Haversian System of Compact Bone and Comparison Between Endosteal and Periosteal Sides Using Three-Dimensional Reconstruction in Rat

Total Page:16

File Type:pdf, Size:1020Kb

Haversian System of Compact Bone and Comparison Between Endosteal and Periosteal Sides Using Three-Dimensional Reconstruction in Rat Original Article http://dx.doi.org/10.5115/acb.2015.48.4.258 pISSN 2093-3665 eISSN 2093-3673 Haversian system of compact bone and comparison between endosteal and periosteal sides using three-dimensional reconstruction in rat Jeong-Nam Kim1, Jun-Young Lee1, Kang-Jae Shin2, Young-Chul Gil2, Ki-Seok Koh2, Wu-Chul Song2 1Department of Biomedical Laboratory Science, Masan University, Masan, 2Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea Abstract: The current model of compact bone is that of a system of Haversian (longitudinal) canals connected by Volkmann’s (transverse) canals. Models based on either histology or microcomputed tomography do not accurately represent the morphologic detail and microstructure of this system, especially that of the canal networks and their spatial relationships. The aim of the present study was to demonstrate the morphologic pattern and network of the Haversian system and to compare endosteal and periosteal sides in rats using three-dimensional (3D) reconstruction. Ten Sprague-Dawley rats aged 8–10 weeks were used. The femurs were harvested from each rat and fixed, decalcified with 10% EDTA-2Na, serially sectioned at a thickness of 5 mm, and then stained with hematoxylin and eosin. The serial sections were reconstructed three-dimensionally using Reconstruct software. The Haversian canals in the endosteal region were found to be large, highly interconnected, irregular, and close to neighboring canals. In contrast, the canals in the periosteal region were straight and small. This combined application of 3D reconstruction and histology examinations to the Haversian system has confirmed its microstructure, showing a branched network pattern on the endosteal side but not on the periosteal side. Key words: Haversian system, Compact bone, Three-dimensional reconstruction, Microstructure, Histology, Rat Received January 9, 2015; Revised September 11, 2015; Accepted October 1, 2015 Introduction Terminologia Histologica [1-3]. The canals have a concentric lamellar organization and are of equal size. The bone is vas- The morphological and functional unit of the bone is the cularized by vessels that penetrate the matrix from the perio- Haversian system, with textbooks diagrams showing Haver- steum. sian or central (longitudinal) canals connected by Volkmann’s The microstructure of the compact bone is important to or perforating (transverse) canals. Officially, Haversian and bone remodeling and modification in pathologic conditions. Volkmann’s canals are “nutrient and perforating canal” in Therefore, knowledge of the microstructure of compact bone such as the Haversian system is important to understanding remodeling activity, distribution analysis, the pathogenesis of the osteoporosis, and other mechanisms. However, many Corresponding author: Wu-Chul Song studies of the Haversian system have focused only on the Department of Anatomy, Konkuk University School of Medicine, 120 canals themselves due to methodology limitations asso- Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea Tel: +82-2-2030-7819, Fax: +82-2-2030-7845, E-mail: [email protected] ciated with cross-sectional histology and microcomputed tomography [4-7], rather than on the general canal system Copyright © 2015. Anatomy & Cell Biology This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Morphological characteristics of the Haversian system Anat Cell Biol 2015;48:258-261 259 or the spatial relationships between the two types of canals. Tissue processing Knowledge of the overall composition of the Haversian sys- After dehydration and infiltration, the paraffin-embedded tem as well as the constituent canals themselves is very impor- specimens were cut transversely into 150 to 200 serial sections tant when investigating changes relative to the normal system. at a thickness of 5 mm for 3D reconstruction. The sectioned The aim of the present study was to demonstrate the ac- tissues were then stained with hematoxylin and eosin. tual microstructure and morphologic pattern of the Haver- sian system of compact bone using histology and three- 3D reconstruction dimensional (3D) reconstruction, rather than relying on All of the stained sections were photographed using a virtual images. This described reconstruction technique can provide a general view of the architecture of the Haversian sys tem and further the understanding of pathologic progres- Marrow cavity sion of the compact bone. Materials and Methods Materials and sampling Twenty Sprague-Dawley rats aged 8–10 weeks were used. The animals were perfused with 150 ml of saline followed by 600 ml of fixative containing 4% paraformaldehyde in phosphate-buffered saline. The femur was harvested and de- calcified in 5% EDTA-2Na. The specimens were trimmed to 3 mm to make them easier to handle and to facilitate the acquisition of images during fixation. Each specimen was ob- tained from the anterior midshaft of the femur. Fig. 1. Transverse section of the rat femur stained with hematoxylin and eosin. Scale bar=100 mm. Case 1 Case 2 Case 3 Superior view a) Endosteal oblique view Fig. 2. Three-dimensional reconstruc- a) tion of the Haversian system. Different colors represent the different networks a) of the Haversian and Volkmann’s canals. Transparent gray shows the outline of the bone fragment. Many, large, Periosteal and complex reddish networks of the oblique Haversian and Volkmann’s canals are view located on the endosteal side, while rela- tively simple networks are located on the periosteal side. All images have the same magnification. a)Endosteal side. www.acbjournal.org http://dx.doi.org/10.5115/acb.2015.48.4.258 260 Anat Cell Biol 2015;48:258-261 Jeong-Nam Kim, et al 2,048×1,536-pixel digital CCD camera (DP70, Olympus, in the Haversian system indicate that the central canal size Tokyo, Japan). The serial images were aligned manually using is equal in the endosteal and periosteal regions of compact computer software, the Haversian and Volkmann’s canals were bone [1-3]. However, we found that the Haversian system has segmented manually, and all structures were reconstructed a complex pattern of organization that is dominated by bran- three-dimensionally. “Reconstruct” software was used to pro- ching or Volkmann’s canals. Our method of combining 3D duce the 3D images of the Haversian system (this software reconstructions with histology examinations has confirmed can be downloaded from http://synapses.clm.utexas.edu/ the actual morphologic pattern of the Haversian system. tools/reconstruct/reconstruct.stm) [8]. The main result of the present study is that the Haversian system is convoluted and closely interconnected in the endo- Results steal region, while being straight in the periosteal region. The canals are significantly larger in the endosteal region than in The Haversian canals were arranged into concentric rings the periosteal region. Moreover, there are more interstitial and connected to each other by oblique perforating canals in lamellae in the periosteal region. the transverse sections (Fig. 1). However, the network pattern, The microstructure of the Haversian system is charac- spatial relationship between Haversian and Volkmann’s terized by a branched network pattern that differs between canals, and difference between endosteal and periosteal sides the endosteal and periosteal sides. Because previous studies of were difficult to identify in the transverse histology sec- the pathology of the compact bone during osteoporosis have tions. In contrast, all of these features were clearly evident generally focused on the thickness of the compact bone, the in the reconstructed 3D models (Fig. 2). The basic structure present results are useful in providing a general view of the comprises Haversian canals that are large in the endosteal architecture of the Haversian system and for understanding region and highly interconnected. The canals in the endosteal pathologic progression of the compact bone. In particular, region appear irregular and close to neighboring canals. In the in cases of osteoporosis the thickness of the cortical bone is other hand, the canals of the periosteal region are relatively reduced even though the external diameter remains almost small and less interconnected; that is, the network density is intact. It might be that the degree of bone resorption is much significantly higher in the endosteal region than in the perio- greater in the endosteal region due to the presence of a large steal region. The Haversian canals are straight and long and and highly interconnected Haversian system there. parallel to the length of femur. The Volkmann’s canals run The present results have demonstrated that the network perpendicular to the Haversian canals, interconnecting the of the Haversian system can be revealed only by combining latter with each other and the periosteum, and extending in 3D reconstruction with histology observations. We therefore random directions at various angles. further suggest that 3D reconstruction could also be a highly effective tool in other areas of morphology research. Discussion Acknowledgements Haversian canals are a series of tubes around narrow channels formed by lamellae. The Haversian canals sur- This work was supported by the Korea Research Founda-
Recommended publications
  • Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation
    Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation Hajo Thermann, MD, PhD,* Christoph Becher, MD,† Francesca Vannini, MD, PhD,‡ and Sandro Giannini, MD‡ The treatment of osteochondral defects of the talus is still controversial. Matrix-guided treatment options for covering of the defect with a scaffold have gained increasing popularity. Cellular-based autologous chondrocyte implantation (ACI) has undergone a generational development overcoming the surgical drawbacks related to the use of the periosteal flap over time. As ACI is associated with high costs and limited in availability, autologous matrix-induced chondrogenesis, a single-step procedure combining microfracturing of the subchondral bone to release bone marrow mesenchymal stem cells in combination with the coverage of an acellular matrix, has gained increasing popularity. The purposes of this report are to present the arthroscopic approach of the matrix-guided autologous matrix-induced chondrogenesis technique and generational development of ACI in the treatment of chondral and osteochon- dral defects of the talus. Oper Tech Orthop 24:210-215 C 2014 Elsevier Inc. All rights reserved. KEYWORDS cartilage, defect, ankle, talus, AMIC, ACI Introduction Cartilage repair may be obtained by cartilage replacement: (OATS, mosaicplasty) or with techniques aimed to generate a hondral and osteochondral lesions are defects of the newly formed cartilage such as microfracture or autologous Ccartilaginous surface and underlying subchondral bone of chondrocyte implantation (ACI).9-17 the talar dome. These defects are often caused by a single or Arthroscopic debridement and bone marrow stimulation multiple traumatic events, mostly inversion or eversion ankle using the microfracture technique has proven to be an 1,2 sprains in young, active patients.
    [Show full text]
  • Pg 131 Chondroblast -> Chondrocyte (Lacunae) Firm Ground Substance
    Figure 4.8g Connective tissues. Chondroblast ‐> Chondrocyte (Lacunae) Firm ground substance (chondroitin sulfate and water) Collagenous and elastic fibers (g) Cartilage: hyaline No BV or nerves Description: Amorphous but firm Perichondrium (dense irregular) matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx. Matrix Costal Photomicrograph: Hyaline cartilage from the cartilages trachea (750x). Thickness? Metabolism? Copyright © 2010 Pearson Education, Inc. Pg 131 Figure 6.1 The bones and cartilages of the human skeleton. Epiglottis Support Thyroid Larynx Smooth Cartilage in Cartilages in cartilage external ear nose surface Cricoid Trachea Articular Lung Cushions cartilage Cartilage of a joint Cartilage in Costal Intervertebral cartilage disc Respiratory tube cartilages in neck and thorax Pubic Bones of skeleton symphysis Meniscus (padlike Axial skeleton cartilage in Appendicular skeleton knee joint) Cartilages Articular cartilage of a joint Hyaline cartilages Elastic cartilages Fibrocartilages Pg 174 Copyright © 2010 Pearson Education, Inc. Figure 4.8g Connective tissues. (g) Cartilage: hyaline Description: Amorphous but firm matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Introduction
    1 INTRODUCTION STRUCTURE OF NORMAL BONE concentrically around the central canal. The The skeleton serves several important func- haversian canals form an anastomosing system tions, for which its structure is ideally suited. of canals arranged along the long axis of the First, it performs a mechanical function by bone; thus, in cross section, bones appear as supporting the body and providing attachment round openings surrounded by rings of bone. sites for muscles and tendons that provide mo- The lamellae have a large number of lacunae, tion. Second, it protects vital organs and houses which contain osteocytes and connect with the bone marrow. Third, it serves as a reservoir one another through a series of canaliculi. The for various minerals, especially calcium, and has haversian canals are connected to the external a role in meeting the immediate needs of the organism for calcium (3). Bones are divided into two main types: the flat bones of the axial skeleton (skull, scapula, clavicle, vertebra, jaw, and pelvis) and the tubu- lar bones of the appendicular skeleton (9). Both types consist of cortical (or compact) bone and cancellous (or spongy) bone. In a typical long bone such as the femur, the diaphysis, or shaft, is composed of cortical bone surrounding a voluminous marrow, or medul- lary, cavity (fig. 1-1). The epiphyses at the ends of long bones consist mostly of cancellous bone and a thin peripheral rim of cortical bone. In an immature skeleton, the epiphyses are separated from the diaphysis by the epiphyseal cartilage plates. The broad part of the long bone between the epiphyseal plate and the tubular diaphysis is termed the metaphysis.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • Bone Cartilage Dense Fibrous CT (Tendons & Nonelastic Ligaments) Dense Elastic CT (Elastic Ligaments)
    Chapter 6 Content Review Questions 1-8 1. The skeletal system consists of what connective tissues? Bone Cartilage Dense fibrous CT (tendons & nonelastic ligaments) Dense elastic CT (elastic ligaments) List the functions of these tissues. Bone: supports the body, protects internal organs, provides levers on which muscles act, store minerals, and produce blood cells. Cartilage provides a model for bone formation and growth, provides a smooth cushion between adjacent bones, and provides firm, flexible support. Tendons attach muscles to bones and ligaments attach bone to bone. 2. Name the major types of fibers and molecules found in the extracellular matrix of the skeletal system. Collagen Proteoglycans Hydroxyapatite Water Minerals How do they contribute to the functions of tendons, ligaments, cartilage and bones? The collagen fibers of tendons and ligaments make these structures very tough, like ropes or cables. Collagen makes cartilage tough, whereas the water-filled proteoglycans make it smooth and resistant. As a result, cartilage is relatively rigid, but springs back to its original shape if it is bent or slightly compressed, and it is an excellent shock absorber. The extracellular matrix of bone contains collagen and minerals, including calcium and phosphate. Collagen is a tough, ropelike protein, which lends flexible strength to the bone. The mineral component gives the bone compression (weight-bearing) strength. Most of the mineral in the bone is in the form of hydroxyapatite. 3. Define the terms diaphysis, epiphysis, epiphyseal plate, medullary cavity, articular cartilage, periosteum, and endosteum. Diaphysis – the central shaft of a long bone. Epiphysis – the ends of a long bone. Epiphyseal plate – the site of growth in bone length, found between each epiphysis and diaphysis of a long bone and composed of cartilage.
    [Show full text]
  • Calcium Salts Provide Vital Minerals -Lipids Are in Stored Yellow Marrow
    10/12/2011 Primary Functions of Skeletal System 1. support 2. storage of minerals & lipids -calcium salts provide vital minerals -lipids are in stored yellow marrow 3. blood cell production -RBC’s, WBC’s, and other constituents produced 4. protection ribs: heart & lungs skull: brain vertebrae: spinal chord etc. 5. leverage: w/o bone contracting muscles just get short & fat Classification of Bones 3. Flat bones (thin roughly parallel surfaces) • Every adult skeleton contains 206 bones which can be arranged into six broad categories • Roof of skull, ribs, the sternum, scapula according to shape • Provide great protection 1. Long bones (relatively long and slender) • Provide lots of surface area for muscle • Found in arm, forearm, leg, palm, soles, attachment fingers, toes 4. Irregular bones (complex shapes with short, • The femur is the largest and heaviest bone in flat, notched or ridged surfaces) the body • Spinal vertebrae and several skull bones 2. Short Bones (box-like) • Carpal bones in wrist, tarsal bones in ankle 5. Sesamoid bones (generally small, flat, and shaped like sesame seed) • Develop inside tendons, commonly near joints i.e.- the patellae 6. Sutural bones (wormian bones) • Small, flat, irregularly shaped bones, form between flat bones of skull 1 10/12/2011 Each bone contains two types of Osseous Long bones (bone) tissue •Spaces in the joints are filled with synovial fluid 1. Compact (dense) tissue: •The epiphysis in the joint is covered by a layer of •Tightly packed hyaline cartilage called articular cartilage. •Occurs on outside surface of bone for strength •The me du llary cav ity an d the open spaces o f the & protection epiphysis are filled with marrow: 2.
    [Show full text]
  • Dimensional Reconstruction of Haversian Systems in Human
    Journal of Anatomy J. Anat. (2016) doi: 10.1111/joa.12430 Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age Isabel S. Maggiano,1,2 Corey M. Maggiano,2,3 John G. Clement,4 C. David L. Thomas,4 Yasmin Carter5 and David M. L. Cooper1 1Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada 2Department of Anthropology, University of West Georgia, Carrollton, GA, USA 3Department of Anthropology, University of Western Ontario, London, ON, Canada 4Melbourne Dental School, University of Melbourne, Melbourne, Vic., Australia 5Department of Radiology, University of Massachusetts Medical School, Worchester, MA, USA Abstract This study uses synchrotron radiation-based micro-computed tomography (CT) scans to reconstruct three- dimensional networks of Haversian systems in human cortical bone in order to observe and analyse interconnectivity of Haversian systems and the development of total Haversian networks across different ages. A better knowledge of how Haversian systems interact with each other is essential to improve understanding of remodeling mechanisms and bone maintenance; however, previous methodological approaches (e.g. serial sections) did not reveal enough detail to follow the specific morphology of Haversian branching, for example. Accordingly, the aim of the present study was to identify the morphological diversity of branching patterns and transverse connections, and to understand how they change with age. Two types of branching morphologies were identified: lateral branching, resulting in small osteon branches bifurcating off of larger Haversian canals; and dichotomous branching, the formation of two new osteonal branches from one.
    [Show full text]
  • The Female Pelvic Floor Fascia Anatomy: a Systematic Search and Review
    life Systematic Review The Female Pelvic Floor Fascia Anatomy: A Systematic Search and Review Mélanie Roch 1 , Nathaly Gaudreault 1, Marie-Pierre Cyr 1, Gabriel Venne 2, Nathalie J. Bureau 3 and Mélanie Morin 1,* 1 Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Faculty of Medicine and Health Sciences, School of Rehabilitation, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; [email protected] (M.R.); [email protected] (N.G.); [email protected] (M.-P.C.) 2 Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; [email protected] 3 Centre Hospitalier de l’Université de Montréal, Department of Radiology, Radio-Oncology, Nuclear Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; [email protected] * Correspondence: [email protected] Abstract: The female pelvis is a complex anatomical region comprising the pelvic organs, muscles, neurovascular supplies, and fasciae. The anatomy of the pelvic floor and its fascial components are currently poorly described and misunderstood. This systematic search and review aimed to explore and summarize the current state of knowledge on the fascial anatomy of the pelvic floor in women. Methods: A systematic search was performed using Medline and Scopus databases. A synthesis of the findings with a critical appraisal was subsequently carried out. The risk of bias was assessed with the Anatomical Quality Assurance Tool. Results: A total of 39 articles, involving 1192 women, were included in the review. Although the perineal membrane, tendinous arch of pelvic fascia, pubourethral ligaments, rectovaginal fascia, and perineal body were the most frequently described structures, uncertainties were Citation: Roch, M.; Gaudreault, N.; identified in micro- and macro-anatomy.
    [Show full text]
  • Kumka's Response to Stecco's Fascial Nomenclature Editorial
    Journal of Bodywork & Movement Therapies (2014) 18, 591e598 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/jbmt FASCIA SCIENCE AND CLINICAL APPLICATIONS: RESPONSE Kumka’s response to Stecco’s fascial nomenclature editorial Myroslava Kumka, MD, PhD* Canadian Memorial Chiropractic College, Department of Anatomy, 6100 Leslie Street, Toronto, ON M2H 3J1, Canada Received 12 May 2014; received in revised form 13 May 2014; accepted 26 June 2014 Why are there so many discussions? response to the direction of various strains and stimuli. (De Zordo et al., 2009) Embedded with a range of mechanore- The clinical importance of fasciae (involvement in patho- ceptors and free nerve endings, it appears fascia has a role in logical conditions, manipulation, treatment) makes the proprioception, muscle tonicity, and pain generation. fascial system a subject of investigation using techniques (Schleip et al., 2005) Pathology and injury of fascia could ranging from direct imaging and dissections to in vitro potentially lead to modification of the entire efficiency of cellular modeling and mathematical algorithms (Chaudhry the locomotor system (van der Wal and Pubmed Exact, 2009). et al., 2008; Langevin et al., 2007). Despite being a topic of growing interest worldwide, This tissue is important for all manual therapists as a controversies still exist regarding the official definition, pain generator and potentially treatable entity through soft terminology, classification and clinical significance of fascia tissue and joint manipulative techniques. (Day et al., 2009) (Langevin et al., 2009; Mirkin, 2008). It is also reportedly treated with therapeutic modalities Lack of consistent terminology has a negative effect on such as therapeutic ultrasound, microcurrent, low level international communication within and outside many laser, acupuncture, and extracorporeal shockwave therapy.
    [Show full text]
  • Patell O Medical Term
    Patell O Medical Term Delightful and shadowing Brooks respect, but Aube sigmoidally remainders her nankeen. Valedictory Rene nuts some correcting after connectible Micah sliced intransitively. Correctional Richy never summersault so thievishly or hulls any nannies interchangeably. See intracardiac electrophysiological is called a smoothing action to move from the medical term many nurses have a list of a sonogram definitely showed far vision is Medical Language University of Phoenix. Medical Terminology YouScience. Medical Terminology Simplified 4th Edition Gylys Masters Test. Patello-femoral Pain Syndrome OnePointHealth. In medical terminology roots usually indicate a piece part cardio dento pulmono. Definition of PE definition of RO definition of patello difference between WR and. Algeso algesia excessive sensitivity to pain alveolo alveolus. What does in robe in medical terms? QuickStudy Medical Terminology Basics. The term and the right tube in the glans penis is located on. Meaning of Medical Term Medical Term myoso inflammation of muscle 1 cranio surgical repair her skull 2 patello excision of patella 3 teno suture of tendon. Medical Terminology Quiz By melissa91 Sporcle. What the the medical term SARC o mean? Presentation on theme Medical Terminology Get Connected. The term is. Word parts ortho osteo parieto patello pedo petro phalango physo. -ous pertaining to pancreato pancreas para- near camp around patello. What treatment of terms related to proceed with england with greek term for below are called _______________________, or more roots for partial or prone to and contempt. Talo-patello-scaphoid osteolysis is an extremely rare form is primary osteolysis see no term described in two. Medical word analyze the jury terms contract the letter Example.
    [Show full text]