CSIRO Report Template

Total Page:16

File Type:pdf, Size:1020Kb

CSIRO Report Template OCEANS AND ATMOSPHERE Bioregions of the Indian Oceans Piers K Dunstan, Donna Hayes, Skipton N C Woolley, Lamona Bernawis, Scott D Foster, Emmanuel Chassot, Eugenie Khani, Rowana Walton , Laura Blamey, Uvicka Bristol, Sean Porter, Arul Ananthan Kanapatipillai, Natasha Karenyi, Babin Ingole, Widodo Pranowo, RA Sreepada, Mohamed Shimal, Natalie Bodin, Shihan Mohamed, Will White, Peter Last, Nic Bax, Mat Vanderklift, Rudy Kloser, Rudy Kloser, Leo Dutra and Brett Molony Bioregions of the Indian Oceans | i Citation Dunstan et al. 2020. Bioregions of the Indian Ocean. CSIRO, Australia. Copyright © Commonwealth Scientific and Industrial Research Organisation 20XX. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. Important disclaimer CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact [email protected]. ii | Bioregions of the Indian Oceans Contents Acknowledgments ........................................................................................................................... iv Bioregions of the Indian Ocean 6 1 Pelagic Bioregions ............................................................................................................... 7 1.1 Western Tropical Indian Ocean ............................................................................. 9 1.2 Northern Central Indian Ocean ........................................................................... 12 1.3 Mozambique Channel Region ............................................................................. 19 1.4 Indian Ocean Subtropical Gyre Region ................................................................ 22 1.5 Western Australian Coastal Region ..................................................................... 32 1.6 Indian Ocean Subtropical Convergence Region .................................................. 33 1.7 Indian Ocean Sub Antarctic Region ..................................................................... 34 2 Benthic Bioregions ............................................................................................................ 36 2.1 Southern Indian Ocean ........................................................................................ 38 2.2 Subpolar Indian Ocean ........................................................................................ 59 2.3 Eastern Indian Ocean ........................................................................................... 64 2.4 Western Indian Ocean ....................................................................................... 110 Appendix 1: Statistical Bioregions ............................................................................................... 193 Appendix 1: Qualitative Models ................................................................................................. 204 References 206 Bioregions of the Indian Oceans | iii Acknowledgments This work was carried out as part of the Global Ocean Biodiversity Initiative (GOBI), which is supported by the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation Nuclear Safety (BMU) supports this initiative on the basis of a decision adopted by the German Bundestag. iv | Bioregions of the Indian Oceans Bioregions of the Indian Ocean This project has developed sub-regional bioregionalisations for the Indian Ocean. This combines approaches CSIRO developed in Australia, used in the Bay of Bengal (in collaboration with BOBLME) with similar approaches that have been used throughout the Indian and Pacific Oceans to derive a single combined bioregionalisation. The project has developed an expert derived bioregionalisation in the Indian and Pacific Oceans through expert workshops and novel statistical analysis of physical and biological data. The project draws on experience in CSIRO, GOBI partners, and other collaborators, using approaches currently being trialled in Australia and around the Antarctic margins, and has collaborated with regional and national stakeholders to ensure a consistent approach. This Appendix contains the descriptions of each marine region and each province with the region. Where sufficient information exists it includes a description, a qualitative ecosystem model of the system and the pressures on it and a scenario analysis that explores the way the ecosystem changes with different pressures. 6 | Bioregions of the Indian Oceans 1 Pelagic Bioregions The distribution of the Large Marine Areas – the highest level of classification for the Indian Ocean is shown below. Map 1 Indian Ocean Epipelagic Regions The distribution of the provinces within the Large Regions is shown below. More detailed descriptions of each of the provinces to given below. Bioregions of the Indian Oceans | 7 Map 2 Indian Ocean Epipelagic Provinces. 8 | Bioregions of the Indian Oceans 1.1 Western Tropical Indian Ocean One of the most biologically productive ecoregions of the world oceans characterized by a dominant seasonal cycle manifested as a unique western-boundary upwelling system supporting major pelagic fisheries. The region is bounded to the north by the northern limit of the North Equatorial Current (NEC) and the Southwest Monsoon Current (SMC), to the west by the east African coasts of Somalia and Kenya, in the south west by the Seychelles-Chagos thermocline ridge (SCTR), in the central and east South by the northern limit of South Equatorial Current (SEC) tipping towards 18°S of Australian Coast and to the east by the thermo-haline front of the western limit of the Indo-Pacific warm pool. Main characteristics - Strong seasonal upwelling of cold (22-26°C) and nutrient-rich waters (nitrate ~ 10-15 mmol), high Salinity (35.5-36 psu) linked to Arabian Sea high salinity water mass and high chlorophyll concentration (5-15 mg/mg3) - Enrichment of surface waters results in high primary and secondary production with increased abundance of calanoid copepods species and occurrence of high density of myctophyds in the mesopelagic region (200-1000 m deep) (Catul et al. 2011, Vipin et al. 2012) - Major fishing grounds for tropical tuna purse seine fisheries during July-Oct, medium-size pelagic fishes (e.g. horse-mackerel, small pelagics), and neritic tunas, and important grounds for skipjack fisheries in the Maldives. Bioregions of the Indian Oceans | 9 Figure 1: Qualitative model for the prominent ecosystem Western Tropical Indian Ocean and the associated pressures impact chart (PRESSURES :- PF – Pelagic Fisheries, Temp - Temperature ,; FUNCTIONAL GROUPS:- SQ – Squid, Pred – Predatory Fish, Tu – Turtle, WS – Whale Shark , BW – Blue Whale, ZP - Zooplankton, MSP – Medium Size Predator, UP – Upwelling, SB – Sea birds ) 10 | Bioregions of the Indian Oceans Figure 2: Ecosystem scenario responses to combinations of pressures. Red indicates a negative change and blue indicates a positive change. Labels are described above. Bioregions of the Indian Oceans | 11 1.2 Northern Central Indian Ocean The Central Eastern Tropical Indian Ocean region is influenced by the Indonesian Throughflow (ITF) and climate-mode Indian Ocean Dipole (IOD) described by strong inter-annual and seasonal signals that result in strong coastal upwellings and influence the productivity of the central and eastern equatorial Indian Ocean, supporting important pelagic fisheries. The region extends from southern Indian south to approximately 15 °Sand eastwards to the coasts of Indonesia and the core of the Indonesian Throughflow at approximately 115°E. Within this region are the Central Tropical and North eastern Indian Ocean Provinces. 1.2.1 Northern Central Indian Ocean Province Within the Central Tropical Indian Ocean there are two sub regions defined. The western portion is defined by the western limit of the Indo-Pacific warm pool to the west (68°-80°E) and the most western region of influence of IOD-ITF (from tip of Sumatra peninsula bounded by 90°E south around 12°S) to the east. This sub region is characterised by the Indo-Sri Lankan seasonal upwelling region during June-September (de Vos et al, 2014), high temperature (>30°C) all through the year except during upwelling season, and low salinity waters (34-34.4 psu) influenced by the low-salinity water from the Bay of Bengal. The region supports important fisheries along the coasts of Indian and Sri Lanka (e.g. mackerel; BOBLME 2015). 12 | Bioregions of the Indian Oceans Figure 3: Ecosystem components in the qualitative model are: Seabirds ( SB ), Micro Nekton ( MN ), Predatory Fish ( Pred ), Squid ( SQ ), Copepods ( COP ), Regenerated
Recommended publications
  • The Seasonal Variability of Sea Surface Temperature and Chlorophyll-A Concentration in the South of Makassar Strait
    Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 33 ( 2016 ) 583 – 599 The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring 2015, LISAT-FSEM 2015 The seasonal variability of sea surface temperature and chlorophyll-a concentration in the south of Makassar Strait Bisman Nababan*, Novilia Rosyadi, Djisman Manurung, Nyoman M. Natih, and Romdonul Hakim Department of Marine Science and Technology, Bogor Agricultural University, Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Indonesia Abstract The sea surface temperature (SST) and chlorophyll-a (Chl-a) variabilities in the south of Makassar Strait were mostly affected by monsoonal wind speed/directions and riverine freshwater inflows. The east-southeast (ESE) wind (May-October) played a major role in an upwelling formation in the region starting in the southern tip of the southern Sulawesi Island. Of the 17 years time period, the variability of the SST values ranged from 25.7°C (August 2004) - 30.89°C (March 2007). An upwelling initiation typically occurred in early May when ESE wind speed was at <5 m/s, a fully developed upwelling event usually occurred in June when ESE wind speed reached >5 m/s, whereas the largest upwelling event always occurred in August of each year. Upwelling event generally diminished in September and terminated in October. At the time of the maximum upwelling events (August), the formation of upwelling could be observed up to about 330 km toward the southwest of the southern tip of the Sulawesi island. Interannually, El Niño Southern Oscillation (ENSO) intensified the upwelling event during the east season through an intensification of the ESE wind speed.
    [Show full text]
  • Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO
    An Atlas of Oceanic Internal Solitary Waves (February 2004) Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Indonesian Seas • Bali Sea • Flores Sea • Molucca Sea • Banda Sea • Java Sea • Savu Sea • Cream Sea • Makassar Strait Overview The Indonesian Seas are the regional bodies of water in and around the Indonesian Archipelago. The seas extend between approximately 12o S to 3o N and 110o to 132oE (Figure 1). The region separates the Pacific and Indian Oceans. Figure 1. Bathymetry of the Indonesian Archipelago. [Smith and Sandwell, 1997] Observations Indonesian Archipelago is most extensive archipelago in the world with more than 15,000 islands. The shallow bathymetry and the strong tidal currents between the islands give rise to the generation of internal waves throughout the archipelago. As a result there are a very 453 An Atlas of Oceanic Internal Solitary Waves (February 2004) Indonesian Seas by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO large number of internal wave sources throughout the region. Since the Indonesian Seas boarder the equator, the stratification of the waters in this sea area does not change very much with season, and internal wave activity is expected to take place all year round. Table 2 shows the months of the year during which internal waves have been observed in the Bali, Molucca, Banda and Savu Seas Table 1 - Months when internal waves have been observed in the Bali Sea. (Numbers indicate unique dates in that month when waves have been noted) Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 12111 11323 Months when Internal Waves have been observed in the Molucca Sea.
    [Show full text]
  • Bay of Bengal: from Monsoons to Mixing Ocethe Officiala Magazinen Ogof the Oceanographyra Societyphy
    The Oceanography Society Non Profit Org. THE OFFICIAL MAGAZINE OF THE OCEANOGRAPHY SOCIETY P.O. Box 1931 U.S. Postage Rockville, MD 20849-1931 USA PAID Washington, DC ADDRESS SERVICE REQUESTED Permit No. 251 OceVOL.29, NO.2,a JUNEn 2016 ography Register now to attend this conference for international scientific profes- sionals and students. Virtually every facet of ocean color remote sensing and optical oceanography will be presented, including basic research, technological development, environmental management, and policy. October 23–28, 2016 | Victoria, BC, Canada Registration is open! The oral presentation schedule is available on the conference website Submission of abstracts for poster presentation remains open through summer 2016. www.oceanopticsconference.org Bay of Bengal: From Monsoons to Mixing OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Susanto, R.D., Z. Wei, T.R. Adi, Q. Zheng, G. Fang, B. Fan, A. Supangat, T. Agustiadi, S. Li, M. Trenggono, and A. Setiawan. 2016. Oceanography surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography 29(2):264–272, http://dx.doi.org/10.5670/oceanog.2016.31. DOI http://dx.doi.org/10.5670/oceanog.2016.31 COPYRIGHT This article has been published in Oceanography, Volume 29, Number 2, a quarterly journal of The Oceanography Society. Copyright 2016 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA.
    [Show full text]
  • The Malay Archipelago
    BOOKS & ARTS COMMENT The Malay Archipelago: the land of the orang-utan, and the bird of paradise; a IN RETROSPECT narrative of travel, with studies of man and nature ALFRED RUSSEL WALLACE The Malay Macmillan/Harper Brothers: first published 1869. lfred Russel Wallace was arguably the greatest field biologist of the nine- Archipelago teenth century. He played a leading Apart in the founding of both evolutionary theory and biogeography (see page 162). David Quammen re-enters the ‘Milky Way of He was also, at times, a fine writer. The best land masses’ evoked by Alfred Russel Wallace’s of his literary side is on show in his 1869 classic, The Malay Archipelago, a wondrous masterpiece of biogeography. book of travel and adventure that wears its deeper significance lightly. The Malay Archipelago is the vast chain of islands stretching eastward from Sumatra for more than 6,000 kilometres. Most of it now falls within the sovereignties of Malaysia and Indonesia. In Wallace’s time, it was a world apart, a great Milky Way of land masses and seas and straits, little explored by Europeans, sparsely populated by peoples of diverse cul- tures, and harbouring countless species of unknown plant and animal in dense tropical forests. Some parts, such as the Aru group “Wallace paid of islands, just off the his expenses coast of New Guinea, by selling ERNST MAYR LIB., MUS. COMPARATIVE ZOOLOGY, HARVARD UNIV. HARVARD ZOOLOGY, LIB., MUS. COMPARATIVE MAYR ERNST were almost legend- specimens. So ary for their remote- he collected ness and biological series, not just riches. Wallace’s jour- samples.” neys throughout this region, sometimes by mail packet ship, some- times in a trading vessel or a small outrigger canoe, were driven by a purpose: to collect animal specimens that might help to answer a scientific question.
    [Show full text]
  • Ocean Drilling Program Scientific Results Volume
    Weissel, J., Peirce, J., Taylor, E., Alt, J., et al., 1991 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 121 4. PLANKTONIC FORAMINIFER FAUNAL VARIATIONS IN THE NORTHEASTERN INDIAN OCEAN: A HIGH-RESOLUTION RECORD OF THE PAST 800,000 YEARS FROM SITE 7581 Min-Te Chen2 and John Farrell2 ABSTRACT We present a high-resolution (6 k.y. sample interval) record of planktonic foraminifer faunal variations for the past 800 k.y. from ODP Site 758 in the northeastern Indian Ocean. The record is examined within the context of a coarse fraction stratigraphy which is a lithologic index of CaCθ3 preservation, and an oxygen isotope stratigraphy which provides a chronostratigraphy and a record of climate change. Variations in the relative abundance of 27 planktonic foraminifer species primarily reflect fluctuations in the intensity of CaCθ3 dissolution. CaCθ3 dissolution covaries with climate fluctuations at a cyclicity of about 100 k.y. Glacial-aged sediments are generally well preserved, as indicated by faunal and lithologic indices. Interglacial-aged sediments show poorer preservation. The -100-k.y. cycles are superimposed upon the long-term Brunhes Dissolution Cycle. This cycle is characterized by an interval of poor preservation centered between 400 and 550 ka and is bounded by good preservation events at 25 and 750 ka. Ecological factors also control variations in the foraminifer fauna. Changes in ecology are inferred from downcore fluctuations in the relative abundances of foraminifer species that have a similar level of resistance to dissolution. We focus on three species (Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, Globorotalia menardii) with a relatively high resistance to dissolution.
    [Show full text]
  • Edition 7 No's
    11 April 2008 Edition 7 Australian Notices to Mariners are the authority for correcting Australian Charts and Publications AUSTRALIAN NOTICES TO MARINERS © Commonwealth of Australia 2008 - Copyright restrictions apply to Notices to Mariners Notices 317 – 363 List of Temporary and Preliminary Notices in force Cumulative List – April 2008 Published fortnightly by the Australian Hydrographic Service Captain R. NAIRN RAN Hydrographer of Australia SECTIONS. I. Australian Notices to Mariners, including blocks and notes. II. Amendments to Admiralty List of Lights and Fog Signals, Vol K III. Navigational Warnings. IV. Hydrographic Reports. V. Amendments to Admiralty List of Radio Signals (NP 281(2), 282, 283(2), 285, 286(4)) VI. Amendments to Admiralty Sailing Directions (NP 9, 13, 14, 15, 33, 34, 35, 36, 39, 44, 51, 60, 61, 62, 100, 136) British Admiralty Notices to Mariners New Zealand Notices to Mariners The substance of these notices should be inserted on the charts affected. Bearings are referred to the true compass and are reckoned clockwise from North; those relating to lights are given as seen by an observer from seaward. Positions quoted in permanent notices relate to the horizontal datum for the chart(s). When preliminary or temporary notices affect multiple charts, positions will be provided in relation to only one horizontal datum and that datum will be specified. When the multiple charts do not have a common horizontal datum, mariners will be required to adjust the position(s) for those charts not on the specified datum. The range quoted for a light is its nominal range. Depths are with reference to the chart datum of each chart.
    [Show full text]
  • MISSION and DEVELOPMENT in MANGGARAI, FLORES EASTERN INDONESIA in 1920-1960S
    Paramita:Paramita: Historical Historical Studies Studies Journal, Journal, 29(2) 29(2) 2019: 2019 178 -189 ISSN: 0854-0039, E-ISSN: 2407-5825 DOI: http://dx.doi.org/10.15294/paramita.v29i1.16716 MISSION AND DEVELOPMENT IN MANGGARAI, FLORES EASTERN INDONESIA IN 1920-1960s Fransiska Widyawati, Yohanes S. Lon STKIP Santu Paulus Ruteng Flores, NTT ABSTRACT ABSTRAK This paper explores the mission and develop- Paper ini mengeksplorasi misi dan pem- ment in Manggarai Flores, Indonesia in 1920- bangunan di Manggarai Flores, Indonesia ta- 1960s. These two activities were carried out by hun 1920-1960s. Dua aktivitas ini dilakukan Catholic Church missionaries from Europe. oleh misionaris Gereja Katolik yang berasal Before this religion came to Manggarai, this dari Eropa. Sebelum agama ini datang ke region was in an isolated and backward condi- Manggarai, wilayah ini berada dalam kondisi tion. People lived in primitive way of life. The terisolasi dan terkebelakang. Masyarakat tidak new development was carried out with the mengenal infrastruktur modern. Pem- arrival of the Dutch colonists who worked bangunan baru dilakukan dengan datangnya closely with the Catholic Church missionaries penjajah Belanda yang bekerja sama erat beginning in the early 20th century. The dengan misionaris Gereja Katolik mulai pada Church utilized the support of the Dutch colo- awal abad 20. Gereja memanfaatkan nialists while running various development dukungan Belanda sekaligus menjalankan ane- programs as important strategies to gain sym- ka program pembangunan sebagai strategi pathy from the Manggarai people. As a result, penting untuk mendapatkan simpati orang the Church was accepted and became the Manggarai. Hasilnya Gereja diterima dan dominant force in the community.
    [Show full text]
  • Gedung Bappeda NTT REPORT
    Gedung Bappeda NTT REPORT PROVINCIAL DEVELOPMENT GUIDELINE FOR EAST NUSA TENGGARA YEAR 2013 Issued by Integrated Secretariat for Development Cooperation (SPADU-KPLI) (ENT Provincial Government and PGSP-UNDP Cooperation) Person in Charge Ir. WayanDarmawa, M.T. Head of Regional Development Planning BoardENT Province Drafting Team EduardusManek, ST, M.Eng PetronelaPakereng, SE Dewi Suryandari, SH Florence K. De R. Beribe, SKM Salesius Anggul Selfi H. Nange, S.Sos, M.Si, M.Pub,Pol Cyrillus Raja Bhoja Ir. Yoseph. G. Lema ii FOREWORD Praise and thanks to the Almighty God for His wisdom and grace, that the Drafting of this Provincial Development Guideline (PDG) for East Nusa Tenggara (ENT) Provincial Development has been completed. This guideline provides the development portrait of ENT province and its 21 Districts/Cities, including the development potential and issues encountered. The dispersion of support by the International Institution in ENT is also displayed in this guideline as well as the more detail proposed action from ENT Regional Government in addressing the local needs, covering the sectors of: good governance and decentralization, local economy, social service, infrastructure and the environment. I hope that with this PDG document which is the result of ENT Province Government and UNDP cooperation through the Provincial Governance Strengthening Program (PGSP), the ENT development planning can be more focused and well targeted according to the needs of the respective Regional Government. The Development Acceleration in ENT Province can hopefully be achieved in a more optimal way through the cooperation and harmonization in activities between the Government and other non-governmental institutions in ENT. Lastly, I would like to express my gratitude and high appreciation for the contribution of all parties involved in the drafting of this guideline and I encourage all non-governmental institutions in ENT to draft their program planning based on this guideline.
    [Show full text]
  • General Circulation in the Malacca Strait and Andaman Sea: a Numerical Model Study
    American Journal of Environmental Science, 2012, 8 (5), 479-488 ISSN: 1553-345X ©2012 Science Publication doi:10.3844/ajessp.2012.479.488 Published Online 8 (5) 2012 (http://www.thescipub.com/ajes.toc) General Circulation in the Malacca Strait and Andaman Sea: A Numerical Model Study 1Syamsul Rizal, 2Peter Damm, 1Mulyadi A. Wahid, 2Jurgen Sundermann, 1Yopi Ilhamsyah, 3Taufiq Iskandar and 1Muhammad 1Jurusan Ilmu Kelautan, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia 2Institut fur Meereskunde, Universität Hamburg, Bundesstr. 53, 20146 Hamburg, Germany 3Jurusan Matematika, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia Received 2012-05-10, Revised 2012-08-11; Accepted 2012-08-11 ABSTRACT In the Andaman Sea and Malacca Strait, as in other parts of the Indian Ocean, the seasonal change of the wind plays a most important role: the south-west (hereafter SW) is monsoon active from June through September and the north-east (hereafter NE) monsoon is active from December through February. During the NE monsoon the winds are directed from the north and northeast to the south-west, and during the SW monsoon from the south-west to the north-east. Strong winds between June and September lead to maximum rainfall over most parts of the Indian subcontinent. These areas are also greatly influenced by the tides. The circulation in the Andaman Sea and the Malacca Strait is simulated with a three-dimensional baroclinic primitive equation model. In order to run the model, the HAMSOM model is used. The model is forced by tides at the open boundaries as well as by wind and heat flux.
    [Show full text]
  • General Circulation and Principal Wave Modes in Andaman Sea from Observations
    ISSN (Print) : 0974-6846 Indian Journal of Science and Technology, Vol 10(24), DOI: 10.17485/ijst/2017/v10i24/115764, June 2017 ISSN (Online) : 0974-5645 General Circulation and Principal Wave Modes in Andaman Sea from Observations S.R. Kiran* Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, CV Raman Road, Devasandra Layout Bangalore – 560012, Karnataka, India; [email protected] Abstract Objectives: This study intends to describe the Andaman Sea circulation and investigate the dominant modes of variability in the basin. Analysis/Observations: The domain experiences stronger South-westerly winds from May to September and relatively weaker North-easterlies from November to February. A strong negative Ekman pumping along the north coast of Indonesia is observed during Summer. The transport of water across the straits of Andaman and Nicobar Islands (ANI) is computed by simple mass balance and is found to be in phase with the monthly averaged Mean Sea Level Anomalies (MSLA) of Andaman Sea. intensify along the easternThere boundary occurs of high the surfacebasin and outflux are associatedthrough Great with channel signatures and ofTen-Degree downwelling. channel Findings: in Summer. Intense In downApril and welling October, occurs rate to of the transport north coast through of Indonesia the straits during is maximum. Summer, Duringlocally forcedthe same by months,south-westerlies. meridional There surface occurs currents large jets remotely force Kelvin waves of downwelling nature in the basin during April and October. The circulation in Andaman Seainflux is ofcharacterised water into Andaman by gyres orSea vortices, between which April isand the November manifestation through of Rossby the straits waves between of semi-annual the islands.
    [Show full text]
  • A Critical Appraisal of Marine and Coastal Policy in Indonesia Including Comparative Issues and Lesson Learnts from Australia
    A CRITICAL APPRAISAL OF MARINE AND COASTAL POLICY IN INDONESIA INCLUDING COMPARATIVE ISSUES AND LESSON LEARNTS FROM AUSTRALIA A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from UNIVERSITY OF WOLLONGONG by Arifin Rudiyanto Ir. (Bogor Agricultural University / IPB, Indonesia), M.Sc (University of Newcastle Upon-Tyne, UK) DEPARTMENT OF HISTORY AND POLITICS FACULTY OF ARTS UNIVERSITY OF WOLLONGONG 2002 ABSTRACT This thesis adopts an interdisciplinary approach. It examines the development of marine and coastal policy in Indonesia and explores how well Indonesia is governing its marine and coastal space and resources and with what effects and consequences. This thesis uses a policy analysis framework, with legislative and institutional activity as the basic unit of analysis. Three factors are identified as having been the major influences on the evolution of marine and coastal policy in Indonesia. These are international law, marine science and “state of the art” marine and coastal management. The role of these factors in the management of the coastal zone, living and non-living marine resources, marine science and technology, the marine environment and relevant international relations are analysed and discussed in the Indonesian case. This thesis concludes that Indonesia’s major challenges in terms of sustainable marine and coastal development are (a) to establish an appropriate management regime, and (b) to formulate and implement a combination of measures in order to attain the objectives of sustainable development. The basic problem is the fact that currently, Indonesia is not a “marine oriented” nation. Therefore, marine and coastal affairs are not at the top of the public policy agenda.
    [Show full text]
  • The Economic Importance of the Straits of Malacca and Singapore: an Extreme-Scenario Analysis
    The economic importance of the Straits of Malacca and Singapore: An extreme-scenario analysis Author Qu, Xiaobo, Meng, Qiang Published 2012 Journal Title Transportation Research Part E: Logistics and Transportation Review DOI https://doi.org/10.1016/j.tre.2011.08.005 Copyright Statement © 2012 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/47702 Griffith Research Online https://research-repository.griffith.edu.au The Economic Importance of the Straits of Malacca and Singapore: An Extreme Scenario Analysis Xiaobo Qu,and Qiang Meng* Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576 ABSTRACT This paper proposes a decision tree model to estimate the loss to global economy on the hypothesis of an extreme scenario of blockade of the Straits of Malacca and Singapore. The insurance surcharges, inventory costs and the time values of cargoes, and time charter equivalent rate are used to estimate the psychological loss, the loss to industries, and the loss to carriers, respectively. Interestingly, there is a pseudo- paradoxical phenomenon with respect to the loss to carriers. An illustrative example is also provided to explain the “Malacca Paradox”. Key words: Blockade; the Straits of Malacca and Singapore; discrete choice model; impact analysis; Malacca Paradox * Corresponding author, Tel.: +65-65165494; fax +65 6779 1635, E-mail: [email protected] (Qiang Meng) 1 1. INTRODUCTION The Straits of Malacca and Singapore is one of the most important shipping waterways in the world from both an economic and a strategic perspective.
    [Show full text]