacific centre of biodiversity, the region supports mega-diversity (Roberts et al. -
Origin of Marginal Basins of the NW Pacific and Their Plate Tectonic
Earth-Science Reviews 130 (2014) 154–196 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Origin of marginal basins of the NW Pacificandtheirplate tectonic reconstructions Junyuan Xu a,⁎, Zvi Ben-Avraham b,TomKeltyc, Ho-Shing Yu d a Department of Petroleum Geology, China University of Geosciences, Wuhan, 430074, China. b Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv 69978, Israel c Department of Geological Sciences, California State University, Long Beach, CA 90840, USA d Institute of Oceanography, National Taiwan University, Taipei, Taiwan article info abstract Article history: Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, Received 4 March 2013 South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry Accepted 3 October 2013 of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also com- Available online 16 October 2013 prise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional Keywords: “pop-up” structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) Marginal basins of the NW Pacific Dextral pull-apart rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their Sinistral transpressional pop-up sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be Uplift of Tibetan Plateau explained by dextral pull-apart or transtension. -
The Makassar Strait Tsunamigenic Region, Indonesia
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226929573 The Makassar Strait Tsunamigenic Region, Indonesia Article in Natural Hazards · November 2001 DOI: 10.1023/A:1012297413280 CITATIONS READS 16 274 3 authors, including: Willem Pieter de Lange The University of Waikato 238 PUBLICATIONS 904 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Identification of active faults in the Hamilton Basin View project Impacts of coastal dredging View project All content following this page was uploaded by Willem Pieter de Lange on 29 May 2017. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. 1 Case Study I: Tsunami Hazards in the Indian Ocean The eastern Indian Ocean basin is a region of high earthquake and volcanic activity, so it should come as no surprise that tsunamis pose a threat to the Indian Ocean basin. (For example, the 27 August 1883 eruptions of Krakatoa produced a series of tsunamis that killed over 36,000 people in Indonesia.) However, most federal governments and international regarded the overall tsunami threat in the Indian Ocean as minor – prior to the 26 December 2004 event. Today we discuss the roots of this complacency and explore how it might be avoided as a consequence of the Mission 2009 design. Required Readings Tsunami Information, a basic web site, produced by the Australian Bureau of Meteorology, that provides background information on the phenomenon and, specifically, the 26 December 2004 event: http://www.bom.gov.au/info/tsunami/tsunami_info.shtml#physics Prasetya, G. -
Sepia Bandensis Adam, 1939 Fig
72 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 Sepia bandensis Adam, 1939 Fig. 122; Plate IV, 21–22 Sepia bandensis Adam, 1939b. Bulletin du Musée royal d’Histoire naturelle de Belgique, 15(18): 1 [type locality: Indonesia: Banda Sea, Banda Neira]. Frequent Synonyms: Sepia baxteri (Iredale, 1940) and Sepia bartletti (Iredale, 1954) are possible synonyms. Misidentifications: None. FAO Names: En – Stumpy cuttlefish; Fr – Seiche trapue; Sp – Sepia achaparrada. Diagnostic Features: Club with 5 suckers in transverse rows, central 3 suckers enlarged. Swimming keel extends beyond base of club. Dorsal and ventral protective membranes joined at base of club, separated from stalk by a membrane. Cuttlebone outline broad, oval; bone bluntly rounded anteriorly and posteriorly; dorsal surface evenly convex; calcified with reticulate sculpture; dorsal median and lateral ribs absent. Spine reduced to tiny, blunt tubercle. Sulcus shallow, narrow, extends along striated zone only. Anterior striae are inverted U-shape. Inner cone limbs are narrow anteriorly, broaden posteriorly, slightly convex; outer cone narrow anteriorly, broadens posteriorly. Dorsal mantle has longitudinal row of ridge-like papillae along each side, adjacent to base of each fin and scattered short ridges dorsal to cuttlebone dorsal view ventral view (corresponding to whitish bars). Head tentacular club cuttlebone and arms with short, scattered, bar-like (illustrations: K. Hollis) papillae positioned dorsally and laterally. Colour: Light brown, or Fig. 122 Sepia bandensis greenish yellow-brown when fresh, and with whitish mottle. Head with scattered white spots. Dorsal mantle has white blotches concentrated into short, longitudinal bars. It often shows a pair of brown patches on the posterior end of the mantle, often accompanied by white patches over the eye orbits. -
Structural Description of Adang Fault, Makasar Strait, Indonesia
IPA15-G-157 PROCEEDINGS, IDONESIAN PETROLEUM ASSOCIATION Thirty-Ninth Annual Convention & Exhibition, May 2015 STRUCTURAL DESCRIPTION OF ADANG FAULT, MAKASSAR STRAIT, INDONESIA Hesekiel Bernando Nainggolan* RM Iman Argakoesoemah* Indra Wahyudi *,** Andry Hidayat*,*** Muhammad Fikry Shahab* ABSTRACT the Adang Fault along the northern flank of the Paternoster Platform in the southern end of North The, presence of Adang Fault is critical to the Makassar Basin, (Figure 1). The 3D seismic cube development of overall Neogene depositions in the available just to the east of the fault is also interpreted southern part of North Makassar Basin. It is believed to support the presence of the fault. Some relatively that the fault has been one of the key players to many small size of the fault splays are also interpreted to deepwater depositional sequences toward the north- have been developed as the results of the Adang northeast. Hence, some of the provenances of Fault activities in the region. deepwaters have been interpreted to be derived from Paternoster Platform where Adang Fault located at The quality of 2D seismic lines across the Adang the northern border separating the platform from the Fault is sparse and relatively poor. This has impacted basin to the northeast. to the difficulty of interpretation to be precise. Hence, the interpretation is heavily based on the In subsurface, Adang Fault is descriptively defined subsidiary fault splays to reconstruct the presence using seismic lines partially crossing Paternoster and movement of the primary fault. Platform. It is a fault zone showing a group of series of relatively smaller branching faults in a very There are not many published papers discussed the similar strike towards northwest-southeast but have Adang Fault in detail available.