Basic Histology and Connective Tissue Chapter 5

Total Page:16

File Type:pdf, Size:1020Kb

Basic Histology and Connective Tissue Chapter 5 Basic Histology and Connective Tissue Chapter 5 • Histology, the Study of Tissues • Tissue Types • Connective Tissues Histology is the Study of Tissues • 200 different types of cells in the human body. • A Tissue consist of two or more types of cells that function together. • Four basic types of tissues: – epithelial tissue – connective tissue – muscular tissue – nervous tissue • An Organ is a structure with discrete boundaries that is composed of 2 or more tissue types. • Example: skin is an organ composed of epidermal tissue and dermal tissue. Distinguishing Features of Tissue Types • Types of cells (shapes and functions) • Arrangement of cells • Characteristics of the Extracellular Matrix: – proportion of water – types of fibrous proteins – composition of the ground substance • ground substance is the gelatinous material between cells in addition to the water and fibrous proteins • ground substance consistency may be liquid (plasma), rubbery (cartilage), stony (bone), elastic (tendon) • Amount of space occupied by cells versus extracellular matrix distinguishes connective tissue from other tissues – cells of connective tissues are widely separated by a large amount of extracellular matrix – very little extracellular matrix between the cells of epithelia, nerve, and muscle tissue Embryonic Tissues • An embryo begins as a single cell that divides into many cells that eventually forms 3 Primary Layers: – ectoderm (outer layer) • forms epidermis and nervous system – endoderm (inner layer) • forms digestive glands and the mucous membrane lining digestive tract and respiratory system – mesoderm (middle layer) • Forms muscle, bone, blood and other organs. Histotechnology • Preparation of specimens for histology: – preserve tissue in a fixative to prevent decay (formalin) – dehydrate in solvents like alcohol and xylene – embed in wax or plastic – slice into very thin sections only 1 or 2 cells thick – float slices on water and mount on slides and then add color with stains • Sectioning an organ or tissue reduces a 3-dimensional structure to a 2- dimensional slice. Planes of Section Longitudinal section – tissue cut along the longest direction of a structure Cross section – tissue cut perpendicular to the length of a structure Oblique section – tissue cut at an angle between a cross section and a longitudinal section Two Dimensional Sections of Solid Three Dimensional Objects 1 2 3 4 5 • Slicing through a boiled egg is similar to sectioning a cell and its nucleus. 1 5 • Slices 1 and 5 miss the yolk. • Yolk appears larger 2 3 4 in section 3 than in sections 2 and 4. Sections of Complex Hollow Structures A B • Image A is a cross section of a curved tubular structure like a blood vessel or a section of intestine. • Image B is a longitudinal section of a spiraling, tubular structure like a sweat gland. • Notice what a single slice could look like. Epithelial Tissue (Epithelia) • One or more layers of closely adhering cells. • Forms a flat sheet with an unattached free surface (may be exposed to the environment or an internal body cavity) and a basal surface attached to the basement membrane made of collagen. • Epithelia are avascular. Epithelial cells depend on diffusion of nutrients from capillaries in the underlying connective tissue or from the free surface. • Epithelia are innervated by sensory neurons. • Basement membrane is a is semi-permeable layer of collagen and adhesive proteins that anchors epithelial cells to underlying connective tissue. • The connective tissue under an epithelium is called the lamina propria. Free Surface Basal Surface Lamina Propria Naming Epithelia Epithelia are named for: • the number of layers of cells – simple epithelium = one layer of cells – stratified epithelium = more than one layer of cells – pseudostratified epithelium = simple that looks stratified • the shape of cells at the surface – squamous – cuboidal – columnar – transitional • surface modifications – cilia – microvilli – keratinization Simple Squamous Epithelium • Single row of squamous (flat) cells. • Can allow rapid diffusion of substances or secretion of fluid. • Example: lining of blood vessels or lining of lung alveoli Simple Cuboidal Epithelium • Single row of cube-shaped cells • Functions include absorption, secretion, conduction • Example: most kidney tubules Simple Columnar Epithelium Microvilli Absorptive Cell Mucus Goblet Cell Nucleus • Single row of tall, narrow cells • Free Surface may have microvilli or cilia • Layer of microvilli is called the brush border • Functions: absorption, secretion (of mucus) • Example: Lines the intestines Pseudostratified Epithelium Cilia Goblet Cells Basal Cells • Single row of cells all attached to basement membrane • Not all cells reach the free surface – nuclei of basal cells give a stratified appearance • Secretes and propels respiratory mucus • Example: lining of trachea Mucous Membranes • Consists of a mucous-producing epithelium and underlying layers of connective tissue (lamina propria) and smooth muscle (muscularis mucosae). • Lines passageways that open to the exterior: digestive, respiratory, urinary and reproductive tracts. • Mucous forms a barrier and traps foreign particles or pathogens. • Epithelia of upper respiratory tract and parts of the reproductive tract (oviducts) are ciliated to sweep the mucous out of the body. Stratified Epithelia • Composed of more than one layer of cells. • Always named for shape of surface cells. • Deepest cells sit on basement membrane and are the source of replacement cells for the epithelium. • Keratinization: – keratinized epithelium has surface layer of dead cells that contain abundant protein and are surrounded by lipids – nonkeratinized epithelium has living cells with nuclei in all layers Nonkeratinized Stratified Squamous • Stratified epithelium of living cells forms an abrasion-resistant, moist, slippery layer. • Examples: lining of the mouth, esophagus, vagina Keratinized Stratified Squamous Epithelium dead, keratinized epithelial cells living epithelial cells connective tissue • Surface layer of dead squamous cells surrounded by lipids and packed with granules of keratin protein. • Dead layer is “keratinized” or “cornified”. • Retards water loss and prevents penetration of microorganisms. • Example: skin Stratified Cuboidal and Columnar Epithelium sweat gland duct kidney collecting duct • In certain ducts, stratified columnar and cuboidal epithelia can occur. As epithelial types, both are uncommon. Basal cells are typically cuboidal with surface cells either columnar or cuboidal. • Example: large ducts of salivary glands Stratified Columnar Epithelium Transitional Epithelium • Stratified epithelium with rounded (domed) surface cells. • Stretches to allow storage of urine. • Example: urinary bladder. Quiz is on material up to this point. Intercellular Junctions • All cells except blood cells are anchored to each other or to the matrix surrounding them by intercellular junctions. Tight Junctions • Tight junctions completely encircle the cell (like a sweat band around a person’s head) • Tight Junctions form a zipper-like pattern of complementary grooves and ridges that prevent substances and bacteria from passing between cells. Tight Junctions Desmosomes • Attachment between cells that holds them together against mechanical stress (shearing forces). • A mesh of protein filaments connects integral membrane proteins and cytoskeletal proteins. • Abundant in muscle and skin • Hemidesmosomes attach cells to the basement membrane. Desmosome Hemidesmosome Gap Junctions • Also called communicating junctions. • Cluster of tube-shaped transmembrane proteins that make channels between cells. • Small solutes and electrical signals pass directly from cell to cell and can synchronize the activity of groups of cells. • Found in embryos, cardiac muscle and smooth muscle. Gap Junction Glands • Glands secrete substances for elimination or for use elsewhere in the body • Glands are composed predominantly of epithelial tissue • Exocrine glands maintain connection to the surface through a duct (examples: sweat glands, salivary glands) • Endocrine glands have no ducts but secrete their products (hormones) onto capillaries for absorption directly into bloodstream (pituitary, adrenal) or into interstitial fluid • Mixed organs have both types of glands: – pancreas secretes digestive enzymes into ducts and hormones into blood – gonads release gametes into ducts and secrete hormones into blood Types of Glandular Secretions • Serous – thin, watery secretions such as sweat, milk, tears and digestive juices. • Mucus – the sticky secretion called mucus is a glycoprotein, mucin, that absorbs water • Mixed Glands secrete both serous fluid and mucus • Note: Mucus is a noun. Mucous is an adjective. “Mucus is secreted by mucous glands.” • Cellular mechanisms of glandular secretion include: 1) merocrine 2) apocrine 3) holocrine Merocrine Secretion • Cells of Merocrine Glands release their product by exocytosis. • Clusters of secretroy Duct cells are called acini. • Products include tears, sweat, milk, pancreatic enzymes, gastric enzymes and acid Acinus Cellular Mechanisms of Glandular Secretion 1) Merocrine secretion is the most common type of glandular secretion. Secretory cells produce secretory granules from the Golgi. Secretory granules gather at the apical region of the cell. Then, the granule’s membrane fuses with the apical membrane of the cell and the contents of the granule are opened and released by the process of exocytosis. Cellular Mechanisms of Glandular Secretion
Recommended publications
  • Connective Tissue • Includes Things Like Bone, Fat, & Blood. All
    Connective Tissue • includes things like bone, fat, & blood. All connective tissues include: 1. specialized cells 2.extracellular protein fibers } matrix that surrounds cells. 3. a fluid known as ground substance Functions include: Connective tissues come in 3 major types •Establish a structural framework 1. Connective tissue proper •Transporting fluids from one part of the body to another 2. Fluid Connective Tissue •Protecting delicate organs •Supporting, surrounding and interconnecting 3. Supporting Connective Tissue other tissue types • Other CTP cells are involved in defense and Connective Tissue Proper large repair jobs (these roam from site to site as • Connective tissue with many cell types and needed) extracellular fibers in a syrupy ground substance. A. Macrophages • Some cells of CTP are involved w/repair, B. Mast cells maintenance, and energy storage. C. Lymphocytes a. Fibroblasts D. plasma cells E. Microphages b. Adipocytes • The number of cells and cell types within a tissue at c. Mesenchymal cells any given moment varies depending on local conditions. 1 The Cell Population C. Adipocytes A. Fibroblasts • Fat cells • Most abundant cells in CTP • Typically contain a single enormous lipid droplet • Permanent resident of CTP (always present) • Other organelles squeezed to side of cell wall • Produce proteins to make the ground substance (resemble a class ring) very viscous • Also secret e prot ei ns th at mak e th e fib ers DMD. Mesenc hyma l ce lls • Stem cells B. Macrophages • Large amoeboid cells • Respond to injury by dividing into daughter cells which differentiate into connective tissue cells • Engulf & digest pathogens or damaged cells that enter the tissue • Release chemicals that activate the bodies immune system E.
    [Show full text]
  • Connective Tissue N. Swailes, Ph.D. Department of Anatomy and Cell
    Module 1.3: Connective Tissue N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 13th Edition, Chapter 5 (also via AccessMedicine) Learning objectives 1) Name the three major classes of connective tissue and give examples of each. 2) Identify and describe the origin, organization and fate of embryonic connective tissue 3) Identify and discuss the functional properties imparted to tissue by the extracellular matrix: a. fibers (elastin, collagen Type I, II, III, IV and VII) b. ground substance (glycosaminoglycans, proteoglycans, glycoproteins) 4) Distinguish between different connective tissue cells and discuss their roles: a. fibroblasts b. adipocytes c. macrophages d. mast cells e. lymphocytes f. plasma cells g. eosinophils h. neutrophils 5) Classify the different connective tissues proper and compare and contrast their functional roles within an organ. Introduction The human body is made up of only four basic tissues: 1. Epithelial tissue 2. Connective tissue 3. Muscle tissue 4. Nervous tissue By adjusting the organization, composition and special features associated with each of these tissues is is possible to impart a wide variety of functions to the region or organ that they form. During this lecture you will examine the basic histological structure and function of Connective Tissue. 1 | Page: Connective Tissue Swailes a loose meshwork Part A: General characteristics of connective tissues that cushions and allows diffusion A1. There are three major classes of connective tissue i. Connective tissues proper - the most common class of connective tissue in the body.
    [Show full text]
  • Pg 131 Chondroblast -> Chondrocyte (Lacunae) Firm Ground Substance
    Figure 4.8g Connective tissues. Chondroblast ‐> Chondrocyte (Lacunae) Firm ground substance (chondroitin sulfate and water) Collagenous and elastic fibers (g) Cartilage: hyaline No BV or nerves Description: Amorphous but firm Perichondrium (dense irregular) matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx. Matrix Costal Photomicrograph: Hyaline cartilage from the cartilages trachea (750x). Thickness? Metabolism? Copyright © 2010 Pearson Education, Inc. Pg 131 Figure 6.1 The bones and cartilages of the human skeleton. Epiglottis Support Thyroid Larynx Smooth Cartilage in Cartilages in cartilage external ear nose surface Cricoid Trachea Articular Lung Cushions cartilage Cartilage of a joint Cartilage in Costal Intervertebral cartilage disc Respiratory tube cartilages in neck and thorax Pubic Bones of skeleton symphysis Meniscus (padlike Axial skeleton cartilage in Appendicular skeleton knee joint) Cartilages Articular cartilage of a joint Hyaline cartilages Elastic cartilages Fibrocartilages Pg 174 Copyright © 2010 Pearson Education, Inc. Figure 4.8g Connective tissues. (g) Cartilage: hyaline Description: Amorphous but firm matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx.
    [Show full text]
  • Normal Gross and Histologic Features of the Gastrointestinal Tract
    NORMAL GROSS AND HISTOLOGIC 1 FEATURES OF THE GASTROINTESTINAL TRACT THE NORMAL ESOPHAGUS left gastric, left phrenic, and left hepatic accessory arteries. Veins in the proximal and mid esopha- Anatomy gus drain into the systemic circulation, whereas Gross Anatomy. The adult esophagus is a the short gastric and left gastric veins of the muscular tube measuring approximately 25 cm portal system drain the distal esophagus. Linear and extending from the lower border of the cri- arrays of large caliber veins are unique to the distal coid cartilage to the gastroesophageal junction. esophagus and can be a helpful clue to the site of It lies posterior to the trachea and left atrium a biopsy when extensive cardiac-type mucosa is in the mediastinum but deviates slightly to the present near the gastroesophageal junction (4). left before descending to the diaphragm, where Lymphatic vessels are present in all layers of the it traverses the hiatus and enters the abdomen. esophagus. They drain to paratracheal and deep The subdiaphragmatic esophagus lies against cervical lymph nodes in the cervical esophagus, the posterior surface of the left hepatic lobe (1). bronchial and posterior mediastinal lymph nodes The International Classification of Diseases in the thoracic esophagus, and left gastric lymph and the American Joint Commission on Cancer nodes in the abdominal esophagus. divide the esophagus into upper, middle, and lower thirds, whereas endoscopists measure distance to points in the esophagus relative to the incisors (2). The esophagus begins 15 cm from the incisors and extends 40 cm from the incisors in the average adult (3). The upper and lower esophageal sphincters represent areas of increased resting tone but lack anatomic landmarks; they are located 15 to 18 cm from the incisors and slightly proximal to the gastroesophageal junction, respectively.
    [Show full text]
  • The Plantar Aponeurosis in Fetuses and Adults: an Aponeurosis Or Fascia?
    Int. J. Morphol., 35(2):684-690, 2017. The Plantar Aponeurosis in Fetuses and Adults: An Aponeurosis or Fascia? La Aponeurosis Plantar en Fetos y Adultos: ¿Aponeurosis o Fascia? A. Kalicharan; P. Pillay; C.O. Rennie; B.Z. De Gama & K.S. Satyapal KALICHARAN, A.; PILLAY, P.; RENNIE, C.O.; DE GAMA, B. Z. & SATYAPAL, K. S. The plantar aponeurosis in fetuses and adults: An aponeurosis or fascia? Int. J. Morphol., 35(2):684-690, 2017. SUMMARY: The plantar aponeurosis (PA), which is a thickened layer of deep fascia located on the plantar surface of the foot, is comprised of three parts. There are differing opinions on its nomenclature since various authors use the terms PA and plantar fascia (PF) interchangeably. In addition, the variable classifications of its parts has led to confusion. In order to assess the nature of the PA, this study documented its morphology. Furthermore, a pilot histological analysis was conducted to examine whether the structure is an aponeurosis or fascia. This study comprised of a morphological analysis of the three parts of the PA by micro- and macro-dissection of 50 fetal and 50 adult cadaveric feet, respectively (total n=100). Furthermore, a pilot histological analysis was conducted on five fetuses (n=10) and five adults (n=10) (total n=20). In each foot, the histological analysis was conducted on the three parts of the plantar aponeurosis, i.e. the central, lateral, and medial at their calcaneal origin (total n=60). Fetuses: i) Morphology: In 66 % (33/50) of the specimens, the standard anatomical pattern was observed, viz.
    [Show full text]
  • Mbios 401: Lecture 10.2 Extracellular Matrix Slide #1 Extracellular Matrix
    MBios 401: Lecture 10.2 Extracellular Matrix Slide #1 Extracellular Matrix Shelden, Chapter 19, Basal Lamina. Audio: The extracellular matrix is the only topic in this course where we’ll be discussing something that’s fundamentally not a cell or part of a cell. Instead, the extracellular matrix, or ECM, is mostly made up of a material known as ground substance, along with a variety of types of imbedded protein fibers. Cells are the third and least abundant component of the extracellular matrix. However, since the extracellular matrix is made by cells and plays a significant role in determining the behavior of cells in it, we’ll discuss the cells of the extracellular matrix briefly. Every distinct tissue in an organism expresses characteristic extracellular matrix components, which gives the tissue its physical characteristics and also give the cells imbedded in it signals that they have to interpret correctly. As a consequence, the composition of the extracellular matrix is highly variable, and we’ll be looking at some of the molecular mechanisms that give rise to this variability. However, there are only two major types of extracellular matrix materials, which are shown in the cartoon image at the top of this slide. Most of this picture is filled with the first type, which includes the grey shaded material and the red and green imbedded fibers. This tissue, which is called connective tissue, forms most of the extracellular matrix material in our bodies. It has a variety of roles, including the formation of conduits for nerves and blood cells. It also provides supporting material for cellular organs, such as the liver and kidney and it performs a variety of mechanical roles in our bodies, including the formation of the skeletal system and things like tendons and ligaments.
    [Show full text]
  • Connective Tissue 2
    Tissue Physiology Connective tissue is one of the most abundant and widely distributed tissues in the body. It forms our bones, surrounds our organs, allows for the integrity of our neural and vascular system, cushions and lubricates our joints, and connects the muscles to our skeleton. Connective tissue serves multiple functions. It provides the organism with shape and mechanical support. Also, it modulates cell migration, growth, and differentiation. The following are major features of connective tissue: structural and mechanical, defense, nutrition and transport of molecules and storage. Connective tissue supports the shape of cells, tissues, and organs interacting with the cytoskeleton. The most obvious structural connective tissue is bone, comprising the skeleton and supporting the entire organism. It contains cells and metabolites important in immune function, such as inflammation, and in tissue repair after injury. Blood and blood vessels are connective tissue, which transports substances throughout the body. The nervous system is housed within connective tissue. Components in connective tissue regulate movement of nutrients between cells. Adipose tissue is a unique connective tissue, providing storage of energy and insulation. Connective tissue function is mediated by its different components, most of which are macromolecules that interact with one another and with the cells. Varying the proportions and the arrangement of the individual components determines the function of the particular tissue. Nutrient deficiencies may disrupt regulation of tissue synthesis and degradation. Connective tissue is metabolically active and serves many functions. The tissue consists of three basic components: fibers, ground substance, and cells. Outside the cell the fibers and ground substance form the extra cellular matrix.
    [Show full text]
  • Chapter 2 Extracellular Matrix and Cardiac Remodeling
    Chapter 2 Extracellular Matrix and Cardiac Remodeling Bodh I. Jugdutt University of Alberta‚ Edmonton‚ Alberta 1. Introduction Cumulative evidence over the last 3 decades suggests that the cardiac interstitium or extracellular matrix (ECM)‚ especially the extracellular collagen matrix (ECCM)‚ plays an important role in cardiac remodeling during various cardiac diseases including myocardial infarction (MI) and heart failure [1-4]. A unique feature of the healthy heart is the ability of the pumping chambers to return to the ideal shape at end-diastole despite repetitive changes during every cardiac cycle throughout life. This physiologic remodeling or property of resuming functional shape depends largely on the integrity of the ECCM‚ the intricate network of fibrillar collagens found in the ECM. In a broad sense‚ pathophysiologic cardiac remodeling refers to changes in cardiac structure‚ shape and function following stress or damage [5-7]. To remodel is defined in the Webster dictionary as “ to alter the structure‚ to remake” and in the Oxford dictionary as “to model again and differently‚ reconstruct and reorganize.” The Oxford dictionary defines “model” as “representation in three dimensions of the proposed structure” and “to model” as “to fashion and shape.” This review will focus on the role of the ECCM in pathologic cardiac remodeling and specifically left ventricular (LV) remodeling. 2. Cardiac extracellular matrix 2.1. Cardiac ECM‚ ECCM and fibroblasts In the heart‚ as in other organs [8‚ 9]‚ the specialized parenchymal cells (cardiomyocytes) are supported by an ECM made up of an intricate macromolecular network of fibers and different cell types of mesenchymal origin including fibroblasts‚ endothelial cells (cardiac and vascular)‚ smooth 24 muscle cells‚ blood-borne cells (macrophages and others)‚ pericytes and neurons‚ bathed in a gel-type ground substance (Table 1).
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • The 4 Types of Tissues: Connective
    The 4 Types of Tissues: connective Connective Tissue General structure of CT cells are dispersed in a matrix matrix = a large amount of extracellular material produced by the CT cells and plays a major role in the functioning matrix component = ground substance often crisscrossed by protein fibers ground substance usually fluid, but it can also be mineralized and solid (bones) CTs = vast variety of forms, but typically 3 characteristic components: cells, large amounts of amorphous ground substance, and protein fibers. Connective Tissue GROUND SUBSTANCE In connective tissue, the ground substance is an amorphous gel-like substance surrounding the cells. In a tissue, cells are surrounded and supported by an extracellular matrix. Ground substance traditionally does not include fibers (collagen and elastic fibers), but does include all the other components of the extracellular matrix . The components of the ground substance vary depending on the tissue. Ground substance is primarily composed of water, glycosaminoglycans (most notably hyaluronan ), proteoglycans, and glycoproteins. Usually it is not visible on slides, because it is lost during the preparation process. Connective Tissue Functions of Connective Tissues Support and connect other tissues Protection (fibrous capsules and bones that protect delicate organs and, of course, the skeletal system). Transport of fluid, nutrients, waste, and chemical messengers is ensured by specialized fluid connective tissues, such as blood and lymph. Adipose cells store surplus energy in the form of fat and contribute to the thermal insulation of the body. Embryonic Connective Tissue All connective tissues derive from the mesodermal layer of the embryo . The first connective tissue to develop in the embryo is mesenchyme , the stem cell line from which all connective tissues are later derived.
    [Show full text]
  • Histology of Watersnake (Enhydris Enhydris) Digestive System
    E3S Web of Conferences 151, 01052 (2020) https://doi.org/10.1051/e3sconf/202015101052 st 1 ICVAES 2019 Histology of Watersnake (Enhydris Enhydris) Digestive System Dian Masyitha1,*, Lena Maulidar 2 , Zainuddin Zainuddin1, Muhammad N. Salim3, Dwinna Aliza3, Fadli A. Gani 4 , Rusli Rusli5 1 Histology Laboratory of the Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh 23111, Indonesia 2 Veterinary Education Study Program Faculty of Veterinary Medicine, Syiah Kuala University, Banda Aceh 23111, Indonesia 3 Pathology Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala , Banda Aceh, Indonesia 4 Anatomy Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala , Banda Aceh, Indonesia 5 Clinical Laboratory of the Faculty of Veterinary Medicine, Universitas Syiah Kuala , Banda Aceh, Indonesia Abstract. This research aimed to study the histology of the digestive system of the watersnake (Enhydris enhydris). The digestive system taken was the esophagus, stomach, frontal small intestine and the back of the large intestine from three watersnakes. The samples were then made into histological preparations with hematoxylin-eosin (HE) staining and observed exploratively. The results showed that the digestive system of the watersnake was composed of layers of tissue, namely the mucosa, tunica submucosa, tunica muscularis, and serous tunica. Mucosal mucosa consisted of the lamina epithelium, lamina propria, and mucous lamina muscularis. The submucosal tunica consisted of connective tissue with blood vessels, lymph, and nerves. The muscular tunica was composed of circular muscles and elongated muscles. The serous tunica consisted of a thin layer of connective tissue that was covered by a thin layer of the mesothelium (mesothelium). The histological structure of the snake digestive system is not much different from the reptile digestive system.
    [Show full text]
  • Ground Substance of the Connective Tissues A
    Postgrad Med J: first published as 10.1136/pgmj.41.477.382 on 1 July 1965. Downloaded from POSTGRAD. MED. J. (1965), 41, 382 RECENT TRENDS IN THE BIOCHEMISTRY OF THE GROUND SUBSTANCE OF THE CONNECTIVE TISSUES A. G. LLOYD, B.Sc., Ph.D., A.R.I.C. Senior Lecturer in Biochemistry and Member of the M.R.C. Research Group for Studies on Connective Tissue and Lung, University College, Cardiff. THE UBIQUITY of members of the anatomical to the surrounding tissue, the fibres usually group loosely defined as connective tissues is being described as collagenous. As yet there a matter of long-standing record. The same is no clear indication whether such fibroses comment applies to the convention that, despite arise according to the partially established the differing biological roles which they are pattern of inflammatory response in which the required to play and their characteristically earliest recognisable biochemical changes in- different mechanical character at macroscopic clude alterations in the ground substance of level, the individual members of the connective connective tissues followed only subsequently tissue group exhibit certain basic similarities by de novo formation of additional fibrous which first become apparent at microscopic material. It is for this reason that the research level. A common biochemical approach is to group housed in the Department of Biochemis- develop these features of similarity to a point try is designed to assist in the clarification where an idealised composite of all connective of fundamental biochemical changes associated tissues can be devised. Use of such a model with general lung dust diseases from the aspect allows initial broad generalisations to be drawn.
    [Show full text]