Nervous System Mega Matching Table Instructions: Match the Description in Column B with a Structure in Column a (Listed Alphabetically)

Total Page:16

File Type:pdf, Size:1020Kb

Nervous System Mega Matching Table Instructions: Match the Description in Column B with a Structure in Column a (Listed Alphabetically) Nervous System Mega Matching Table Instructions: Match the description in Column B with a structure in Column A (listed alphabetically) . Try to find the matching item first on your own, then refer to the fill in # column to check your answers. Column A Column B # Structure Item to Match to the Structure Fill in # 1 amygdala activates "fight or flight" responses 79 2 anterior (ventral) gray horn activates "rest and digest" responses 58 3 anterior ramus of spinal nerve ANS structure that contains cell bodies of postganglionic neurons 80 4 arachnoid mater brain area for language comprehension 91 5 arachnoid villi brain area for motor control of speech 11 6 arbor vitae brain area involved in thinking, planning and judgment 68 7 association tract bundle of axons in the CNS 84 8 astrocytes bundle of axons in the PNS 53 9 axon bundle of spinal nerve roots extending below the end of the spinal cord 12 10 basal nuclei (basal ganglia) capillary network involved in the secretion of CSF 16 11 Broca's area carries motor axons from the spinal cord to the spinal nerve 89 12 cauda equina carries sensory axons from the spinal nerve to the spinal cord 24 13 central sulcus connection between L and R gray horns of the spinal cord 36 14 cerebellum connection between the R and L halves of the thalamus 42 15 cerebral peduncles connective tissue covering of a whole nerve 30 16 choroid plexus connective tissue layer around individual axons in a nerve 26 17 commissural tract connective tissue layer surrounding a fascicle in a nerve 59 18 conus medullaris contains centers that regulate body temperature, thirst, and hunger 40 19 corpus callosum controls endocrine functions via connections to the pituitary gland 40 20 decussation of pyramids cranial nerve of equilibrium 90 21 dendrite cranial nerve of hearing 90 22 dermatome cranial nerve that carries sensory impulses from the face 85 23 dorsal root ganglia cranial nerve that carries taste impulses from the anterior tongue 31 24 dorsal root of spinal nerve cranial nerve that innervates four of the six pairs of extrinsic eye muscles 56 25 dura mater cranial nerve that innervates one of the six pairs of extrinsic eye muscles 86 26 endoneurium cranial nerve that innervates the muscles of mastication 85 27 enteric nervous system cranial nerve that innervates the orbicularis oris and orbicularis oculi 31 28 ependymal cell craniosacral outflow 58 29 epidural space deep groove that separates the R and L cerebral hemispheres 49 30 epineurium fluid-filled cavity in each cerebral hemisphere 48 31 facial nerve fluid-filled cavity in the pons and medulla oblongata 35 32 falx cerebri fluid-filled cavity of the diencephalon 83 33 femoral nerve glial cells that form the myelin sheath around axons in the CNS 57 34 folia glial cells that form the myelin sheath around axons in the PNS 72 35 fourth ventricle glial cells that help produce and circulate CSF in the brain ventricles 28 36 gray commissure glial cells that help to form the blood-brain barrier 8 37 gray ramus glial cells that provide structural and metabolic support for CNS neurons 8 38 hippocampus glial cells that remove microbes and debris from the CNS via phagocytosis 52 39 hypoglossal nerve gray matter ridges of the cerebellum 34 40 hypothalamus group of axons that are ascending or descending tracts in the brain 69 41 inferior colliculus group of axons that connects gyri in the same cerebral hemisphere 7 42 intermediate mass group of axons that connects the L and R cerebral hemispheres 17 43 internal capsule group of cerebral nuclei involved in subconscious motor control 10 44 intervertebral foramen has long preganglionic and short postganglionic neurons 58 45 lateral cerebral sulcus has short preganglionic and long postganglionic neurons 79 46 lateral corticopinal tracts largest branch of spinal nerve 3 47 lateral gray horn largest nerve of the body, originates in the sacral plexus 73 48 lateral ventricle last cranial nerve that innervates muscles of the tongue 39 49 longitudinal fissure location of higher-level centers that help control breathing 62 50 median nerve location of the cardiovascular control center 51 51 medulla oblongata location of the respiratory rhythmicity center 51 52 microglial cell long series of autonomic ganglia anterior and lateral to the spinal cord 78 53 nerve major ascending tracts of the spinal cord for somatosensory information 66 54 neuromuscular junction major crossover of descending tracts in the medulla 20 55 occipital lobe major descending tracts in the midbrain 15 56 oculomotor nerve major descending tracts of the spinal cord involved in voluntary movement 46 57 oligodendrocyte major parasympathetic nerve that innervates the heart and digestive organs 88 58 parasympathetic division of the ANS major part of the brain involved in motor coordination 14 59 perineurium major tract connecting L and R cerebral hemispheres 19 60 phrenic nerve median space within the dura mater containing venous blood 77 61 pia mater meningeal layer attached directly to the brain or spinal cord 61 62 pons myelinated, preganglionic connection to sympathetic trunk ganglion 92 63 postcentral gyrus nerve from brachial plexus located in the medial arm and forearm 87 64 posterior (dorsal) gray horn nerve from brachial plexus located in the posterior arm and forearm 70 65 posterior ramus of spinal nerve nerve from brachial plexus that runs centrally through the anterior forearm 50 66 posterior white columns nerve from cervical plexus which innervates the diaphragm 60 67 precentral gyrus nerve from lumbar plexus which innervates the anterior thigh 33 68 prefrontal cortex nerve that branches to form tibial and common fibular (peroneal) nerves 73 69 projection tract neuronal end point of the somatic motor pathway 54 70 radial nerve neuronal process that conducts action potentials 9 71 rami communicantes neuronal process that receives incoming signals 21 72 Schwann cells opening through which the spinal nerve emerges 44 73 sciatic nerve outermost layer of the meninges 4 74 subarachnoid space outermost layer of the meninges 25 75 subdural space part of spinal cord containing cell bodies of autonomic motor neurons 71 76 superior colliculus part of spinal cord containing cell bodies of somatic motor neurons 47 77 superior sagittal sinus part of spinal cord that contains cell bodies of somatic motor neuron 2 78 sympathetic chain part of spinal cord that receives input from sensory neurons 64 79 sympathetic division of the ANS part of the limbic system involved in memory 38 80 sympathetic trunk ganglia part of the limbic system that activates emotions of fear and anger 1 81 temporal lobe part of the midbrain involved in auditory reflexes 41 82 thalamus part of the midbrain involved in visual reflexes 76 83 third ventricle primary auditory area in the brain 81 84 tract primary motor area of the cerebral cortex 67 85 trigeminal nerve primary somatosensory area of the cerebral cortex 63 86 trochlear nerve primary visual area in the brain 55 87 ulnar nerve region of the skin supplied by specific spinal nerve pair (such as T1) 22 88 vagus nerve relay station for sensory input to the cerebral cortex 82 89 ventral root of spinal nerve separates the frontal and parietal lobes 13 90 vestibulocochlear nerve separates the temporal lobe from the frontal and parietal lobes 45 91 Wernicke's area smaller somatic branch of spinal nerve 65 92 white ramus space between meninges that contains interstitial fluid 75 space in the vertebral canal that contains mostly adipose tissue 29 space surrounding the brain and spinal cord that contains CSF 74 structure that contains cell bodies of somatic sensory neurons 23 structures through which CSF is returned to the blood 5 tapered end of the spinal cord around the level of vertebra L1 18 the "brain of the gut" 27 thick band of white matter in the cerebrum adjacent to the thalamus 43 thoracolumbar outflow 79 unmyelinated, postganglionic connection from sympathetic trunk ganglion 37 vertical fold of dura mater between the R and L cerebral hemispheres 32 white matter core of the cerebellum 6 .
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • The Enteric Nervous System: a Second Brain
    The Enteric Nervous System: A Second Brain MICHAEL D. GERSHON Columbia University Once dismissed as a simple collection of relay ganglia, the enteric nervous system is now recognized as a complex, integrative brain in its own right. Although we still are unable to relate complex behaviors such as gut motility and secretion to the activity of individual neurons, work in that area is proceeding briskly--and will lead to rapid advances in the management of functional bowel disease. Dr. Gershon is Professor and Chair, Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York. In addition to numerous scientific publications, he is the author of The Second Brain (Harper Collins, New York, 1998). Structurally and neurochemically, the enteric nervous system (ENS) is a brain unto itself. Within those yards of tubing lies a complex web of microcircuitry driven by more neurotransmitters and neuromodulators than can be found anywhere else in the peripheral nervous system. These allow the ENS to perform many of its tasks in the absence of central nervous system (CNS) control--a unique endowment that has permitted enteric neurobiologists to investigate nerve cell ontogeny and chemical mediation of reflex behavior in a laboratory setting. Recognition of the importance of this work as a basis for developing effective therapies for functional bowel disease, coupled with the recent, unexpected discovery of major enteric defects following the knockout of murine genes not previously known to affect the gut, has produced a groundswell of interest that has attracted some of the best investigators to the field. Add to this that the ENS provides the closest thing we have to a window on the brain, and one begins to understand why the bowel--the second brain--is finally receiving the attention it deserves.
    [Show full text]
  • Pin Faculty Directory
    Harvard University Program in Neuroscience Faculty Directory 2019—2020 April 22, 2020 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Rosenberg, Paul (BCH/Neurology) Andermann, Mark (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rotenberg, Alex (BCH/Neurology) Anderson, Matthew (BIDMC) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Sabatini, Bernardo (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sahay, Amar (MGH) Arlotta, Paola (Harvard/SCRB) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahin, Mustafa (BCH/Neurobio) Assad, John (HMS/Neurobio) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Samuel, Aravi (Harvard/ Physics) Bacskai, Brian (MGH/East) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Sanes, Joshua (Harvard/MCB) Baker, Justin (McLean) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Saper, Clifford
    [Show full text]
  • Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Systems/Circuits Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle Nick J Spencer1, Timothy J Hibberd1, Lee Travis1, Lukasz Wiklendt1, Marcello Costa1, Hongzhen Hu2, Simon J Brookes1, David A Wattchow3, Phil G Dinning1,3, Damien J Keating1 and Julian Sorensen4 1College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia 2Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA 3Discipline of Surgery and Gastroenterology, Flinders Medical Centre, South Australia. 4Cyber Sensing and Shaping, Cyber & Electronic Warfare Division, Defence, Science & Technology Group, Edinburgh, South Australia, Australia. DOI: 10.1523/JNEUROSCI.3489-17.2018 Received: 7 December 2017 Revised: 30 April 2018 Accepted: 9 May 2018 Published: 28 May 2018 Author contributions: N.J.S., M.C., and H.H. designed research; N.J.S. wrote the first draft of the paper; N.J.S., S.J.B., D.A.W., P.D., D.J.K., and J.S. edited the paper; N.J.S., T.H., M.C., H.H., and J.S. wrote the paper; T.H. and L.T. performed research; T.H. contributed unpublished reagents/analytic tools; T.H., L.T., L.W., and J.S. analyzed data. Conflict of Interest: The authors declare no competing financial interests. The experiments carried out in this study were funded by grants to NJS (grant # 1067317 & 1127140) from the National Health and Medical Research Council (NH & MRC) of Australia.
    [Show full text]
  • The Autonomic Nervous System and Gastrointestinal Tract Disorders
    NEUROMODULATION THE AUTONOMIC NERVOUS SYSTEM AND GASTROINTESTINALTRACT DISORDERS TERRY L. POWLEY, PH.D. PURDUE UNIVERSITY • MULTIPLE REFRACTORY GI DISORDERS EXIST. • VISCERAL ATLASES OF THE GI TRACT ARE AVAILABLE. • REMEDIATION WITH ELECTROMODULATION MAY BE PRACTICAL. TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 50 INTERNATIONAL I:"' NEUROMODULATION SOCIETY 0 40 ·­IS 12TH WORLD CONGRESS -I: -• 30 !"' A. -..0 20 ..a• E 10 z::::t TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY DISORDERS TO TREAT WITH NEUROMODULATION ACHALASIA DYSPHAGIA GASTROPARESIS GERD GUT DYSMOTILITY MEGA ESOPHAGUS DYSPEPSIA ,, VISCERAL PAIN l1 ' I NAUSEA, EMESIS OBESITY ,, ' 11 I PYLORIC STENOSIS ==..:.= --- "" .:.= --- .. _ _, DUMPING REFLUX COLITIS I:' . - IBS -·-- - CROHN'S DISEASE HIRSCHSPRUNG DISEASE CHAGAS DISUSE Gastrointestinal Tract Awodesk@ Ma;·a@ TERRY l. POWLEY, PH.D. PURDUE NEUROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM AND GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY TIME The Obesity Epidemic in America ·. TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION : THE AUTO N OMIC NERVOUS SYSTEM A N D G A STP.OINTESTINAL TRACT DISORDERS UNI V E R SI TY ROUX-EN-Y BYPASS Bypassed portion of stomach Gastric -"'~­ pouch Bypassed - ­ Jejunum duodenum -1" food -___----_,,.,. digestivejuice TERRY l. POWLEY, PH.D. PURDUE NEU ROMODUlATION: THE AUTONOMIC NERVOUS SYSTEM A N D GASTP.OINTESTINAL TRACT DISORDERS UNIVERSITY 8y~s~ portionof i t()(l\3Ch • TERRYl. POWLEY, PH.D. PURDUE NEUROMOOUlATION: THE AUTONOMIC NERVOUS SYSTEM ANO 0.-STP.OINTESTINAL TRACT DISORDERS UHIVlflSITY • DESPERATE PATIENTS • ABSENCE OF SATISFACTORY PHARMACOLOGICAL TREATMENTS • POPULAR MEDIA HYPE • ABSENCE OF A SOLID MECHANISTIC UNDERSTANDING • UNCRITICAL ACCEPTANCE OF PROPONENT'S CLAIMS • MYOPIA REGARDING SIDE EFFECTS TERRY l.
    [Show full text]
  • Heparin-Binding EGF-Like Growth Factor Promotes Neuronal Nitric Oxide Synthase Expression and Protects the Enteric Nervous System After Necrotizing Enterocolitis
    Articles | Translational Investigation nature publishing group Heparin-binding EGF-like growth factor promotes neuronal nitric oxide synthase expression and protects the enteric nervous system after necrotizing enterocolitis Yu Zhou1, Yijie Wang1, Jacob Olson1, Jixin Yang1 and Gail E. Besner1 BACKGROUND: Neonatal necrotizing enterocolitis (NEC) is produced by myenteric neurons. Neuronal nitric oxide associated with alterations of the enteric nervous system synthase (nNOS)-producing neurons and choline acetyl (ENS), with loss of neuronal nitric oxide synthase (nNOS)- transferase (ChAT)-producing neurons are two major intest- expressing neurons in the intestine. The aim of this study was inal neuronal subpopulations involved in the regulation of to investigate the roles of heparin-binding EGF-like growth intestinal motility, and nNOS/ChAT misbalance has been factor (HB-EGF) in neural stem cell (NSC) differentiation, nNOS reported in certain inflammatory intestinal diseases and expression, and effects on ENS integrity during genetic intestinal motility disorders (2,3). We have shown experimental NEC. that neonatal NEC is associated with alterations of the ENS, METHODS: The effects of HB-EGF on NSC differentiation and with significant loss of nNOS-expressing neurons not only in nNOS production were determined using cultured enteric the acute stages of the disease but also months later at the NSCs. Myenteric neuronal subpopulations were examined in time of stoma closure (4). This decreased nNOS expression HB-EGF knockout mice. Rat pups were exposed to experi- may explain the intestinal dysmotility seen in NEC patients mental NEC, and the effects of HB-EGF treatment on nNOS even after recovery from the acute event. Current therapy for production and intestinal neuronal apoptosis were intestinal dysmotility is limited mainly to palliation, and new determined.
    [Show full text]
  • Regional Complexity in Enteric Neuron Wiring Reflects Diversity of Motility
    RESEARCH ARTICLE Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine Zhiling Li1, Marlene M Hao2, Chris Van den Haute3,4, Veerle Baekelandt3, Werend Boesmans1,5,6*, Pieter Vanden Berghe1* 1Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium; 2Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia; 3Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; 4Leuven Viral Vector Core, KU Leuven, Leuven, Belgium; 5Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; 6Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium Abstract The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location *For correspondence: and response fingerprint of large populations of enteric neurons upon focal network
    [Show full text]
  • Development of Enteric Neurons and Muscularis Macrophages Marina Avetisyan Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2019 Development of Enteric Neurons and Muscularis Macrophages Marina Avetisyan Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Avetisyan, Marina, "Development of Enteric Neurons and Muscularis Macrophages" (2019). Arts & Sciences Electronic Theses and Dissertations. 1781. https://openscholarship.wustl.edu/art_sci_etds/1781 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Neurosciences Dissertation Examination Committee: Robert O. Heuckeroth, Chair Aaron DiAntonio, Co-Chair Paul Bridgman Joseph Dougherty Kelly Monk Development of Enteric Neurons and Muscularis Macrophages. by Marina Avetisyan A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2019 St. Louis,
    [Show full text]
  • Building a Second Brain in the Bowel
    Building a second brain in the bowel Marina Avetisyan, … , Ellen Merrick Schill, Robert O. Heuckeroth J Clin Invest. 2015;125(3):899-907. https://doi.org/10.1172/JCI76307. Review Series The enteric nervous system (ENS) is sometimes called the “second brain” because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research. Find the latest version: https://jci.me/76307/pdf The Journal of Clinical Investigation REVIEW SERIES: ENTERIC NERVOUS SYSTEM Series Editor: Rodger Liddle Building a second brain in the bowel Marina Avetisyan,1 Ellen Merrick Schill,1 and Robert O. Heuckeroth2 1Washington University School of Medicine, St. Louis, Missouri, USA. 2Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. The enteric nervous system (ENS) is sometimes called the “second brain” because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death.
    [Show full text]
  • Luminal Nutrients Activate Distinct Patterns in Submucosal and Myenteric Neurons in the Mouse Small Intestine
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427232; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Luminal nutrients activate distinct patterns in submucosal and myenteric neurons in the mouse small intestine C. Fung1, M.M. Hao2, Y. Obata3, J. Tack1, V. Pachnis3, W. Boesmans4,5, P. Vanden Berghe1* 1Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium 2Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia 3The Francis Crick Institute, London, UK 4Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands. 5Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium. *Correspondence: Pieter Vanden Berghe, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427232; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Nutrient signals sensed by enteroendocrine cells are conveyed to the enteric nervous system (ENS) to initiate intestinal reflexes. We addressed whether there are specific enteric pathways dedicated to detecting different luminal nutrients. Calcium imaging was performed on intact jejunal preparations from Wnt1-cre;R26R-GCaMP3 and Villin-cre;R26R-GCaMP3 mice which express a fluorescent calcium indicator in their ENS or intestinal epithelium, respectively. Glucose, acetate, and L-phenylalanine were perfused onto the mucosa whilst imaging underlying enteric neurons.
    [Show full text]
  • The Parasympathetic System
    DR MOUIN ABBOUD PR OF ANATOMY In faculity of medecin ( Damascus and Sham uneversities ) Specialist in respiratory diseases الدكتور معين عبود استاذ التشريح في كلية الطب البشري في جامعة دمشق وجامعة الشام الخاصة اختصاصي في أمراض جهاز التنفس DR MOUIN ABBOUD Abdominal viscera Innervation The Innervation Abdominal viscera are innervated by both : extrinsic ) visceral innervation ( involves : . receiving motor impulses from the central nervous system . and sending sensory information to, the central nervous system; and intrinsic components of the nervous system: involves the regulation of digestive tract activities by a generally self-sufficient network of sensory and motor neurons (the enteric nervous system). Visceral innervation The visceral innervation is transmited by Autonomic Plexuses )prevertebral plexus ). By which : these viscera send sensory information back to the central nervous system through visceral afferent fibers and receive motor impulses from the central nervous system through visceral efferent fibers. prevertebral plexus The abdominal prevertebral plexus receives: preganglionic parasympathetic and visceral afferent fibers from the vagus nerves [X]; preganglionic sympathetic and visceral afferent fibers from the thoracic and lumbar splanchnic nerves; preganglionic parasympathetic fibers from the pelvic splanchnic nerves. The Sympathetic Division The sympathetic division consists of the following: Preganglionic fibers in the lateral grey column of the thoracic and upper two lumbar segments of the spinal cord. Ganglionic neurons in : . Sympathetic chain ganglia, also called paravertebral, or lateral ganglia . Collateral ganglia, also known as prevertebral ganglia . Specialized neurons in the interior of the suprarenal gland Postganglionic fibers : to target organs Sectional Organization of the Spinal Cord The parasympathetic system The parasympathetic system is less neatly defined Preganglionic fibers .
    [Show full text]
  • ANSWERS) Start At
    NAME ________________________________ Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html On the left side, click on “Explore,” then click on “The Neuron,” then click on “Millions and Billions of Cells: Type of Neurons” to answer the following questions: 1. A neuron is a ___NERVE___ cell. The brain is made up of about _100__billion neurons. 2. Neurons are similar to other cells in the body in some ways such as: a. Neurons are surrounded by a ________MEMBRANE_______________________. b. Neurons have a ______NUCLEUS____________ that contains __GENES______. c. Neurons contain cytoplasm, mitochondria and other ___ORGANELLES_________. 3. However, neurons differ from other cells in the body in some ways such as: a. Neurons have specialized projections called ____DENDRITES_____ and ___AXONS_. b. Dendrites bring information to the ___CELL BODY__. c. AXONS_take information away from the cell body. d. Neurons communicate with each other through an ___ELECTROCHEMICAL__process. 4. Neurons form specialized connections called ____SYNAPSES_______ and produce special chemicals called ____NEUROTRANSMITTERS__________ that are released at the synapse. Scroll down to the chart comparing axons and dendrites. Fill in the answers: There are several differences between axons and dendrites: AXONS DENDRITES Take information __AWAY__ the cell body Bring information _TOWARD__ the cell body SMOOTH________ Surface ROUGH______ Surface (dendritic spines) Generally only ____1______ per cell Usually ________MANY______ per cell No ______RIBOSOMES______________ Have ribosomes Can have _______MYELIN____________ No ________MYELIN__________ insulation Branch further from the cell body Branch ____NEAR______ the cell body 1 Take the short neuron quiz at the bottom of the page, and correctly answer these questions: 1. Neuron part that releases neurotransmitters into the synaptic cleft.
    [Show full text]