Variations in the Quantity of Uncalcified Fibrocartilage at the Insertions of the Extrinsic Calf Muscles in the Foot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding Entheseal Changes: Definition and Life Course Changes Sébastien Villotte, Christopher J
Understanding Entheseal Changes: Definition and Life Course Changes Sébastien Villotte, Christopher J. Knüsel To cite this version: Sébastien Villotte, Christopher J. Knüsel. Understanding Entheseal Changes: Definition and Life Course Changes. International Journal of Osteoarchaeology, Wiley, 2013, Entheseal Changes and Occupation: Technical and Theoretical Advances and Their Applications, 23 (2), pp.135-146. 10.1002/oa.2289. hal-03147090 HAL Id: hal-03147090 https://hal.archives-ouvertes.fr/hal-03147090 Submitted on 19 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Journal of Osteoarchaeology Understanding Entheseal Changes: Definition and Life Course Changes Journal: International Journal of Osteoarchaeology Manuscript ID: OA-12-0089.R1 Wiley - ManuscriptFor type: Commentary Peer Review Date Submitted by the Author: n/a Complete List of Authors: Villotte, Sébastien; University of Bradford, AGES Knusel, Chris; University of Exeter, Department of Archaeology entheses, enthesopathy, Musculoskeletal Stress Markers (MSM), Keywords: senescence, activity, hormones, animal models, clinical studies http://mc.manuscriptcentral.com/oa Page 1 of 27 International Journal of Osteoarchaeology 1 2 3 Title: 4 5 Understanding Entheseal Changes: Definition and Life Course Changes 6 7 8 Short title: 9 10 Understanding Entheseal Changes 11 12 13 Keywords: entheses; enthesopathy; Musculoskeletal Stress Markers (MSM); senescence; 14 15 activity; hormones; animal models; clinical studies 16 17 18 Authors: For Peer Review 19 20 Villotte S. -
Research Review Fibrocartilage
J. Anat. (1990), 171, pp. 1-15 1 Printed in Great Britain Research Review Fibrocartilage M. BENJAMIN AND E. J. EVANS Department of Anatomy, University of Wales College of Cardiff, PO Box 900, Cardif CF1 3 YF, Wales Fibrocartilage has long been a neglected tissue that is too often viewed as a poor relation of hyaline cartilage. It failed to achieve the status of a tissue with the early histologists, but it is beginning to come of age, for modem techniques are revealing some exciting secrets about fibrocartilage in knee joint menisci and intervertebral discs in particular. Yet there has never been any general review on fibrocartilage, and workers concerned with the tissue in one organ rarely consider it in another. Consequently, we lack any global picture that would encourage the spread of interest in the tissue and the effective exchange of ideas. Our review deals largely with the white fibrocartilage of standard texts and for reasons of space excludes yellow elastic cartilage. We have concentrated on fibrocartilage as a tissue rather than fibrocartilages as organs. HISTORICAL CONSIDERATIONS The most important work on cartilage in the older literature is that of Schaffer (1930). His monograph is a thorough, comparative account of cartilage and related tissues throughout the animal kingdom. The reader interested in fibrocartilage must also study Schaffer's account of chondroid tissue, for some tissues that would now be regarded as fibrocartilage were viewed by Schaffer as hyaline-cell chondroid tissue. He had a narrow vision of 'true' cartilage and called tissues where the cells were not shrunken in lacunae, 'chondroid'. -
Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation
Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation Hajo Thermann, MD, PhD,* Christoph Becher, MD,† Francesca Vannini, MD, PhD,‡ and Sandro Giannini, MD‡ The treatment of osteochondral defects of the talus is still controversial. Matrix-guided treatment options for covering of the defect with a scaffold have gained increasing popularity. Cellular-based autologous chondrocyte implantation (ACI) has undergone a generational development overcoming the surgical drawbacks related to the use of the periosteal flap over time. As ACI is associated with high costs and limited in availability, autologous matrix-induced chondrogenesis, a single-step procedure combining microfracturing of the subchondral bone to release bone marrow mesenchymal stem cells in combination with the coverage of an acellular matrix, has gained increasing popularity. The purposes of this report are to present the arthroscopic approach of the matrix-guided autologous matrix-induced chondrogenesis technique and generational development of ACI in the treatment of chondral and osteochon- dral defects of the talus. Oper Tech Orthop 24:210-215 C 2014 Elsevier Inc. All rights reserved. KEYWORDS cartilage, defect, ankle, talus, AMIC, ACI Introduction Cartilage repair may be obtained by cartilage replacement: (OATS, mosaicplasty) or with techniques aimed to generate a hondral and osteochondral lesions are defects of the newly formed cartilage such as microfracture or autologous Ccartilaginous surface and underlying subchondral bone of chondrocyte implantation (ACI).9-17 the talar dome. These defects are often caused by a single or Arthroscopic debridement and bone marrow stimulation multiple traumatic events, mostly inversion or eversion ankle using the microfracture technique has proven to be an 1,2 sprains in young, active patients. -
Connectomics of the Lacuno-Canalicular Network in Bone
The Small World of Osteocytes: Connectomics of the Lacuno-Canalicular Network in Bone Philip Kollmannsberger1,2,*, Michael Kerschnitzki1,3, Felix Repp1, Wolfgang Wagermaier1, Richard Weinkamer1, Peter Fratzl1 1Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany 2ETH Zurich, Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland 3Weizmann Institute of Science, Dept. of Structural Biology, Rehovot, Israel * current address: Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany Abstract Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. -
Pg 131 Chondroblast -> Chondrocyte (Lacunae) Firm Ground Substance
Figure 4.8g Connective tissues. Chondroblast ‐> Chondrocyte (Lacunae) Firm ground substance (chondroitin sulfate and water) Collagenous and elastic fibers (g) Cartilage: hyaline No BV or nerves Description: Amorphous but firm Perichondrium (dense irregular) matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx. Matrix Costal Photomicrograph: Hyaline cartilage from the cartilages trachea (750x). Thickness? Metabolism? Copyright © 2010 Pearson Education, Inc. Pg 131 Figure 6.1 The bones and cartilages of the human skeleton. Epiglottis Support Thyroid Larynx Smooth Cartilage in Cartilages in cartilage external ear nose surface Cricoid Trachea Articular Lung Cushions cartilage Cartilage of a joint Cartilage in Costal Intervertebral cartilage disc Respiratory tube cartilages in neck and thorax Pubic Bones of skeleton symphysis Meniscus (padlike Axial skeleton cartilage in Appendicular skeleton knee joint) Cartilages Articular cartilage of a joint Hyaline cartilages Elastic cartilages Fibrocartilages Pg 174 Copyright © 2010 Pearson Education, Inc. Figure 4.8g Connective tissues. (g) Cartilage: hyaline Description: Amorphous but firm matrix; collagen fibers form an imperceptible network; chondroblasts produce the matrix and when mature (chondrocytes) lie in lacunae. Function: Supports and reinforces; has resilient cushioning properties; resists compressive stress. Location: Forms most of the embryonic skeleton; covers the ends Chondrocyte of long bones in joint cavities; forms in lacuna costal cartilages of the ribs; cartilages of the nose, trachea, and larynx. -
Measurement of the Diffusion Pathway Between Osteocyte Lacuna and Blood
Henry Ford Hospital Medical Journal Volume 9 Number 1 Article 22 3-1961 Halo Volume - Part IV: Measurement of the Diffusion Pathway Between Osteocyte Lacuna and Blood Harold M. Frost Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Frost, Harold M. (1961) "Halo Volume - Part IV: Measurement of the Diffusion Pathway Between Osteocyte Lacuna and Blood," Henry Ford Hospital Medical Bulletin : Vol. 9 : No. 1 , 137-144. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol9/iss1/22 This Part II is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. HALO VOLUME - PART IV MEASUREMENT OF THE DIFFUSION PATHWAY BETWEEN OSTEOCYTE LACUNA AND BLOOD HAROLD M. FROST, M.D. INTRODUCTION Thc osteocyte differs trom the rest of thc somatic cells in that it resides in a lacuna with walls made of bone. With the exception of halo volume peculiarities," the bone enveloping an osteocyte is impervious to organic and inorganic ions and molecules. If no special provision for diffusion of nutrients existed, osteocytes would promptly dic.^ A diffusion pathway is provided thc osteocytes in thc system of canaliculae which -onnect osteocyte lacunae to vascular channels. This is the pathway through which he average osteocyte obtains anabolic substances and excretes catabolic substances. \ u. Jt ( Figure 1 "•oo X. Fresh, undecalcified, basic fuchsin stained section of human tibia. -
GLOSSARY of MEDICAL and ANATOMICAL TERMS
GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat. -
16 Cartilage
Cartilage Cartilage serves as a rigid yet lightweight and flexible supporting tissue. It forms the framework for the respiratory passages to prevent their collapse, provides smooth "bearings" at joints, and forms a cushion between the vertebrae, acting as a shock absorber for the spine. Cartilage is important in determining the size and shape of bones and provides the growing areas in many bones. Its capacity for rapid growth while maintaining stiffness makes cartilage suitable for the embryonic skeleton. About 75% of the water in cartilage is bound to proteoglycans, and these compounds are important in the transport of fluids, electrolytes, and nutrients throughout the cartilage matrix. Although adapted to provide support, cartilage contains only the usual elements of connective tissue cells, fibers, and ground substance. It is the ground substance that gives cartilage its firm consistency and ability to withstand compression and shearing forces. Collagen and elastic fibers embedded in the ground substance impart tensile strength and elasticity. Together, the fibers and ground substance form the matrix of cartilage. Cartilage differs from other connective tissues in that it lacks nerves, blood and lymphatic vessels and is nourished entirely by diffusion of materials from blood vessels in adjacent tissues. Although relatively rigid, the cartilage matrix has high water content and is freely permeable, even to fairly large particles. Classification of cartilage into hyaline, elastic, and fibrous types is based on differences in the abundance and type of fibers in the matrix. Hyaline Cartilage Hyaline cartilage is the most common type of cartilage and forms the costal cartilages, articular cartilages of joints, and cartilages of the nose, larynx, trachea, and bronchi. -
Human Anatomy and Physiology
LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
2*0 \%, in Partial Fulfillment of the Requirements for / the Degree
Entheseal Changes in an Ancient Egyptian Skeletal Collection A thesis submitted to the faculty of San Francisco State University "2*0 \%, In partial fulfillment of The Requirements for / The degree Master of Arts In Anthropology by Sophie Minnig San Francisco, California July 2018 Copyright by Sophie Minnig 2018 CERTIFICATION OF APPROVAL I certify that I have read Entheseal Changes in an Ancient Egyptian Skeletal Collection by Sophie Minnig, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requests for the degree: Master of Arts in Anthropology at San Francisco State University. Associate Professor of Anthropology Associate Professor of Anthropology Entheseal Changes in an Ancient Egyptian Skeletal Collection Sophie Minnig San Francisco, California 2018 The purpose of this study is to examine the effects of age and sex on entheseal changes, as well as test for asymmetry in an ancient Egyptian skeletal collection. Entheseal changes refer to the morphological changes that occur on the bone surface where tendons and ligaments attach. Such morphological changes have been widely considered to reflect past activity patterns. However, recent bioarchaeological and biomedical research has shown biological factors such as age, sex, and body size to be significantly correlated with various types of entheseal change (Henderson et al. 2013 2017 Wilczak 1998; Benjamin et al. 2008 , 2009; Foster et al. 2014). This study utilizes the new Coimbra method (Henderson et al. 2013, 2015) to score and record entheseal changes at five fibrocartilaginous entheses: infra- and supra-spinatus, subscapularis insertion, common flexor origin, common extensor origin, and biceps brachii insertion. -
Engineering Tissue-To-Tissue Interfaces and the Formation of Complex Tissues
Engineering Tissue-to-Tissue Interfaces and the Formation of Complex Tissues Helen H. Lu, Ph.D. US Frontier of Engineering (USFOE) September 15, 2012 Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering Columbia University in the City of New York Tissue Engineering Skalak 1988, Langer and Vacanti 1993 Business Week, July, 1998 Tissue Engineering: the Next Generation Engineering Complex Tissues • Assemble or connect more than one type of tissue • Interfaces between these different tissue types are critical for engineering collective functionality Tissue Engineering, 2006 Challenges in Orthopedic Tissue Engineering • Soft tissues - Articular cartilage - Ligaments - Tendons • Lack of graft-bone integration –Compromises long term functionality • Challenge – How to achieve BIOLOGICAL FIXATION of soft tissue to bone? Interface Tissue Engineering TissueSignificance-to-Tissue Clinical Challenge Interfaces• Soft tissues have limited • Ligament-to- regeneration Interface Cell-Cell bonepotential interface Characterization Interactions – Anterior cruciate • Lackligament of tissue (ACL) graft-to-bone Scaffold integration Design • Tendon -to-Bone • interfaceBridging tissues to form organ In Vitro In Vivo • Osteochondralsystems Testing Testing interface How to Connect a Rope to the Wall? • Multiple Tissue and Cell Types (Cooper and Miscel, 1970, Arnoczky et al, 1993, Niyibizi et al., 1996, Visconti et al., 1996, Thomapoulus et al, 1999, Benjamin et al, 2002, Wang et al., 2006) – Ligament (L) – Fibroblasts L FC B – Fibrocartilage – Fibrochondrocytes • Non-Mineralized Fibrocartilage (FC) • Mineralized Fibrocartilage (MFC) L – Bone (B) – Osteoblasts Neonatal Bovine ACL FemurInsertion – TrichromeFC Stain • A gradient of cellular, chemical NFC MFC and mechanical properties B ACL – Minimize the formation L of stress concentrations (Butler et al., 1978, Woo et al., 1988, FC Matyas et al., 1995, Gao et al., 1996) Tibia – Load transfer between 200 μm soft and hard tissues (Woo SL, et al.