Download Chapter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Preface Considering the enormous technical importance of electroactive polymers and their crucial role in miniaturization, polymer chemistry makes a major contribution to this branch. The growth of electroactive polymers also leads to the development of scientific understanding. The book Electroactive Polymers – Synthesis and Applications should be an important source to polymer chemists, engineers, and technologists. This book describes the recent progress in electroactive polymers. The book provides an excellent and a thorough update to those who are already working in the field. The book addresses both beginners and experts in physics as well as chemistry. However, it is likely to be of interest to polymer scientists, particularly. This book provides definitions in combination with illustrations. The book provides introduc- tory aspects, background information, and overview on synthesis, characterization, and applications. The synthesis part covers aspects of the preparation of electroac- tive polymers. The book Electroactive Polymers – Synthesis and Applications makes a good in- vestment for scientists active in this modern field of research or for those who are likely to enter this exciting field. This book is an excellent resource for those specifi- cally interested in electroactive polymer challenges. This book is a practical manual to assist scientists and engineers working on electroactive polymers. This book is generally sufficient to serve as a self-contained reference manual. Overall, this is an engaging, accessible, and attractively presented book. It would be a useful acquisi- tion for any research group with interests in polymers, particularly electroactive polymers. This book is dedicated to: – Nobel Laureate Polymer Scientists – Hermann Staudinger, Emil Fischer, Herman Mark, Paul J. Flory, Linus Pauling, Carl S. Marvel, M. Polanyi, Giulio Natta, Karl Ziegler, and Bruce Merrifield – Pioneers – J.C. Patrick, Robert Thomas, William Sparks, Maurice Huggins, Qtto Bayer, Leo Baekeland, Anselm Payer, Roger Boyer, Waldo Semon, Robert Banks, J.P. Hogan – Those responsible for the development of the polymer industry – My father and mother who brought me up – My wife and children – Those who helped in my education and my career – My professors and teachers https://doi.org/10.1515/9783110641066-202 VI Preface and above all – To Lord Natarajar – To my guru Lord Senthil Andavar Dr. Muralisrinivasan Natamai Subramanian Madurai.
Recommended publications
  • Molecular Geometry and Molecular Graphics: Natta's Polypropylene And

    Molecular Geometry and Molecular Graphics: Natta's Polypropylene And

    Molecular geometry and molecular graphics: Natta's polypropylene and beyond Guido Raos Dip. di Chimica, Materiali e Ing. Chimica \G. Natta", Politecnico di Milano Via L. Mancinelli 7, 20131 Milano, Italy [email protected] Abstract. In this introductory lecture I will try to summarize Natta's contribution to chemistry and materials science. The research by his group, which earned him the Noble prize in 1963, provided unprece- dented control over the synthesis of macromolecules with well-defined three-dimensional structures. I will emphasize how this structure is the key for the properties of these materials, or for that matter for any molec- ular object. More generally, I will put Natta's research in a historical context, by discussing the pervasive importance of molecular geometry in chemistry, from the 19th century up to the present day. Advances in molecular graphics, alongside those in experimental and computational methods, are allowing chemists, materials scientists and biologists to ap- preciate the structure and properties of ever more complex materials. Keywords: molecular geometry, stereochemistry, chirality, polymers, self-assembly, Giulio Natta To be presented at the 18th International Conference on Geometry and Graphics, Politecnico di Milano, August 2018: http://www.icgg2018.polimi.it/ 1 Introduction: the birth of stereochemistry Modern chemistry was born in the years spanning the transition from the 18th to the 19th century. Two key figures were Antoine Lavoisier (1943-1794), whose em- phasis on quantitative measurements helped to transform alchemy into a science on an equal footing with physics, and John Dalton (1766-1844), whose atomic theory provided a simple rationalization for the way chemical elements combine with each other to form compounds.
  • Contribution to the Historical Development of Macromolecular Chemistry – Exemplified on Cellulose

    Contribution to the Historical Development of Macromolecular Chemistry – Exemplified on Cellulose

    CELLULOSE CHEMISTRY AND TECHNOLOGY CONTRIBUTION TO THE HISTORICAL DEVELOPMENT OF MACROMOLECULAR CHEMISTRY – EXEMPLIFIED ON CELLULOSE PETER ZUGENMAIER Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany Dedicated to Professor Elfriede Husemann, on the occasion of her 100th birthday in December 2008. She was an admirable and internationally highly recognized scientist and the first director of the Institute of Macromolecular Chemistry (Hermann-Staudinger-Haus) of the Albert-Ludwigs-Universität Freiburg; the foundation of the institute owing to the eminent scientific success and recognition of the work of Hermann Staudinger, leading to the Nobel Prize in the field of macromolecular chemistry. Received October 20, 2009 The development of the structure determination for cellulose and its derivatives as macromolecules is described from the beginning of the 20th century to the 1940s. The first correct presentation of the constitution of cellulose as a linear chain macromolecule of 1-4 linked β-D-anhydroglucopyranose, with the help of organic chemistry, dates from 1928. The size and shape of cellulose molecules still remained a controversial topic for some time. On the one hand, there were proposals of micelles i.e. aggregates of cyclic mono- or oligoanhydroglucose or micelles of small macromolecules of 30-50 glucose units. On the other hand, cellulose was seen as large macromolecules with more than 3000 glucose units for structures considered in solution as well as in fibres. The final clarification of the cellulose structure as a semi-flexible macromolecule of high molecular weight was extremely hindered by the inadequate interpretation of experimental results. Later, additional experimental and theoretical methods led to a consistent picture of the cellulose structure with high precision.
  • Philip D. Lane Ziegler-Natta Catalysis: the Nature of the Active Site Literature Seminar April 3, 1992 Karl Ziegler, While Study

    Philip D. Lane Ziegler-Natta Catalysis: the Nature of the Active Site Literature Seminar April 3, 1992 Karl Ziegler, While Study

    47 Ziegler-Natta Catalysis: The Nature of the Active Site Philip D. Lane Literature Seminar April 3, 1992 Karl Ziegler, while studying ethylene insertion into aluminum-alkyl bonds, serendipi­ tously discovered the effect transition metals had on ethylene polymerization. He and Guilio Natta made significant contributions to the catalytic polymerization of olefins using a transition metal from groups 4-8 and an organometallic from groups 1, 2, or 13, the most famous com­ bination being TiC4 + Al(C2H5)3 for the polymerization of polyethylene. The Nobel Prize in Chemistry was awarded to them in 1963 for their contributions in this area [l,2]. The impor­ tance of this catalytic process can be seen by the amount of polyethylene produced in the U.S. In 1990, 8.3 billion lbs. of high-density polyethylene were produced [3]. The heterogeneous nature of Ziegler-Natta catalysts make them difficult to study [l,4,5]. Despite improved techniques for studying surfaces, information on an atomic level about the active sites remains elusive. For example, the surface reaction of [Zr(allyl)4] with SiQi leads to different surface species [5]. It is not clear which of the resulting surface species is responsible for the polymerization process. Various mechanisms [6,7] have been proposed for Ziegler-Natta catalysis, with the most widely accepted proposal from Cossee and Adman (Figure 1). The aluminum-alkyl is suggested to be responsible for alkylating the transition metal which is in an octahedral environment with one site vacant. Ethylene is thought to coordinate, followed by direct insertion into the metal-alkyl bond of the transition metal.
  • Microanalysis of Polymer Chain Diffusion in Heat Seals Russell Cooper Clemson University, Rtcoope@G.Clemson.Edu

    Microanalysis of Polymer Chain Diffusion in Heat Seals Russell Cooper Clemson University, [email protected]

    Clemson University TigerPrints All Theses Theses 12-2014 Microanalysis of Polymer Chain Diffusion in Heat Seals Russell Cooper Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Engineering Science and Materials Commons, Materials Science and Engineering Commons, and the Polymer Science Commons Recommended Citation Cooper, Russell, "Microanalysis of Polymer Chain Diffusion in Heat Seals" (2014). All Theses. 2039. https://tigerprints.clemson.edu/all_theses/2039 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MICROANALYSIS OF POLYMER CHAIN DIFFUSION IN HEAT SEALS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Packaging Science by Russell Timms Cooper December 2014 Accepted by: Dr. Duncan Darby, Committee Chair Dr. Robert Kimmel Dr. Patrick Gerard ABSTRACT Heat sealing is an integral method for the closure and protection of packaging. Previous work has shown that seal strength is developed by the interdiffusion of polymer chains within heat seals. Heat seals were made between two dissimilar materials. Poly(ethylene-co-acrylic acid) (EAA) was heat sealed to ionomer. Diffusion within the EAA-ionomer heat seals was estimated. The diffusion estimates were then related to resulting seal strength in the EAA-ionomer sealant system. Heated tooling sealing was utilized to make heat seals at 40 psi (275.79 kPa), 0.5 seconds, and a range of temperatures between 180˚F (82.22˚C) and 300˚F (148.89˚C).
  • Historical Group NEWSLETTER and SUMMARY of PAPERS

    Historical Group NEWSLETTER and SUMMARY of PAPERS

    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 76 Summer 2019 Registered Charity No. 207890 COMMITTEE Chairman: Dr Peter J T Morris Dr Christopher J Cooksey (Watford, 5 Helford Way, Upminster, Essex RM14 1RJ Hertfordshire) [e-mail: [email protected]] Prof Alan T Dronsfield (Swanwick) Secretary: Prof. John W Nicholson Dr John A Hudson (Cockermouth) 52 Buckingham Road, Hampton, Middlesex, Prof Frank James (Royal Institution) TW12 3JG [e-mail: [email protected]] Dr Michael Jewess (Harwell, Oxon) Membership Prof Bill P Griffith Dr Fred Parrett (Bromley, London) Secretary: Department of Chemistry, Imperial College, Prof Henry Rzepa (Imperial College) London, SW7 2AZ [e-mail: [email protected]] Treasurer: Prof Richard Buscall Exeter, Devon [e-mail: [email protected]] Newsletter Dr Anna Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] https://www.qmul.ac.uk/sbcs/rschg/ http://www.rsc.org/historical/ 1 Contents From the Editor (Anna Simmons) 2 RSC HISTORICAL GROUP JOINT AUTUMN MEETING 3 William Crookes (1832-1919) 3 RSC HISTORICAL GROUP NEWS 4 Secretary’s Report for 2018 (John Nicholson) 4 MEMBERS’ PUBLICATIONS 4 PUBLICATIONS OF INTEREST 4 NEWS FROM CATALYST (Alan Dronsfield) 5 FORTHCOMING EXHIBITIONS 6 SOCIETY NEWS 6 OTHER NEWS 6 SHORT ESSAYS 7 How Group VIII Elements Posed a Problem for Mendeleev (Bill Griffith) 7 Norium, Mnemonics and Mackay (William.
  • Advances in Polymer Science

    Advances in Polymer Science

    262 Advances in Polymer Science Editorial Board: A. Abe, Tokyo, Japan A.-C. Albertsson, Stockholm, Sweden G.W. Coates, Ithaca, NY, USA J. Genzer, Raleigh, NC, USA S. Kobayashi, Kyoto, Japan K.-S. Lee, Daejeon, South Korea L. Leibler, Paris, France T.E. Long, Blacksburg, VA, USA M. Mo¨ller, Aachen, Germany O. Okay, Istanbul, Turkey B.Z. Tang, Hong Kong, China E.M. Terentjev, Cambridge, UK M.J. Vicent, Valencia, Spain B. Voit, Dresden, Germany U. Wiesner, Ithaca, NY, USA X. Zhang, Beijing, China For further volumes: http://www.springer.com/series/12 Aims and Scope The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputa- tion in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important refer- ences for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
  • Honors General Chemistry II/Chemistry 122H

    Honors General Chemistry II/Chemistry 122H

    Spring 2009 Honors General Chemistry II/Chemistry 122H Course Description and Objectives This course covers the second half of general chemistry, which includes thermochemistry, kinetics, equilibria, acid-base chemistry, and electrochemistry. In this honors course you will be expected to develop more in-depth knowledge of the covered topics then you would in a regular section of general chemistry. Your performance in the course will be judged by the quizzes, exams and class participation. In addition to the topics covered in the textbook, you will apply your literacy skills to a literature-based research project. Instructor Tomislav Pintauer, Ph.D. [email protected] 412-396-1626 347 Mellon Hall Office Hours: 1-2 pm on Mondays and Wednesdays, and by appointment. Lab Coordinator Patricia Bordell, Ph.D. [email protected], [email protected] 724-331-9474 308 Mellon Hall Textbook and Resources “General Chemistry” and “Selected Solutions Manual” by Petrucci, Herring, Harwood and Madura, Prentice-Hall, 9th edition. On line: http://cwx.prenhall.com/petrucci/ A Personal Response System keypad is required for this class. Lecture Monday, Wednesday and Friday 10:00-10:50 Fisher Hall 325 Wednesday 3:05-4:55 Bayer 101 Wednesday Recitations will be primarily used for quizzes, examinations, and problem solving. Class Web Site http://www.blackboard.duq.edu Honors General Chemistry II/ Chemistry 122H will have a website on blackboard this semester. You are encouraged to check the website regularly because important announcements and materials will be posted. Blackboard will also serve as a gradebook where you can look up your grades throughout the semester.
  • Polymers:Where the Sciences Meet-An Editor's Reflections

    Polymers:Where the Sciences Meet-An Editor's Reflections

    高分子●高分子●●●展望 COVER STORY Vo1.57,No.672 Jan.1,2008●● 展望COVER STORY v・1.57, Polymers:Where the Sciences Meet-An Editor's Reflections Text by Peter GOLITZ The Past: The past 25 years, over which I have been the Editor-in-chief of Angewandte Chemie, have seen a dramatic development of polymer science. Around 1980, polymer or macromolecular science was certainly a lively field, but, based on the definition of the term "polymers",U it was much more restricted; it was practiced by polymer chemists, physicists and engineers, and the interaction with other sciences in general or other fields of chemistry in particular was rather limited. All the main classes of polymers existed already, and there was an extensive industry behind this science, a fact that has not changed. Structural polymers abounded, and through blending of different polymer classes new applications were sought. Functional polymers were in their infancy. At just about the time Heeger, MacDiarmid, and Shirakawa had developed conducting polymers,4 3) polymers were occasionally being used as supports for organic reactions,41 and the use of polymers in medicine was more a vision.51 The realm of biomacromolecules—oligonucleotides, proteins, carbohydrates—was very much separated and researched by biochemists, structural biologists etc. Today: These days a Google search for key polymer-related terms delivers impressive results (Table 1). Polymer science knows no boundaries, and interactions with other disciplines are commonplace! Table 1. Number of Hits in Google for Polymer-Related
  • List of Nobel Laureates 1

    List of Nobel Laureates 1

    List of Nobel laureates 1 List of Nobel laureates The Nobel Prizes (Swedish: Nobelpriset, Norwegian: Nobelprisen) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institute, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in the fields of chemistry, physics, literature, peace, and physiology or medicine.[1] They were established by the 1895 will of Alfred Nobel, which dictates that the awards should be administered by the Nobel Foundation. Another prize, the Nobel Memorial Prize in Economic Sciences, was established in 1968 by the Sveriges Riksbank, the central bank of Sweden, for contributors to the field of economics.[2] Each prize is awarded by a separate committee; the Royal Swedish Academy of Sciences awards the Prizes in Physics, Chemistry, and Economics, the Karolinska Institute awards the Prize in Physiology or Medicine, and the Norwegian Nobel Committee awards the Prize in Peace.[3] Each recipient receives a medal, a diploma and a monetary award that has varied throughout the years.[2] In 1901, the recipients of the first Nobel Prizes were given 150,782 SEK, which is equal to 7,731,004 SEK in December 2007. In 2008, the winners were awarded a prize amount of 10,000,000 SEK.[4] The awards are presented in Stockholm in an annual ceremony on December 10, the anniversary of Nobel's death.[5] As of 2011, 826 individuals and 20 organizations have been awarded a Nobel Prize, including 69 winners of the Nobel Memorial Prize in Economic Sciences.[6] Four Nobel laureates were not permitted by their governments to accept the Nobel Prize.
  • The Role of Theory in Control Practice.Pdf

    The Role of Theory in Control Practice.Pdf

    The Role of Theory" in Control Practice! Manfred Morari! ! ! Automatic Control Laboratory, ETH Zürich! UTC BUSINESSES Commercial Aerospace 3 PERFORMANCESales: Type & Geography 2012 net sales $57.7 billion TYPE Commercial Commercial Aftermarket Aerospace 28% & Industrial 51% 57% 43% Military Aerospace 21% Original & Space Equipment Manufacturing GEOGRAPHY Europe 26% United States 40% 20% 14% Asia Pacific Other 4 2013 ENGINEERING POPULATION ! ! ! ! ! ! PHD Other AS MS UTC Global population > 24,000 BS UTC Engineering presence engineers ! US Engineering Degrees ETH Zurich at a glance Founded 1855 " Driving force of industrialisation in Switzerland ETH Zurich today " One of the leading international universities for technology and the natural sciences " Place of study, research and employment for approximately 25,000 people from over 100 different countries Some Numbers: " 8500 BS + 4800 MS + 3900 PhD = 18200 " 500 Professors " 8000 Personnel " Budget CHF 1.5 (370 Mill third party) Placeholder for logo/lettering | | (Can be modified in the Slide Master, opened via «View» > «Slide Master») 29.04.2014 6 21 Nobel Laureates 1901 Physics Wilhelm Conrad Röntgen 1912 Chemistry Alfred Werner 1915 Chemistry Richard Willstätter 1918 Chemistry Fritz Haber 1920 Physics Charles-Edouard Guillaume 1921 Physics Albert Einstein 1936 Chemistry Peter Debye 1938 Chemistry Richard Kuhn 1939 Chemistry Leopold Ruzicka Albert Leopold Wolfgang 1943 Physics Otto Stern Einstein Ruzicka Pauli 1945 Physics Wolfgang Pauli 1950 Medicine Tadeusz Reichstein 1952 Physics Felix Bloch 1953 Chemistry Hermann Staudinger 1975 Chemistry Vladimir Prelog 1978 Medicine Werner Arber 1986 Physics Heinrich Rohrer 1987 Physics Georg Bednorz / Alexander Müller 1991 Chemistry Richard Ernst Vladimir Richard Kurt 2002 Chemistry Kurt Wüthrich Prelog Ernst Wüthrich Placeholder for logo/lettering | | (Can be modified in the Slide Master, opened via «View» > «Slide Master») 29.04.2014 7 John Houbolt! NASA Innovator Behind Lunar Module, Dies at 95! Dr.
  • Giulio Natta

    Giulio Natta

    G IULIO N A T T A From the stereospecific polymerization to the asymmetric autocatalytic synthesis of macromolecules Nobel Lecture, December 12, 1963 Introduction Macromolecular chemistry is a relatively young science. Though natural and synthetic macromolecular substances had long been known, it was only between 1920 and 1930 that Hermann Staudinger placed our knowledge of the chemical structure of several macromolecular substances on a scientific basis 1. In the wake of Staudinger’s discoveries and hypotheses, macromolecu- lar chemistry has made considerable progress. Very many synthetic macromolecular substances were prepared both by polymerization and by polycondensation; methods were found for the regu- lation of the value and distribution of molecular weights; attempts were made to clarify the relationships existing among structure, chemical regularity, molecular weight, and physical and technological properties of the macro- molecular substances. It was far more difficult to obtain synthetic macromole- cules having a regular structure from both the chemical and steric points of view. An early result in this field, which aroused a certain interest in relation to elastomers, was the preparation of a polybutadiene having a very high content of trans- 1,4 monomeric units, in the presence of heterogeneous catalysts 2. A wider development of this field was made possible by the recent discovery of stereospecific polymerization. This led to the synthesis of sterically regular polymers as well as to that of new classes of crystalline polymers. Before referring to the stereospecific polymerizations and to their subse- quent developments, I wish to make a short report on the particular conditions that enabled my School to rapidly achieve conclusive results on the genesis and structure of new classes of macromolecules.
  • The Ziegler Catalysts Serendipity Or Systematic Research?

    The Ziegler Catalysts Serendipity Or Systematic Research?

    GENERAL ARTICLE The Ziegler Catalysts Serendipity or Systematic Research? S Sivaram Fifty-four years after the Nobel Prize was awarded to Karl Ziegler and Giulio Natta for the polymerization of olefins by complex organometallic catalysts, the field continues to elicit enormous interest, both from the academia and the indus- try. Furthermore, this chemistry and technology occupy a high ground in the annals of 20th-century science. The el- S Sivaram is currently a egance and simplicity of Ziegler’s chemistry continue to as- Honorary Professor and tound researchers even today, and the enormous impact this INSA Senior Scientist at the chemistry has had on the quality of our life is truly incred- Indian Institute of Science Education and Research, ible. Polyethylene, produced using Ziegler’s chemistry has Pune. Prior to this, he was a touched every aspect of common man’s life, so much so that, CSIR-Bhatnagar Fellow today it is impossible to imagine life on this planet without (2011–16) and Director of polyethylene. Equally fascinating is the story of how Ziegler CSIR-NCL (2002–10). Apart from pursuing research in stumbled on this most impactful discovery. Ziegler’s disci- polymer chemistry, Sivaram pline and rigor in systematically following every lead in the is a keen student of history of laboratory, however trivial it seemed, and his penchant for science and the origin and understanding the basics of science culminated in 1954, with evolution of thoughts that drive the scientific enterprise. a simple reaction for converting ethylene to polyethylene, the (www.swaminathansivaram.in) quintessential carbon-carbon (C-C) bond forming reaction.