Pg 131 Chondroblast -> Chondrocyte (Lacunae) Firm Ground Substance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Histology and Connective Tissue Chapter 5
Basic Histology and Connective Tissue Chapter 5 • Histology, the Study of Tissues • Tissue Types • Connective Tissues Histology is the Study of Tissues • 200 different types of cells in the human body. • A Tissue consist of two or more types of cells that function together. • Four basic types of tissues: – epithelial tissue – connective tissue – muscular tissue – nervous tissue • An Organ is a structure with discrete boundaries that is composed of 2 or more tissue types. • Example: skin is an organ composed of epidermal tissue and dermal tissue. Distinguishing Features of Tissue Types • Types of cells (shapes and functions) • Arrangement of cells • Characteristics of the Extracellular Matrix: – proportion of water – types of fibrous proteins – composition of the ground substance • ground substance is the gelatinous material between cells in addition to the water and fibrous proteins • ground substance consistency may be liquid (plasma), rubbery (cartilage), stony (bone), elastic (tendon) • Amount of space occupied by cells versus extracellular matrix distinguishes connective tissue from other tissues – cells of connective tissues are widely separated by a large amount of extracellular matrix – very little extracellular matrix between the cells of epithelia, nerve, and muscle tissue Embryonic Tissues • An embryo begins as a single cell that divides into many cells that eventually forms 3 Primary Layers: – ectoderm (outer layer) • forms epidermis and nervous system – endoderm (inner layer) • forms digestive glands and the mucous membrane lining digestive tract and respiratory system – mesoderm (middle layer) • Forms muscle, bone, blood and other organs. Histotechnology • Preparation of specimens for histology: – preserve tissue in a fixative to prevent decay (formalin) – dehydrate in solvents like alcohol and xylene – embed in wax or plastic – slice into very thin sections only 1 or 2 cells thick – float slices on water and mount on slides and then add color with stains • Sectioning an organ or tissue reduces a 3-dimensional structure to a 2- dimensional slice. -
Connective Tissue • Includes Things Like Bone, Fat, & Blood. All
Connective Tissue • includes things like bone, fat, & blood. All connective tissues include: 1. specialized cells 2.extracellular protein fibers } matrix that surrounds cells. 3. a fluid known as ground substance Functions include: Connective tissues come in 3 major types •Establish a structural framework 1. Connective tissue proper •Transporting fluids from one part of the body to another 2. Fluid Connective Tissue •Protecting delicate organs •Supporting, surrounding and interconnecting 3. Supporting Connective Tissue other tissue types • Other CTP cells are involved in defense and Connective Tissue Proper large repair jobs (these roam from site to site as • Connective tissue with many cell types and needed) extracellular fibers in a syrupy ground substance. A. Macrophages • Some cells of CTP are involved w/repair, B. Mast cells maintenance, and energy storage. C. Lymphocytes a. Fibroblasts D. plasma cells E. Microphages b. Adipocytes • The number of cells and cell types within a tissue at c. Mesenchymal cells any given moment varies depending on local conditions. 1 The Cell Population C. Adipocytes A. Fibroblasts • Fat cells • Most abundant cells in CTP • Typically contain a single enormous lipid droplet • Permanent resident of CTP (always present) • Other organelles squeezed to side of cell wall • Produce proteins to make the ground substance (resemble a class ring) very viscous • Also secret e prot ei ns th at mak e th e fib ers DMD. Mesenc hyma l ce lls • Stem cells B. Macrophages • Large amoeboid cells • Respond to injury by dividing into daughter cells which differentiate into connective tissue cells • Engulf & digest pathogens or damaged cells that enter the tissue • Release chemicals that activate the bodies immune system E. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Adipose Derived Mesenchymal Stem Cell Differentiation Into Adipogenic and Osteogenic Stem Cells
vv ISSN: 2641-3000 DOI: https://dx.doi.org/10.17352/sscrt LIFE SCIENCES GROUP Hassan IH El Sayyad1*, Mohamed A Sobh2, Soad A Khalifa1 and Omnia KR Research Article 3 El-Sayyad Adipose Derived Mesenchymal Stem 1Zoology Department, Faculty of Science, Egypt 2Urology & Nephrology Center, Research Center, Egypt Cell Differentiation into Adipogenic 3Pediatric Mansoura University Hospital, Mansoura University, Egypt and Osteogenic Stem Cells Dates: Received: 08 December, 2016; Accepted: 23 December, 2016; Published: 29 December, 2016 *Corresponding author: Hassan IH El-Sayyad, Depart- Abstract ment of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt, Tel: 0020502254850; Objective: Lipoaspiration of human breast fats are important source of adipocyte stem cells E-mail: (hAMSCs) which play a great role in regenerative medicine. The present study illustrates its capability of its transformation and characterization of adipocyte, osteogenic or chondrogenic cells. https://www.peertechz.com Methods and results: The hAMSCs were positive for CD13, CD29, CD105 and CD90 and negative CD34 and CD 14. The hAMSCs were cultured in adipogenic or osteogenic culture for 4,7,14 & 21 days. Gene expression for adipogenic (PCR of leptin, peroxisome proliferator-activated receptor-γ and lipoprotein lipase) and osteogenic (osteocalcin) cells were carried out. Biochemical assessments of adipogenic (lipoprotein lipase enzyme and glycerol-3-phosphate dehydrogenase) and osteogenic (alkaline phosphatase, B-galactosidase and calcium content) markers. Also, light and transmission electron microscopic investigation of adipocyte stem cell culture were investigated at 4,7,14 & 21 days in both two models. Adipocyte derived from hAMSCs displayed fi broblastic morphology and confl uency at 7 days and fl at-shape with positive oil red staining at 14 &21 days. -
Connective Tissue N. Swailes, Ph.D. Department of Anatomy and Cell
Module 1.3: Connective Tissue N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 13th Edition, Chapter 5 (also via AccessMedicine) Learning objectives 1) Name the three major classes of connective tissue and give examples of each. 2) Identify and describe the origin, organization and fate of embryonic connective tissue 3) Identify and discuss the functional properties imparted to tissue by the extracellular matrix: a. fibers (elastin, collagen Type I, II, III, IV and VII) b. ground substance (glycosaminoglycans, proteoglycans, glycoproteins) 4) Distinguish between different connective tissue cells and discuss their roles: a. fibroblasts b. adipocytes c. macrophages d. mast cells e. lymphocytes f. plasma cells g. eosinophils h. neutrophils 5) Classify the different connective tissues proper and compare and contrast their functional roles within an organ. Introduction The human body is made up of only four basic tissues: 1. Epithelial tissue 2. Connective tissue 3. Muscle tissue 4. Nervous tissue By adjusting the organization, composition and special features associated with each of these tissues is is possible to impart a wide variety of functions to the region or organ that they form. During this lecture you will examine the basic histological structure and function of Connective Tissue. 1 | Page: Connective Tissue Swailes a loose meshwork Part A: General characteristics of connective tissues that cushions and allows diffusion A1. There are three major classes of connective tissue i. Connective tissues proper - the most common class of connective tissue in the body. -
Connectomics of the Lacuno-Canalicular Network in Bone
The Small World of Osteocytes: Connectomics of the Lacuno-Canalicular Network in Bone Philip Kollmannsberger1,2,*, Michael Kerschnitzki1,3, Felix Repp1, Wolfgang Wagermaier1, Richard Weinkamer1, Peter Fratzl1 1Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany 2ETH Zurich, Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland 3Weizmann Institute of Science, Dept. of Structural Biology, Rehovot, Israel * current address: Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany Abstract Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. -
Measurement of the Diffusion Pathway Between Osteocyte Lacuna and Blood
Henry Ford Hospital Medical Journal Volume 9 Number 1 Article 22 3-1961 Halo Volume - Part IV: Measurement of the Diffusion Pathway Between Osteocyte Lacuna and Blood Harold M. Frost Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Frost, Harold M. (1961) "Halo Volume - Part IV: Measurement of the Diffusion Pathway Between Osteocyte Lacuna and Blood," Henry Ford Hospital Medical Bulletin : Vol. 9 : No. 1 , 137-144. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol9/iss1/22 This Part II is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. HALO VOLUME - PART IV MEASUREMENT OF THE DIFFUSION PATHWAY BETWEEN OSTEOCYTE LACUNA AND BLOOD HAROLD M. FROST, M.D. INTRODUCTION Thc osteocyte differs trom the rest of thc somatic cells in that it resides in a lacuna with walls made of bone. With the exception of halo volume peculiarities," the bone enveloping an osteocyte is impervious to organic and inorganic ions and molecules. If no special provision for diffusion of nutrients existed, osteocytes would promptly dic.^ A diffusion pathway is provided thc osteocytes in thc system of canaliculae which -onnect osteocyte lacunae to vascular channels. This is the pathway through which he average osteocyte obtains anabolic substances and excretes catabolic substances. \ u. Jt ( Figure 1 "•oo X. Fresh, undecalcified, basic fuchsin stained section of human tibia. -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
Bone Markings / Features on Bones
08/05/2016 Bone Markings : Skeletal System Search Custom Search Like Tweet Home Health News Human Body Biology Chemistry Glossary Textbooks Bone Disorders Ads by Google ► Bone Tissue ► Bone Marrow ► Human Skull Bone ► Bone on Bone Knee Sun 8 May 2016 Bone Markings / Features on Bones Human Body Study Section Bone markings and the features of bones (including the correct words used to describe them) are often required by firstlevel courses in human anatomy and associated health science subjects. It is important to be familiar with the terminology used to Human Body Index refer to bone markings in order to communicate effectively with professionals involved in healthcare, research, forensics, and Health Glossary related disciplines. More about Bones and the Skeletal System: The following terms used to describe bone markings or features on bones are in alphabetical order with short definitions: Human Skeleton Axial and Appendicular Word / Term Meaning / Description Type of Example(s) Skeleton (Bone Marking or bone The Structure and Feature) marking Functions of Bones Types of Bones 1. Angle A corner Feature of Inferior angle (lower) and superior angle (upper) are Bone Markings & Features shape of bone the rounded angles or "corners" of the scapula. on Bones Disorders of the Skeletal 2. Body The main portion of a bone The diaphysis of long bones such as the humerus. System Curvature of the Spine 3. Condyle Rounded bump or large rounded Process The medial condyle of the femur (bone), upperleg. prominence. Such rounded surfaces forms joints Types of Joints usually fit into a fossa on another bone to Specific bones: form a joint. -
16 Cartilage
Cartilage Cartilage serves as a rigid yet lightweight and flexible supporting tissue. It forms the framework for the respiratory passages to prevent their collapse, provides smooth "bearings" at joints, and forms a cushion between the vertebrae, acting as a shock absorber for the spine. Cartilage is important in determining the size and shape of bones and provides the growing areas in many bones. Its capacity for rapid growth while maintaining stiffness makes cartilage suitable for the embryonic skeleton. About 75% of the water in cartilage is bound to proteoglycans, and these compounds are important in the transport of fluids, electrolytes, and nutrients throughout the cartilage matrix. Although adapted to provide support, cartilage contains only the usual elements of connective tissue cells, fibers, and ground substance. It is the ground substance that gives cartilage its firm consistency and ability to withstand compression and shearing forces. Collagen and elastic fibers embedded in the ground substance impart tensile strength and elasticity. Together, the fibers and ground substance form the matrix of cartilage. Cartilage differs from other connective tissues in that it lacks nerves, blood and lymphatic vessels and is nourished entirely by diffusion of materials from blood vessels in adjacent tissues. Although relatively rigid, the cartilage matrix has high water content and is freely permeable, even to fairly large particles. Classification of cartilage into hyaline, elastic, and fibrous types is based on differences in the abundance and type of fibers in the matrix. Hyaline Cartilage Hyaline cartilage is the most common type of cartilage and forms the costal cartilages, articular cartilages of joints, and cartilages of the nose, larynx, trachea, and bronchi. -
Download File
Cartilage Development and Maturation In Vitro and In Vivo Johnathan Ng Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2017 © 2017 Johnathan Ng All rights reserved Abstract Cartilage Development and Maturation In Vitro and In Vivo Johnathan Ng The articular cartilage has a limited capacity to regenerate. Cartilage lesions often result in degeneration, leading to osteoarthritis. Current treatments are mostly palliative and reparative, and fail to restore cartilage function in the long term due to the replacement of hyaline cartilage with fibrocartilage. Although a stem-cell based approach towards regenerating the articular cartilage is attractive, cartilage generated from human mesenchymal stem cells (hMSCs) often lack the function, organization and stability of the native cartilage. Thus, there is a need to develop effective methods to engineer physiologic cartilage tissues from hMSCs in vitro and assess their outcomes in vivo. This dissertation focused on three coordinated aims: establish a simple in vivo model for studying the maturation of osteochondral tissues by showing that subcutaneous implantation in a mouse recapitulates native endochondral ossification (Aim 1), (ii) develop a robust method for engineering physiologic cartilage discs from self-assembling hMSCs (Aim 2), and (iii) improve the organization and stability of cartilage discs by implementing spatiotemporal control during induction in vitro (Aim 3). First, the usefulness of subcutaneous implantation in mice for studying the development and maintenance of osteochondral tissues in vivo was determined. By studying juvenile bovine osteochondral tissues, similarities in the profiles of endochondral ossification between the native and ectopic processes were observed. -
Human Anatomy and Physiology
LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.