Biology of Bone Repair
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Normal Osteoid Tissue
J Clin Pathol: first published as 10.1136/jcp.25.3.229 on 1 March 1972. Downloaded from J. clin. Path., 1972, 25, 229-232 Normal osteoid tissue VINITA RAINA From the Department of Morbid Anatomy, Institute of Orthopaedics, London SYNOPSIS The results of a histological study of normal osteoid tissue in man, the monkey, the dog, and the rat, using thin microtome sections of plastic-embedded undecalcified bone, are described. Osteoid tissue covers the entire bone surface, except for areas of active resorption, although the thickness of the layer of osteoid tissue varies at different sites and in different species of animals. The histological features of osteoid tissue, apart from its amount, are the same in the different species studied. Distinct bands or zones are recognizable in some layers of osteoid tissue, particularly those of greatest thickness, and their significance is discussed. Some of the histological features of the calcification front are described. Osteoid tissue is defined as unmineralized bone The concept of osteoid tissue as a necessary stage tissue. Its presence in large amounts is a distinctive in bone formation was not accepted by all workers. histological feature of osteomalacia (Sissons and von Recklinghausen (1910) believed that the Aga, 1970), but it is also present in smaller quantities presence of osteoid tissue was the result of with- copyright. in normal conditions and is then usually regarded as drawal of bone mineral from calcified bone ('hali- representing an initial stage in the formation of steresis'). This concept, though not generally calcified bone tissue. accepted, has been revived in recent years in con- It was Virchow, in 1851, on the basis of a histo- nexion with the removal of bone mineral from the logical study of human bone specimens partially or immediate vicinity of osteocytes in calcified bone completely decalcified in hydrochloric acid, who (Belanger, Robichon, Migicovsky, Copp, and first put forward the concept that mineralization Vincent, 1963). -
Mesenchymal Stem Cells in Combination with Hyaluronic Acid
www.nature.com/scientificreports OPEN Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects Received: 1 August 2017 Lang Li1, Xin Duan1, Zhaoxin Fan2, Long Chen1,3, Fei Xing1, Zhao Xu4, Qiang Chen2,5 & Accepted: 19 April 2018 Zhou Xiang1 Published: xx xx xxxx Mesenchymal stem cells (MSCs) and hyaluronic acid (HA) have been found in previous studies to have great potential for medical use. This study aimed to investigate the therapeutic efects of bone marrow mesenchymal stem cells (BMSCs) combined with HA on articular cartilage repair in canines. Twenty-four healthy canines (48 knee-joints), male or female with weight ranging from 5 to 6 kg, were operated on to induce cartilage defect model and divided into 3 groups randomly which received diferent treatments: BMSCs plus HA (BMSCs-HA), HA alone, and saline. Twenty-eight weeks after treatment, all canines were sacrifced and analyzed by gross appearance, magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining, Masson staining, toluidine blue staining, type II collagen immunohistochemistry, gross grading scale and histological scores. MSCs plus HA regenerated more cartilage-like tissue than did HA alone or saline. According to the macroscopic evaluation and histological assessment score, treatment with MSCs plus HA also lead to signifcant improvement in cartilage defects compared to those in the other 2 treatment groups (P < 0.05). These fndings suggested that allogeneic BMSCs plus HA rather than HA alone was efective in promoting the formation of cartilage-like tissue for repairing cartilage defect in canines. Articular cartilage is composed of chondrocyte and extracellular matrix and has an important role in joint move- ment including lubrication, shock absorption and conduction. -
(AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: a Five-Year Follow-Up Prospective Cohort Study
life Communication Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study Filippo Migliorini 1 , Jörg Eschweiler 1, Nicola Maffulli 2,3,4,5,* , Hanno Schenker 1, Arne Driessen 1 , Björn Rath 1,6 and Markus Tingart 1 1 Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; [email protected] (F.M.); [email protected] (J.E.); [email protected] (H.S.); [email protected] (A.D.); [email protected] (B.R.); [email protected] (M.T.) 2 School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire ST4 7QB, UK 3 Barts and the London School of Medicine and Dentistry, London E1 2AD, UK 4 Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK 5 Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria 6 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy * Correspondence: [email protected] Abstract: Introduction: Many procedures are available to manage cartilage defects of the talus, Citation: Migliorini, F.; Eschweiler, J.; including microfracturing (MFx) and Autologous Matrix Induced Chondrogenesis (AMIC). Whether Maffulli, N.; Schenker, H.; Driessen, AMIC or MFx are equivalent for borderline sized defects of the talar shoulder is unclear. Thus, the A.; Rath, B.; Tingart, M. Autologous present study compared the efficacy of primary isolated AMIC versus MFx for borderline sized Matrix Induced Chondrogenesis focal unipolar chondral defects of the talar shoulder at midterm follow-up. -
Systemic Therapy of Mscs in Bone Regeneration: a Systematic Review and Meta-Analysis Jingfei Fu, Yanxue Wang, Yiyang Jiang, Juan Du, Junji Xu* and Yi Liu*
Fu et al. Stem Cell Research & Therapy (2021) 12:377 https://doi.org/10.1186/s13287-021-02456-w REVIEW Open Access Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis Jingfei Fu, Yanxue Wang, Yiyang Jiang, Juan Du, Junji Xu* and Yi Liu* Abstract Objectives: Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of MSCs for bone regeneration in pre-clinical studies. Methods: The article search was conducted in PubMed and Embase databases. Original research articles that assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of injection, and bone diseases. Results: Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV). -
Parathyroid Hormone Stimulates Bone Formation and Resorption In
Proc. Nati. Acad. Sci. USA Vol. 78, No. 5, pp. 3204-3208, May 1981 Medical Sciences Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism (endocrine/mineralization/bone metabolism/cartilage/regulation) GuY A. HOWARD, BRIAN L. BOTTEMILLER, RUSSELL T. TURNER, JEANNE I. RADER, AND DAVID J. BAYLINK American Lake VA Medical Center, Tacoma, Washington 98493; and Department of Medicine, University of Washington, Seattle, Washington 98195 Communicated by Clement A. Finch, January 26, 1981 ABSTRACT We have developed an in vitro system, using em- growing rats with PTH results in an increase in formation and bryonic chicken tibiae grown in a serum-free medium, which ex- resorption (4) and a net gain in bone volume (10-12). We have hibits simultaneous bone formation and resorption. Tibiae from recently obtained similar results in vitro for the acute and 8-day embryos increased in mean (±SD) length (4.0 ± 0.4 to 11.0 chronic effects of PTH (13). Moreover, as reported earlier for ± 0.3 mm) and dry weight (0.30 ± 0.04 to 0.84 ± 0.04 mg) during resorption in rat bone (14), the in vitro effect of PTH in our 12 days in vitro. There was increased incorporation of [3H]proline system is an inductive one in that the continued presence of into hydroxyproline (120 ± 20 to 340 ± 20 cpm/mg of bone per PTH is unnecessary for bone resorption and bone formation to 24 hr) as a measure of collagen synthesis, as well as a 62 ± 5% increase in total calcium and 45Ca taken up as an indication of ac- be stimulated for several days (13). -
Embryonic Cell That Forms Cartilage Medical Term
Embryonic Cell That Forms Cartilage Medical Term Unexploited Gordie languishes: he scumbles his initiatives atweel and esthetically. When Nate gestate his niggardliness Grecizing not post-free enough, is Mikhail windowless? Ship-rigged or millionth, Edgar never enshrining any millionairesses! The crest cell phenotype research in record area forms the body of shift review the Table 1. Where and repair differs substantially augments the embryonic cartilage tissue types of its tension adaptation and cells? In both types for medicine to that cartilage. Cells turn into differentiated stem cells that trace specific tissues and organs. Ambiguous cells the emergence of daughter stem a concept in. Mesenchymal Chondrosarcoma NORD National. Blood cells Chondro Oma Cartilage Tumor Arthro Joints Cartilage creates a. Can disturb blood cells and stromal which manufacture produce fat cartilage and bone. Label by following from NURSING 3345 at University of Texas Medical Branch. Body mostly a laboratory stem cells divide that form more cells called daughter cells. Guidelines for Human Embryonic Stem Cell with Brown. Abstract The skeletal system is formed of bones and cartilage which are. Each tissue cartilage bone and skeletal muscle goes through my different. Medical terms UCL. Please note love the definitions are moving given an explain another word found also a. Definition Stem cells are cells which feature not yet developed a special. The term totipotent refer down the grief that they ever total potential to. Stem from Research Uses Types & Examples Healthline. For cardiac muscle cells and was still pluripotent stem cells may also structures and cartilage that embryonic cell forms a primitive connective tissue physiology as well as macrophages are adequately informed consent. -
Effect of Freeze-Dried Bovine Bone Xenograft on Tumor Necrosis Factor- Alpha Secretion in Human Peripheral Blood Mononuclear Cells
Asian Jr. of Microbiol. Biotech. Env. Sc. Vol. 20 (December Suppl.) : 2018 : S88-S92 © Global Science Publications ISSN-0972-3005 EFFECT OF FREEZE-DRIED BOVINE BONE XENOGRAFT ON TUMOR NECROSIS FACTOR- ALPHA SECRETION IN HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS AHMAD K.M. HUMIDAT1, DAVID B. KAMADJAJA2,3*, CHRIST BIANTO1, ANINDITA Z. RASYIDA1, PURWATI3 AND ACHMAD HARIJADI2 1Residency Program, Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia. 2Department of Oral Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya,Indonesia. 3Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia (Received 25 September, 2018; accepted 15 November, 2018) Key words: Tumor Necrosis Factor , Freeze Dried Bovine Bone Xenograft, Human peripheral blood mononuclear cell. Abstract– Alveolar bone augmentation requires the use of bone graft particles to promote bone formation. Freeze-dried bovine bone xenograft (FDBBX) is a type of bone substitute may be potential as an alternative to autogenous bone graft. However, since it is xenogeneic material, it may trigger body’s immune response and cause early resorption of the graft. Tumor Necrosis Factor- (TNF-) is a cytokine which is released rapidly after trauma or infection and is one of the most abundant mediators in inflammation tissue. The immune system and immune response play a very important role in the concept of bone healing. Human peripheral blood mononuclear cells (hPBMCs) is a critical component of the immune system which release TNF-. This study aims to evaluate FDBBX effect on the secretion of TNF-á in hPBMCs culture. hPBMC cultures were divided into two groups. In experimental groups, the cell was cultured in FDBX conditioned medium of 2.5% dilution while in control group, basic medium was used. -
Interactions Between Bone and Immune Systems: a Focus on the Role of Inflammation in Bone Resorption and Fracture Healing
PERIODICUM BIOLOGORUM UDC 57:61 VOL. 116, No 1, 45–52, 2014 CODEN PDBIAD ISSN 0031-5362 Interactions between bone and immune systems: A focus on the role of inflammation in bone resorption and fracture healing Abstract TOMISLAV KELAVA1,2 ALAN ŠUĆUR1,2 Functional interactions between the immune system and bone tissues are SANIA KUZMAC2,3 reflected in a number of cytokines, chemokines, hormones and other media- 2,3 VEDRAN KATAVIĆ tors regulating the functions of both bone and immune cells. Investigations 1 Department of Physiology and Immunology of the mechanisms of those interactions have become important for the un- University of Zagreb School of Medicine derstanding of the pathogeneses of diseases like inflammatory arthritis, in- [alata 3b, Zagreb-HR 10000, Croatia flammatory bowel disease, periodontal disease and osteoporosis. This review 2 Laboratory for Molecular Immunology first addresses the roles of the inflammatory mediators and mechanisms by University of Zagreb School of Medicine which they cause inflammation-induced bone loss. In the second part of the [alata 12, Zagreb-HR 10000, Croatia review we stress the importance of proinflammatory mediators for normal 3 Department of Anatomy fracture healing. Defective bone remodeling underlying different patho- University of Zagreb School of Medicine logical processes may be caused by disturbed differentiation and function of [alata 3b, Zagreb-HR 10000, Croatia either osteoclast or osteoblast lineage cells. Understanding of the mechanisms governing enhanced differentiation and activation -
Direct Measurement of Bone Resorption and Calcium
Proc. Natl. Acad. Sci. USA Vol. 77, No. 4, pp. 1818-1822, April 1980 Biochemistry Direct measurement of bone resorption and calcium conservation during vitamin D deficiency or hypervitaminosis D ([3Hltetracycline/collagen/chicks/growth modeling/kinetics) LEROY KLEIN Departments of Orthopaedics, Biochemistry, and Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106 Communicated by Oscar D. Ratnoff, December 20,1979 ABSTRACT When bone is remodeled during the growth of complication, various workers (11, 12) have expressed the need a given size bone to a larger size, some bone is resorbed and for a more direct measurement of bone turnover. In addition, some is deposited. Much of the resorbed bone mineral, calcium, tracer methods for calcium kinetics involve only plasma tracer can be reutilized during bone formation. The net and absolute effects of normal growth, vitamin D deficiency, or vitamin D concentrations and focus on net pool turnover rather than on excess were compared on bone resortion, bone formation, and more absolute measurements of bone turnover (13). calcium reutilization. Growing chic were relabeled exten- Bone resorptiont has been observed directly by using histo- sively with three isotopes: 45Ca, [3Htetracycline, and [3H]pro- logical measurements of the increase in diameter of the bone line. Data were obtained weekly during 3 weeks of control marrow space in rapidly growing rats (14). Resorption has been growth, vitamin D deficiency, or vitamin D overdosage while measured kinetically by either 45Ca under steady-state condi- on a nonradioactive diet. Bone resorption as measured by in- creases in the marrow (inner) diameter of the midshaft of the tions in adult rats (15) or 40Ca dilution of the natural isotope femur and humerus and by the weekly losses of total [3Hjtetra- 48Ca in human subjects (16). -
VII. Wound and Fracture Healing
Journal of Rehabilitation Research and Development Rehabilitation R & D Progress Reports 1986 VII. Wound and Fracture Healing VII . Wound and Fracture Healing Electrical Stimulation for Augmentation of Wound Healing Scott R. Crowgey, M.D., and Steven M. Sharpe Veterans Administration Research and Development, Decatur, GA 30033 Sponsor: VA Rehabilitation Research and Development Service Purpose—This project will attempt to identify ing that could be influenced by electrical stimu- aspects of the wound healing process that may lation. Efforts will then be directed toward de- be augmented by the exogenous influence of veloping mathematical models of the possible electromagnetic fields. A theoretical analysis of electrical interaction of electromagnetic fields the possible effects of electromagnetic fields on with cells and cell structures to determine how wound healing will include analyses of the these interactions could be optimized to im- interaction of electromagnetic fields with cellu- prove wound healing. It is anticipated that the lar structures and of the deposition of heat in literature will not contain all the information damaged tissue via exogenously applied energy necessary to develop these models . Any gaps in fields. This analysis will then be used as a basis necessary information and data will be filled, if for developing a plan for future investigations practical, using tissue phantom modeling mate- into the potential application of electrical stim- rials, blood, and possibly even primitive tissue ulation for the augmentation of wound healing. culture exposed to a variety of known electro- The initial research will involve a review of magnetic environments, using easily construct- the literature to identify aspects of wound heal- ed exposure chambers. -
The Healing Pattern of Osteoid Osteomas on Computed Tomography and Magnetic Resonance Imaging After Thermocoagulation
Skeletal Radiol (2007) 36:813–821 DOI 10.1007/s00256-007-0319-1 SCIENTIFIC ARTICLE The healing pattern of osteoid osteomas on computed tomography and magnetic resonance imaging after thermocoagulation Geert M. Vanderschueren & Antoni H. M. Taminiau & Wim R. Obermann & Annette A. van den Berg-Huysmans & Johan L. Bloem & Arian R. van Erkel Received: 16 December 2006 /Revised: 17 February 2007 /Accepted: 23 March 2007 / Published online: 11 May 2007 # ISS 2007 Abstract unsuccessful in 27% (23/86) of patients followed by CT. Objective To compare the healing pattern of osteoid Thermocoagulation was successful in 72% (13/18) of patients osteomas on computed tomography (CT) and magnetic followed by MRI. After treatment, the healing of the nidus on resonance imaging (MRI) after successful and unsuccessful CT was evaluated using different healing patterns (complete thermocoagulation. ossification, minimal nidus rest, decreased size, unchanged Materials and methods Eighty-six patients were examined size or thermonecrosis). On MRI the presence of reactive by CT and 18 patients by dynamic gadolinium-enhanced MRI changes (joint effusion, “oedema-like” changes of bone before and after thermocoagulation for osteoid osteoma. marrow and soft tissue oedema) and the delay time (between Thermocoagulation was successful in 73% (63/86) and arterial and nidus enhancement) were assessed and compared before and after thermocoagulation. G. M. Vanderschueren (*) Results Complete ossification or a minimal nidus rest was Department of Diagnostic Radiology, observed on CT in 58% (16/28) of treatment successes University Hospital of Ghent, De Pintelaan 185, (with > 12 months follow-up), but not in treatment Ghent 9000, Belgium failures. “Oedema-like” changes of bone marrow and/or e-mail: [email protected] soft tissue oedema were seen on MR in all patients before thermocoagulation and in all treatment failures. -
REVIEW ARTICLE Interactions Between GH, IGF-I, Glucocorticoids
0031-3998/02/5202-0137 PEDIATRIC RESEARCH Vol. 52, No. 2, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. REVIEW ARTICLE Interactions between GH, IGF-I, Glucocorticoids, and Thyroid Hormones during Skeletal Growth HELEN ROBSON, THOMAS SIEBLER, STEPHEN M. SHALET, AND GRAHAM R. WILLIAMS Department of Clinical Research [H.R.], Department of Endocrinology [S.M.S.], Christie Hospital National Health Service Trust, Manchester, U.K.; University Children’s Hospital, University of Leipzig, Leipzig, Germany [T.S.]; IC Molecular Endocrinology Group, Division of Medicine and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College School of Science Technology and Medicine, Hammersmith Hospital, London, U.K. [G.R.W.] ABSTRACT Linear growth occurs during development and the childhood Abbreviations years until epiphyseal fusion occurs. This process results from 5'-DI, 5'-iodothyronine deiodinase endochondral ossification in the growth plates of long bones and FGF, fibroblast growth factor is regulated by systemic hormones and paracrine or autocrine FGFR, fibroblast growth factor receptor factors. The major regulators of developmental and childhood GC, glucocorticoid growth are GH, IGF-I, glucocorticoids, and thyroid hormone. GHR, GH receptor Sex steroids are responsible for the pubertal growth spurt and GR, glucocorticoid receptor epiphyseal fusion. This review will consider interactions between HSPG, heparan sulfate proteoglycan GH, IGF-I, glucocorticoids, and thyroid hormone during linear 11HSD, 11-hydroxysteroid dehydrogenase growth. It is well known from physiologic and clinical studies IGF-IR, IGF-I receptor that these hormones interact at the level of the hypothalamus and IGFBP, IGF binding protein pituitary. Interacting effects on peripheral tissues such as liver are Ihh, Indian hedgehog also well understood, but we concentrate here on the epiphyseal JAK-2, Janus-activated kinase-2 growth plate as an important and newly appreciated target organ PTHrP, PTH-related peptide for convergent hormone action.