History of Chemistry.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Horizon Europe - EU Multiannual Financial Framework
30 November 2018 Dear Prime Minister / Chancellor / Taoiseach / President, Horizon Europe - EU Multiannual Financial Framework (a letter to Heads of State or Government, signed by Nobel Prize and other international award winners and CEOs and Chairmen of leading European companies) At the European Council meeting in December, European leaders will discuss the 2021-2027 EU Multiannual Financial Framework, including the budget to be assigned to Research and Innovation, mainly through the next framework programme Horizon Europe. On this occasion, we want to remind them of the economic impact and the tangible improvements to European citizens' lives that have been generated over the years by the EU framework programmes for Research and Innovation. We urge Europe’s Heads of State or Government to support or even to increase the investment in Horizon Europe. €120 billion was seen as the absolute minimum to make Europe a global frontrunner by the High Level Group set by the European Commission and chaired by Pascal Lamy. Indeed, EU-funded research had a decisive impact and positively contributed to various areas, such as avoiding unnecessary chemotherapy for breast cancer patients; opening the way to batteries and solar cells of the next generation; reducing aircraft emissions and noise; enhancing cybersecurity; qualifying the future impact of artificial intelligence on jobs; etc. European industry underlines that the EU framework programmes help companies to build up know-how, have access to the “state-of-the-art”, achieve synergies and critical mass, access highly skilled and talented people, and network with customers and suppliers. EU-funded research has made an immense contribution to creating and disseminating scientific knowledge indispensable for innovation to flourish. -
News Release Emmanuelle Charpentier Inducted Into the Hall
News Release Your Contact [email protected] Phone: +49 6151 72-9591 October 22, 2020 Emmanuelle Charpentier Inducted into the Hall of Fame of German Research • Microbiologist, geneticist, infection biologist and Nobel Prize winner Charpentier recognized • Curious Mind Award for young scientists presented to Siegfried Rasthofer and Björn Eskofier Darmstadt, Germany, October 22, 2020– Merck KGaA, Darmstadt, Germany, a leading science and technology company, and manager magazin today inducted Emmanuelle Charpentier (51), Founding Director of the Max Planck Unit for the Science of Pathogens in Berlin, Germany, into the Hall of Fame of German Research. In addition, the two hosts presented the Curious Mind Researcher Award at the same event. Siegfried Rasthofer (32), a computer scientist, received the prize worth € 7,500 in the “Digitalization & Robotics” category. Björn Eskofier (40), an electrical engineer, was also recognized with € 7,500 for his work in the “Life Science” category. In a video message, German Federal Chancellor Angela Merkel said: “It is a privilege to now be able to induct a renowned scientist and designated Nobel laureate into the Hall of Fame of German Research. The Curious Mind Researcher Award also demonstrates that Germany is a research location that offers superb framework conditions for cutting-edge research,” she added and congratulated the prizewinners. “Many scientists are making extraordinary accomplishments – particularly here in Germany as well. This is evident not only in the fight against Covid-19. Thanks to Page 1 of 3 Frankfurter Strasse 250 Head of Media Relations -6328 64293 Darmstadt · Germany Spokesperson: -9591 / -8908 / -45946 / -55707 Hotline +49 6151 72-5000 www.emdgroup.com News Release their passion and perseverance, they are creating the preconditions for the advancement of society. -
CV Otto Diels
Curriculum Vitae Prof. Dr. Otto P. H. Diels Name: Otto Paul Hermann Diels Lebensdaten: 23. Januar 1876 – 7. März 1954 Otto Diels war ein deutscher Chemiker. Für die auch nach ihm benannte Diels‐Alder‐Reaktion (auch Diensynthese genannt) erhielt er 1950 gemeinsam mit seinem Schüler Kurt Alder den Nobelpreis für Chemie. Gemeinsam mit Emil Abderhalden arbeitete er über Gallensteine und begann, sich mit Cholesterin zu beschäftigen. Darüber hinaus trägt die Diels‐Säure seinen Namen, eine von ihm bei der Strukturaufklärung der Steroide synthetisierte Dicarbonsäure. Akademischer und beruflicher Werdegang Otto Diels studierte ab 1895 an der Universität Berlin die Fächer Chemie, Physik, Botanik, Mineralogie und Philosophie. Er wurde im Sommer 1899 beim späteren Nobelpreisträger für Chemie, Emil Fischer, mit einer Arbeit über Cyanur‐Verbindungen promoviert. Im selben Jahr wurde er Assistent am Chemischen Institut der Universität Berlin. 1904 folgte die Habilitation. 1913 wurde er im selben Institut Abteilungsvorsteher. 1914 wurde er an der Universität Berlin zum außerordentlichen Professor ernannt. Zwei Jahre später nahm er einen Ruf nach Kiel an. Dort wurde er Professor für Chemie und Direktor des Chemischen Instituts und fungierte im akademischen Jahr 1925/26 als Rektor der Kieler Universität. Er blieb seiner Alma mater bis an sein Lebensende treu, trotz mehrfacher Berufungen an andere Hochschulen, darunter nach Gießen und Berlin. Nobelpreis für Chemie 1950 Bereits 1911 begann Diels, den Azodicarbonsäurediethylester zu untersuchen. Diese kurz „Azoester“ genannte Verbindung führte ihn schließlich zu seinem wichtigsten Arbeitsgebiet, der Untersuchung der Dien‐Synthese, wie die Reaktion eines Diens mit einem reaktiven Alken oder Alkin zunächst genannt wurde. Einzelne Experimente, die Diels schließlich als Dien‐Synthesen erkannte, waren bereits kurz nach der Jahrhundertwende veröffentlicht worden. -
R. Stephen Berry 1931–2020
R. Stephen Berry 1931–2020 A Biographical Memoir by Stuart A. Rice and Joshua Jortner ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. RICHARD STEPHEN BERRY April 9, 1931–July 26, 2020 Elected to the NAS, 1980 We have prepared this memoir to bear witness to the life of R. Stephen (Steve) Berry, with emphasis on the view that a memorial is about reminding ourselves and others of more than his many and varied contributions to science; it is also to remind us of his personal warmth and freely offered friendship, of his generous support for all of us in a variety of situations, and of his loyalty to his friends and the institutions he served. The record of an individ- ual’s accomplishment is commonly taken to define his/ her legacy. Using that protocol, creative scientists are fortunate in that their contributions are visible, and those contributions endure, or not, on their own merits. Steve Berry was one of the most broadly ranging and influen- tial scientists in the world. His seminal experimental and By Stuart A. Rice theoretical contributions are distinguished by a keen eye and Joshua Jortner for new concepts and innovative and practical analyses. These contributions, which are remarkable in both scope and significance, have helped to shape our scientific perception. They have had, and continue to have, great influence on the development of chemistry, biophysics materials science, the science and technology related to the use, production, and conservation of energy, the societal applications of science and technology, and national and international science policy. -
The Lock-And-Key Analogy in 20Th Century Biochemistry
From: Rebecca Mertens The Construction of Analogy-Based Research Programs The Lock-and-Key Analogy in 20th Century Biochemistry April 2019, 224 p., pb., ill. 34,99 € (DE), 978-3-8376-4442-5 E-Book: PDF: 34,99 € (DE), ISBN 978-3-8394-4442-9 When the German chemist Emil Fischer presented his lock-and-key hypothesis in 1899, his analogy to describe the molecular relationship between enzymes and substrates quickly gained vast influence and provided future generations of scientists with a tool to investigate the relation between chemical structure and biological specificity. Rebecca Mertens explains the appeal of the lock-and-key analogy by its role in model building and in the construction of long-term, cross-generational research programs. She argues that a crucial feature of these research programs, namely ascertaining the continuity of core ideas and concepts, is provided by a certain way of analogy-based modelling. Rebecca Mertens (PhD), born in 1984, is a postdoctoral researcher in the history and philosophy of science at the University of Bielefeld, Germany. She works on the role of analogies, models and forms of comparison in the history of molecular genetics and is a member of the collaborative research program "Practices of ComparisonÚ Ordering and Changing the World". During her graduate and doctoral studies, she was a visiting scholar at the École Normale Supérieure in Paris and a visiting graduate fellow at the Minnesota Center for Philosophy of Science. For further information: www.transcript-verlag.de/en/978-3-8376-4442-5 © 2019 -
Śląscy Nobliści: Otto Stern Kurt Alder Friedrich Bergius Śląscy Nobliści: Otto Stern, Kurt Alder, Friedrich Bergius Otto Stern ● Ur
Śląscy nobliści: Otto Stern, Kurt Alder, Friedrich Bergius Śląscy nobliści: Otto Stern Kurt Alder Friedrich Bergius Śląscy nobliści: Otto Stern, Kurt Alder, Friedrich Bergius Otto Stern ● ur. 17 lutego 1888 r. w Żorach ● zm. 17 sierpnia 1969 r.w Berkeley w stanie Kalifornia ● niemiecki fizyk ● wnuk bogatego kupca żydowskiego, właściciela żorskiego młyna ● w 1982 r. przeniósł się z rodziną do Wrocławia ● w 1912 r. uzyskał tytuł doktora chemii fizycznej na Uniwersytecie Wrocławskim ● podążając za Albertem Einsteinem, udał się na Uniwersytet Karola w Pradze, a rok później na Politechnikę w Zurychu ● tytuł doktora chemii fizycznej na Uniwersytecie Wrocławskim w roku 1912 r. ● jego rozprawa doktorska dotyczyła ciśnienia osmotycznego dwutlenku węgla w stężonych roztworach. Miała charakter zarówno praktyczny, jak też i teoretyczny. ● sam siebie określił jako „teoretyka doświadczalnego” Śląscy nobliści: Otto Stern, Kurt Alder, Friedrich Bergius ● w czasie I wojny światowej służył w różnych jednostkach technicznych armii pruskiej ● po klęsce Cesarstwa Niemieckiego przeniósł się do Frankfurtu ● w 1921 r. otrzymał stanowisko profesora fizyki teoretycznej na Uniwersytecie w Rostocku ● w 1923 r. objął stanowisko dyrektora w nowo powstałym Instytucie Chemii Fizycznej na Uniwersytecie w Hamburgu ● w 1922 r.wraz z Walterem Gerlachem przeprowadził eksperyment zwany „doświadczeniem Sterna-Gerlacha”, dzięki któremu doświadczalnie udowodnili kwantowanie momentu pędu, przyczynił się do rozwoju młodej fizyki kwantowej ● w 1933 r., ze względu na częściowe korzenie żydowskie, wyemigrował do USA ● do 1945 r. był profesorem na Carnegie Institute of Technology w Pittsburgu. Tam przystąpił do budowy laboratorium molekularnego ● 1943 r. przyniósł Sternowi Nobla z fizyki W uznaniu jego wkładu w rozwój metody wiązki molekularnej i jego odkrycia momentu magnetycznego protonu. -
Design, Synthesis, Photochemical and Biological Evaluation of Novel Photoactive Molecular Switches
TESIS DOCTORAL Título Design, Synthesis, Photochemical and Biological Evaluation of Novel Photoactive Molecular Switches Autor/es David Martínez López Director/es Diego Sampedro Ruiz y Pedro José Campos García Facultad Facultad de Ciencia y Tecnología Titulación Departamento Química Curso Académico Design, Synthesis, Photochemical and Biological Evaluation of Novel Photoactive Molecular Switches, tesis doctoral de David Martínez López, dirigida por Diego Sampedro Ruiz y Pedro José Campos García (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial- SinObraDerivada 3.0 Unported. ̉ Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2019 publicaciones.unirioja.es E-mail: [email protected] Facultad de Ciencia y Tecnología Departamento de Química Área de Química Orgánica Grupo de Fotoquímica Orgánica TESIS DOCTORAL DESIGN, SYNTHESIS, PHOTOCHEMICAL AND BIOLOGICAL EVALUATION OF NOVEL PHOTOACTIVE MOLECULAR SWITCHES Memoria presentada en la Universidad de La Rioja para optar al grado de Doctor en Química por: David Martínez López Junio 2019 Facultad de Ciencia y Tecnología Departamento de Química Área de Química Orgánica Grupo de Fotoquímica Orgánica D. DIEGO SAMPEDRO RUIZ, Profesor Titular de Química Orgánica del Departamento de Química de la Universidad de La Rioja, y D. PEDRO JOSÉ CAMPOS GARCÍA, Catedrático de Química Orgánica del Departamento de Química de la Universidad de La Rioja. CERTIFICAN: Que la presente memoria, titulada “Design, synthesis, photochemical and biological evaluation of novel photoactive molecular switches”, ha sido realizada en el Departamento de Química de La Universidad de La Rioja bajo su dirección por el Licenciado en Química D. -
Chemists Suggest a New Way to Synthesize Steroid Analogs 15 November 2017
Chemists suggest a new way to synthesize steroid analogs 15 November 2017 tandem cascade of reactions—the reactions proceed successively in the same flask under the same reaction conditions: acylation of the nitrogen atom of the starting 3-thienylallylamine with maleic anhydride, the intramolecular Diels-Alder reaction and subsequent aromatization of the cycloaddition adduct," says Fedor Zubkov, assistant professor of the Department of Organic Chemistry at the RUDN University. Diene synthesis (or the Diels-Alder reaction) is one of the most popular reactions in organic chemistry. It involves synchronous formation of two sigma- double bonds from one double bond of dienophile Intramolecular Diels-Alder reaction discussed in the and two double bonds of diene; the main product is research. Credit: Fedor Zubkov a six-membered ring with one double bond. Otto Diels and Kurt Alder received the Nobel Prize in 1950 for this reaction. Another Nobel laureate, Robert Woodward, was inspired and bound his life Scientists from RUDN University and the Ivan with chemistry after reading about Diels-Alder's Franko National University of Lviv have found a reaction. Later, he returned to it in his studies way to produce aromatic rings in organic several times. Curiously enough, it was Robert compounds in three stages. These stages proceed Woodward who founded the Tetrahedron Letters successively in one-pot conditions and at room journal, which published this paper by Russian temperature. Now analogues of hormones, scientists. steroids, some sugars, terpenes and other complex organic substances can be synthesized The intramolecular Diels-Alder reaction runs inside faster and at softer conditions. The paper was one molecule. -
Molecular Geometry and Molecular Graphics: Natta's Polypropylene And
Molecular geometry and molecular graphics: Natta's polypropylene and beyond Guido Raos Dip. di Chimica, Materiali e Ing. Chimica \G. Natta", Politecnico di Milano Via L. Mancinelli 7, 20131 Milano, Italy [email protected] Abstract. In this introductory lecture I will try to summarize Natta's contribution to chemistry and materials science. The research by his group, which earned him the Noble prize in 1963, provided unprece- dented control over the synthesis of macromolecules with well-defined three-dimensional structures. I will emphasize how this structure is the key for the properties of these materials, or for that matter for any molec- ular object. More generally, I will put Natta's research in a historical context, by discussing the pervasive importance of molecular geometry in chemistry, from the 19th century up to the present day. Advances in molecular graphics, alongside those in experimental and computational methods, are allowing chemists, materials scientists and biologists to ap- preciate the structure and properties of ever more complex materials. Keywords: molecular geometry, stereochemistry, chirality, polymers, self-assembly, Giulio Natta To be presented at the 18th International Conference on Geometry and Graphics, Politecnico di Milano, August 2018: http://www.icgg2018.polimi.it/ 1 Introduction: the birth of stereochemistry Modern chemistry was born in the years spanning the transition from the 18th to the 19th century. Two key figures were Antoine Lavoisier (1943-1794), whose em- phasis on quantitative measurements helped to transform alchemy into a science on an equal footing with physics, and John Dalton (1766-1844), whose atomic theory provided a simple rationalization for the way chemical elements combine with each other to form compounds. -
Peptide Chemistry up to Its Present State
Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31. -
"But She's an Avowed Communist!" L'affaire Curie at the American Chemical Society, 1953-1955
ll. t. Ch. 20 ( 33 "BUT SHE'S AN AVOWED COMMUNIST!" L'AFFAIRE CURIE AT THE AMERICAN CHEMICAL SOCIETY, 1953-1955 Mrrt W. tr, Crnll Unvrt Intrdtn On ht hv xptd tht th Arn Chl St (ACS, n rnztn tht ld t b r n fr th dvnnt f htr nd nt n p ltl tt fr t brhp, ld rdl pt n ppltn fr bl lrt n htr. Yt th nt th th Irèn ltCr n . Aftr ntrntn ACS ffl rjtd hr brhp ppltn b f hr pltl rpttn (trnl lnd t th prCnt blf nd tvt f hr hbnd, rdr ltCr, nfrd hr f th dn bt v n rn, nd d nth n f thr tn pbll. Whn nth ltr hr frnd tnd nd pblzd hr rjtn, th b lèbr. h xtnv ntr nd rrpndn rrndn th pd t p bl t ntprr rtn t th d, hndln, nd nfn f th dn. Whn prd t n f th thr ntnt "th hnt" n th Untd Stt n th 40 nd 0, th pbl hrnt f ldn br f th Ar n Atn fr th Advnnt f Sn (AAAS, n n th dffrnt rtn. Whr th AAAS brd f drtr rpndd ttl t th ntnt rd b ltn E. U. Cndn nd Figure. 1 Irene Joliot-Curie (1897-1956). Shown here Krtl Mthr prdnt (, th ldr f th ACS late in life, Joliot-Curie shared the Nobel Prize in rfd t lt Md ltCr vn t br Chemistry with her husband Frederic in 1935. hp. "Affr Cr," t t b lld, l Intensely apolitical in her early life, she became more rvld trtrl tnn thn th ACS btn involved in French women's, socialist, and pro- th prttv ntnt f th br f th rd f Communist movements starting in the late 1930s. -
CARL BOSCH and HIS MUSEUM Fathi Habashi, Laval University
Bull. Hist. Chem., VOLUME 35, Number 2 (2010) 111 CARL BOSCH AND HIS MUSEUM Fathi Habashi, Laval University Carl Bosch (1874-1940) (Fig. 1) was for the development of the catalysts. born in Cologne, studied metallurgy Further problems which had to be and mechanical engineering at the Tech- solved were the construction of safe nische Hochschule in Berlin (1894-96), high-pressurized reactors and a cheap then chemistry at Leipzig University, way of producing and cleaning the graduating in 1898. In 1899 he entered gases necessary for the synthesis of the employ of the Badische Anilin- und ammonia. Step by step Bosch went Sodafabrik in Ludwigshafen (Fig. 2) on to using increasingly larger manu- and participated in the development facturing units. In order to solve the of the then new industry of synthetic growing problems posed by materials indigo. and related safety problems, BASF set up the chemical industry’s first When in 1908 the Badische ac- Materials Testing Laboratory in 1912 quired the process of high-pressure to identify and control problems in synthesis of ammonia, which had been materials for instrumentation and developed by Fritz Haber (1868-1934) process engineering. at the Technische Hochschule in Karl- sruhe, Bosch was given the task of The plant in Oppau for the pro- developing this process on an industrial duction of ammonia and nitrogen Figure 1. Carl Bosch (1874-1940) scale. This involved the construction of fertilizers was opened in 1913. Bosch plant and apparatus which would stand up wanted fertilizers to be tested thorough- to working at high gas pressure and high-reaction tem- ly, so that customers were to be given proper instructions peratures.