Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Introduction 1 INTRODUCTION STRUCTURE OF NORMAL BONE concentrically around the central canal. The The skeleton serves several important func- haversian canals form an anastomosing system tions, for which its structure is ideally suited. of canals arranged along the long axis of the First, it performs a mechanical function by bone; thus, in cross section, bones appear as supporting the body and providing attachment round openings surrounded by rings of bone. sites for muscles and tendons that provide mo- The lamellae have a large number of lacunae, tion. Second, it protects vital organs and houses which contain osteocytes and connect with the bone marrow. Third, it serves as a reservoir one another through a series of canaliculi. The for various minerals, especially calcium, and has haversian canals are connected to the external a role in meeting the immediate needs of the organism for calcium (3). Bones are divided into two main types: the flat bones of the axial skeleton (skull, scapula, clavicle, vertebra, jaw, and pelvis) and the tubu- lar bones of the appendicular skeleton (9). Both types consist of cortical (or compact) bone and cancellous (or spongy) bone. In a typical long bone such as the femur, the diaphysis, or shaft, is composed of cortical bone surrounding a voluminous marrow, or medul- lary, cavity (fig. 1-1). The epiphyses at the ends of long bones consist mostly of cancellous bone and a thin peripheral rim of cortical bone. In an immature skeleton, the epiphyses are separated from the diaphysis by the epiphyseal cartilage plates. The broad part of the long bone between the epiphyseal plate and the tubular diaphysis is termed the metaphysis. The epiphys eal cartilage and the metaphyseal portion form the growth apparatus. The cortex of the bone consists of compact osseous tissue and the medullary cavity contains cancellous bone. Cancellous bone is made up of plates and bars that form an interconnect- ing network (fig. 1-2). These plates and bars are composed of varying numbers of contiguous thin layers (lamellae). The bony trabeculae are arranged along the lines of maximal pressure or tension. The haversian system, or osteon, is the basic Figure 1-1 structural unit of cortical bone (fig. 1-3). It con- sists of a central haversian canal, which contains LONG BONE blood vessels, and lamellae of bone arranged The normal tibia and fibula of a 7-year-old boy illustrate the anatomy of a long bone. 1 Tumors of the Bones and Joints Figure 1-2 CANCELLOUS BONE Left: An interconnecting network is created by plates and bars of lamellar bone. Right: Higher-power view shows cancellous trabeculae surrounded by the marrow cavity containing fat and hematopoietic elements. surface of bone and the marrow cavity through the canals of Volkmann. Bone is covered by a connective tissue layer, the periosteum, except where it is in contact with the articular cartilage. The attachment between bone and periosteum is tight where bundles of collagen (Sharpey fibers) from the periosteum penetrate cortical bone. Large blood vessels and nerves enter the bone at these points. The periosteum has two layers: an outer layer composed of dense connective tissue and an inner cambium layer composed of loosely arranged collagen and elastic fibers and a few spindle cells. The inner aspect of the cortex is separated from the marrow space by a thin layer of connective tissue called the endosteum. DEVELOPMENT OF BONE Bone develops either from preexisting car- tilage (endochondral ossification) or in mem- branous connective tissue (intramembranous ossification). Intramembranous Ossification The first signs of bone development are thin bars of a dense intercellular substance. The cells that remain in this meshwork are large, assume Figure 1-3 a polyhedral shape, and become osteoblasts. CORTICAL BONE The cells are surrounded by a dense interstitial Dense compact cortical bone with haversian canals is substance that undergoes calcification and be- surrounded by concentric lamellar bone. comes bone. 2 Introduction Figure 1-4 ENDOCHONDRAL OSSIFICATION Left: Low-power appearance of an epiphyseal plate, with bone formation seen in the lower portion of the panel. Right: Columns of cartilage cells in the zone of provisional calcification just before osteoid production. Endochondral Ossification CLASSIFICATION OF BONE TUMORS Endochondral ossification is the mechanism The classification of bone tumors is based by which long tubular bones grow in length, on either the cytologic features of the tumor and is also is the process in fracture callus. The cells or the matrix produced by them (11,15). chondrocytes of the epiphyseal plate are ar- The classification system that follows is a slight ranged in columns, and near the metaphyseal modification of these two schemes. Malignant end, they undergo hypertrophy and vacuoliza- tumors rarely arise from benign ones, although tion of the cytoplasm and eventually become it is convenient to divide tumors into benign calcified (fig. 1-4). Loops of blood vessels and and malignant counterparts (Table 1-1). Neo- connective tissue invade the hypertrophic plasm simulators are discussed in chapter 14. cartilage cells, which are then removed. The connective tissue cells are transformed into INCIDENCE OF BONE TUMORS osteoblasts. Between the cartilage cells and Primary tumors of bone are extremely rare, osteoblasts, connective tissue becomes calci- and no reliable statistics are available for the fied, giving rise to columns of bone. With the whole group. In the SEER (Surveillance, Epi- cessation of longitudinal growth of bone, the demiology, and End Results) program, during epiphyseal plate disappears. 1973 to 1987, only 0.2 percent of all cancers 3 Tumors of the Bones and Joints Table 1-1 CLASSIFICATION OF BONE TUMORSa Benign Malignant Histologic Total Class No. of No. of Type No. % Tumor Cases Tumor Cases Hematopoietic 1,788 18.8 Myeloma 986 Lymphoma 802 Chondrogenic 2,914 30.6 Osteochondroma 946 Chondrosarcoma 1,023 Chondroma 469 Secondary chondrosarcoma 128 Chondroblastoma 138 Dedifferentiated chondrosarcoma 130 Chondromyxoid 48 Mesenchymal chondrosarcoma 32 fibroma Osteogenic 2,480 26.0 Osteoid osteoma 369 Osteosarcoma 1,941 Osteoblastoma 97 Parosteal osteosarcoma 73 Unknown 1,281 13.4 Giant cell tumor 627 Ewing’s sarcoma 578 Malignancy in giant cell tumor 36 Adamantinoma 40 Histiocytic 99 1.0 Fibrous histiocytoma 9 Malignant fibrous histiocytoma 90 Fibrogenic 285 3.0 Desmoplastic fibroma 14 Fibrosarcoma 271 Notochordal 411 4.3 Chordoma 411 Vascular 244 2.6 Hemangioma 131 Hemangioendothelioma 98 Hemangiopericytoma 15 Lipogenic 10 0.1 Lipoma 8 Liposarcoma 2 Neurogenic 18 0.2 Neurilemmoma 18 Total 9,530 100.0 Total 2,860 Total 6,670 aThe number of cases in the Mayo Clinic files. METHODS OF BIOPSY were bone sarcomas (7). It has been estimated Diagnostic material from a bone tumor may that 93,000 new cases of lung cancer and 88,000 be obtained in one of three ways: open biopsy, cases of breast cancer occur annually in the needle biopsy, or fine-needle aspiration (FNA). United States, compared with only 1,500 cases Open Biopsy of sarcoma of bone. Myeloma is the most com- mon primary bone tumor, although one may ar- Open biopsy is still the most common gue that myelomas are tumors of bone marrow; method for diagnosing bone tumors. It has most of them are diagnosed by biopsy of the the great advantage of obtaining the maximal bone marrow. In the SEER program, 35 percent amount of tissue. It is important to plan the of all sarcomas were osteosarcoma (however, biopsy so that the tract could be removed at myelomas and lymphomas were not included the time of definitive surgical procedure. It is in that study). Chondrosarcoma and Ewing’s preferable for the surgeon who would perform sarcoma are the next most common types. There the surgical procedure to perform the biopsy. is a bimodal distribution, with osteosarcoma An ill-conceived biopsy may preclude a limb and Ewing’s sarcoma occurring in the first and salvage procedure (12). The biopsy should be second decades of life and chondrosarcoma and planned with consultation among the radiolo- myeloma in the older age groups. gist, pathologist, and orthopedic surgeon. 4 Introduction Figure 1-5 FROZEN SECTION A hematoxylin and eosin– stained frozen section of syno- vial chondromatosis shows the characteristic clustering pattern of the chondrocytes. It is important to examine the biopsy speci- Frozen sections have several advantages over men before the wound is closed. Frozen sections other diagnostic techniques. Perhaps the most are convenient for confirming that diagnostic important reason for making frozen sections material has been obtained. is to check the adequacy of the specimen. If Role of Frozen Sections in Diagnosis of diagnostic tissue is received, part of it can be Bone Tumors. The common misconception is reserved for special studies such as microbio- that bone tumors are too hard (literally and figu- logic cultures, cytogenetics, and flow cytometry. ratively) for frozen section diagnosis. However, Margins can be checked on frozen sections. It is if a few simple rules are followed, frozen sections not possible to check all the margins on large tu- can be made successfully. As with any diagnostic mors, but those that are closest, such as the bone method (such as paraffin-embedded tissue and marrow margin, can be examined. In benign FNA), it is important to have good communica- and low-grade malignant lesions, a definitive tion between the pathologist and the clinicians diagnosis can be made and immediate treatment involved in caring for the patient. It is convenient instituted. With experience, a diagnosis can be to have the frozen section laboratory close to the based on frozen section specimens just as well surgical suites. Most bone tumors have soft mate- as it can with paraffin sections. rial that can be used for frozen sections.
Recommended publications
  • Bone Cartilage Dense Fibrous CT (Tendons & Nonelastic Ligaments) Dense Elastic CT (Elastic Ligaments)
    Chapter 6 Content Review Questions 1-8 1. The skeletal system consists of what connective tissues? Bone Cartilage Dense fibrous CT (tendons & nonelastic ligaments) Dense elastic CT (elastic ligaments) List the functions of these tissues. Bone: supports the body, protects internal organs, provides levers on which muscles act, store minerals, and produce blood cells. Cartilage provides a model for bone formation and growth, provides a smooth cushion between adjacent bones, and provides firm, flexible support. Tendons attach muscles to bones and ligaments attach bone to bone. 2. Name the major types of fibers and molecules found in the extracellular matrix of the skeletal system. Collagen Proteoglycans Hydroxyapatite Water Minerals How do they contribute to the functions of tendons, ligaments, cartilage and bones? The collagen fibers of tendons and ligaments make these structures very tough, like ropes or cables. Collagen makes cartilage tough, whereas the water-filled proteoglycans make it smooth and resistant. As a result, cartilage is relatively rigid, but springs back to its original shape if it is bent or slightly compressed, and it is an excellent shock absorber. The extracellular matrix of bone contains collagen and minerals, including calcium and phosphate. Collagen is a tough, ropelike protein, which lends flexible strength to the bone. The mineral component gives the bone compression (weight-bearing) strength. Most of the mineral in the bone is in the form of hydroxyapatite. 3. Define the terms diaphysis, epiphysis, epiphyseal plate, medullary cavity, articular cartilage, periosteum, and endosteum. Diaphysis – the central shaft of a long bone. Epiphysis – the ends of a long bone. Epiphyseal plate – the site of growth in bone length, found between each epiphysis and diaphysis of a long bone and composed of cartilage.
    [Show full text]
  • Dimensional Reconstruction of Haversian Systems in Human
    Journal of Anatomy J. Anat. (2016) doi: 10.1111/joa.12430 Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age Isabel S. Maggiano,1,2 Corey M. Maggiano,2,3 John G. Clement,4 C. David L. Thomas,4 Yasmin Carter5 and David M. L. Cooper1 1Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada 2Department of Anthropology, University of West Georgia, Carrollton, GA, USA 3Department of Anthropology, University of Western Ontario, London, ON, Canada 4Melbourne Dental School, University of Melbourne, Melbourne, Vic., Australia 5Department of Radiology, University of Massachusetts Medical School, Worchester, MA, USA Abstract This study uses synchrotron radiation-based micro-computed tomography (CT) scans to reconstruct three- dimensional networks of Haversian systems in human cortical bone in order to observe and analyse interconnectivity of Haversian systems and the development of total Haversian networks across different ages. A better knowledge of how Haversian systems interact with each other is essential to improve understanding of remodeling mechanisms and bone maintenance; however, previous methodological approaches (e.g. serial sections) did not reveal enough detail to follow the specific morphology of Haversian branching, for example. Accordingly, the aim of the present study was to identify the morphological diversity of branching patterns and transverse connections, and to understand how they change with age. Two types of branching morphologies were identified: lateral branching, resulting in small osteon branches bifurcating off of larger Haversian canals; and dichotomous branching, the formation of two new osteonal branches from one.
    [Show full text]
  • BONE TISSUE Osteoblasts
    Department of Histology and Embryology, P. J. Šafárik University, Medical Faculty, Košice BONE TISSUE: Sylabus for foreign students Author: MVDr. Zuzana Jonecová, CSc. Revised by: prof. MUDr. Eva Mechírová, CSc. BONE TISSUE - structural component of bones - specialized connective tissue for support and protection - composition: - cells - mineralized intercellular matrix – bone matrix Histological composition of the bone tissue: 1. Bone matrix – intercellular substance a. Inorganic components → Ca, P, Mg, K, Na → hyproxyapatit crystals (65%) crystals lie alongside collagen fibrills and are surrounded by amorphous ground substance b. Organic components: Fibers : collagen fibers (collagen type I ) ! Amorphous ground substance : noncollagenous proteins GAG, PG, structural GP small regulatory proteins 2. Cells a. Osteoprogenitor cells (preosteoblasts) b. Osteoblasts (bone forming cells) c. Osteocytes (inactive osteoblast) d. Osteoclasts (bone resorbing cells) Osteoblasts – line endosteal and periosteal surfaces ( 1 layer) - cuboidal cells with basophilic cytoplasm (proteosynthesis) - deposit of unmineralized organic matrix –osteoid – produced at the surface of the bone tissue when new bone tissue is required FUNCTION : 1) synthesis of organic components of bone matrix (growth, response to fracture, remodelling) 2) regulate mineralization of bone matrix 3) regulate activity of bone resorption (osteoclasts) Produce : - collagen type I (95 %) - non-collagenous bone matrix proteins : GAG, proteoglycans (hyaluronan, chondroitin and keratan sulfate)
    [Show full text]
  • Functions of the Haversian System
    Functions of the Haversian System DONALD H. ENLOW Department of Anatomy, The University of Michigan, Ann Arbor, Michigan The Haversian system or osteone has associated with areas of re-location in mus- been traditionally adopted as a universal cle attachment on a growing bone, and in unit of structure in compact bone. The remodeling processes involving resorption basic functions and the structural signifi- of periosteal bone surfaces during nieta- cance of primary and secondary Haversian physeal reduction in diameter axd re- tissue, however, are poorly understood. gional changes in shape. The hypothesis Two explanations on the functional mean- is advanced that this type of Haversian ing of the secondary Haversian system system functions as an anchoring mecha- have been proposed. These are (a) the nism which can maintain muscle con- interpretation of the osteone as an ex- tinuity and attachment with bone during clusive response to stress, and (b) the such remodeling changes. All secondary interpretation of the secondary osteone as osteones, regardless of particular function, an exclusive structural result of mineral are structurally comparable and represent mobilization and redistribution. However, a product of internal reconstruction with- the characteristic absence of the Haver- in compact bone. sian system in the compact bone of many History. Leeuwenhoek (1678) was the vertebrate species, including widely used first to notice the microscopic canal sgs- experimental forms such as the white rat, tern in bone, and he reported his observa- and the characteristic patterns of distribu- tions to members of the Royal Society in tion of Haversian systems in the bone of a series of personal communications which those species which do possess these were later published.
    [Show full text]
  • Investigation of Physiochemical Properties of a Novel Gradient
    Wayne State University Wayne State University Theses 1-1-2013 Investigation Of Physiochemical Properties Of A Novel Gradient Calcium Polyphosphate Bone Scaffold And Its Influence On Cellular Behavior Liang Chen Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Chen, Liang, "Investigation Of Physiochemical Properties Of A Novel Gradient Calcium Polyphosphate Bone Scaffold And Its Influence On Cellular Behavior" (2013). Wayne State University Theses. Paper 292. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. INVESTIGATION OF PHYSIOCHEMICAL PROPERTIES OF A NOVEL GRADIENT CALCIUM POLYPHOSPHATE BONE SCAFFOLD AND ITS INFLUENCE ON CELLULAR BEHAVIOR by Liang Chen THESIS Submitted to the Graduate School of Wayne State University Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2013 MAJOR: BIOMEDICAL ENGINEERING ___________________________________ Advisor Date ACKNOWLEDGEMENTS I would like to especially thank Dr. Weiping Ren for granting me this great opportunity and support. I also thank Dr. Haward Mathew for his adviser and guidance on bioreactor system design and experiments. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .........................................................................................................................
    [Show full text]
  • A Comparison of the Microarchitecture of Lower Limb Long Bones Between Some Animal Models and Humans: a Review
    Veterinarni Medicina, 58, 2013 (7): 339–351 Review Article A comparison of the microarchitecture of lower limb long bones between some animal models and humans: a review V.J. Cvetkovic1, S.J. Najman2, J.S. Rajkovic1, A.Lj. Zabar1, P.J. Vasiljevic1, Lj.B. Djordjevic1, M.D. Trajanovic3 1Faculty of Sciences and Mathematics, University of Nis, Nis, Serbia 2Faculty of Medicine, University of Nis, Nis, Serbia 3Faculty of Mechanical Engineering, University of Nis, Nis, Serbia ABSTRACT: Animal models are unavoidable and indispensable research tools in the fields of bone tissue engi- neering and experimental orthopaedics. The fact that there is not ideal animal model as well as the differences in the bone microarchitecture and physiology between animals and humans are complicate factors and make model implementation difficult. Therefore, the tendency should be directed towards extrapolation of the results from one animal model to another or from animal model to humans. So far, this is the first paper which provides an overview on the microarchitecture of lower limb long bones and discusses data related to osteon diameter, osteon canal diameter and their orientation, as well as intracortical canals and trabecular tissue microarchitecture in commonly used animal models compared to humans depending on age, gender and anatomical location of the bone. Understanding the differences between animal model and human bone microarchitecture should enable a more accurate extrapolation of experimental results from one animal model to another or from animal models to humans in the fields of bone tissue engineering and experimental orthopaedics. Also, this should be helpful in making decisions on which animal models are the most suitable for particular preclinical testing.
    [Show full text]
  • Histomorphometric Analysis of the Variability of the Human Skeleton: Forensic Implications
    Histomorphometric analysis of the variability of the human skeleton: forensic implications Marco Cummaudo1,2 PhD, Caterina Raffone MSc1, Annalisa Cappella1 PhD, Nicholas Márquez-Grant2 PhD, Cristina Cattaneo1 MSc, MD, PhD 1 LABANOF (Laboratorio di Antropologia e Odontologia Forense) Dipartimento di Scienze Biomediche per la Salute, via Mangiagalli 37, 20133, Università degli Studi di Milano, Italy 2 Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, UK SN6 8LA Corresponding author: Marco Cummaudo - LABANOF (Laboratorio di Antropologia e Odontologia Forense) Dipartimento di Scienze Biomediche per la Salute, Via Mangiagalli n.37, 20133 University of Milan, Italy. Phone number: +393408009986; email address: [email protected] ORCID ID: 0000-0002-1173-9041 Declarations of interest: none Abstract In the last decades, the histomorphometric analysis of bone tissue has been utilized to develop equations for species discrimination of fragmentary bone. Although this technique showed promising results, its main limitation concerns the lack of knowledge on the histomorphometric variability which may exist between different bones of the skeleton. In a previous study, we demonstrated a significant histomorphological variability in different bones of the same individual and even in different sections of the same bone. The present study aimed at investigating the extent of intra- individual variability in bone histomorphometry throughout the human adult skeleton and areas of a single bone. Samples were taken along an entire medieval male adult human skeleton (aged between 26-45 years), including long, flat, irregular and sesamoid bones for a total of 49 cross-sections. The histomorphometric analysis revealed that the size of both Haversian systems and Haversian canals were statistically significantly larger in long and irregular bones compared to flat bones.
    [Show full text]
  • S. S. College, Jehanabad Department: Zoology Class: M.Sc
    S. S. College, Jehanabad Department: Zoology Class: M.Sc. Semester II Subject: Zoology Topic: Histology of mammalian bone Mode of teaching: Google classroom & WhatsApp Date & Time: 01.10.2020 & 10:30 Teacher: Praveen Deepak To join Department’s group, students can use following link https://chat.whatsapp.com/EHuHNfQzoAzJBMFNJvsjQx or scan QR Code WhatsApp No.: +91 75360 68068 HISTOLOGY OF MAMMALIAN BONES ____________________________________________________________ Bone is living tissue that makes up the skeleton of body. Being structural and anatomical component of skeleton, it provides support and protects the body and its organs like brain through skull, spinal cord through vertebrae, heart and lungs through rib cage, etc. Thus, functionally it assumes a significant mechanical role by the skeleton, and represents a stock of mineral salts to mobilize for maintenance of calcium and phosphorus homeostasis. Through the medullary spaces, it hosts, the bone produce various blood cells, store minerals, and provides structural and functional support for hematopoiesis. As it is a specialized form of connective tissue characterized by mineralized extracellular matrix, it contains – − Minerals: Minerals present in the bone are; o Calcium phosphate in the form of hydroxyapatite crystals [Ca 10 (PO 4)6 (OH) 2] o Calcium Carbonate (CaCO 3) o Magnesium Hydroxide: Mg(OH) 2 o Fluoride and Sulfate − Matrix: Mainly collagen (type I, VI) along with other matrix proteins. All collagen molecules are ~ 90% of total weight of bone matrix Functions of bone can be summarized as follows; − Storage for elements and minerals: homeostatic regulation of blood calcium levels − Mechanical structures for movement and protection of viscera − A home for hematopoietic tissue, and − Storage of adipose tissue: yellow marrow Bone tissue Bone tissue is also called as osseous tissue.
    [Show full text]
  • Sistema Universitario Ana G. Méndez, Inc. School for Professional Studies
    Sistema Universitario Ana G. Méndez, Inc. School for Professional Studies Florida Campuses Universidad del Este, Universidad Metropolitana, and Universidad del Turabo BIOL 303-Lab Human Biology I: Anatomy Laboratory Biología Humana I: Laboratorio de Anatomía © Sistema Universitario Ana G. Méndez, Inc. 2017 Derechos Reservados BIOL 303 HUMAN BIOLOGY LAB I 2 TABLA DE CONTENIDO/TABLE OF CONTENTS Página/Page GUÍA DE ESTUDIO ...................................................................................................................... 3 STUDY GUIDE .............................................................................................................................. 7 TALLER UNO .............................................................................................................................. 13 WORKSHOP TWO ...................................................................................................................... 21 TALLER TRES ............................................................................................................................. 30 WORKSHOP FOUR ..................................................................................................................... 36 TALLER CINCO .......................................................................................................................... 44 WORKSHOP SIX ......................................................................................................................... 56 TALLER SIETE ...........................................................................................................................
    [Show full text]
  • Peter Takizawa Department of Cell Biology •Bone Structure and Composition
    Bone Peter Takizawa Department of Cell Biology •Bone structure and composition •Bone cells •Bone modeling and remodeling •Regulation of osteoclast activation Bone serves mechanical, metabolic and cellular functions. Bone server a variety of important functions. It’s most familiar role is providing mechanical support and protection to organisms. It also serves as a repository for calcium. Bone houses bone marrow where most blood cells diferentiate from stem cells. These include red blood cells and white blood cells of the immune system. Mechanical bone consists of two architectures: compact and trabecular. Trabecular bone Compact bone Kerr Atlas of Functional Histology 1st edition Most bone comes in two architectures, both of which are seen in this section of long bone. On the outer surface is compact bone that appears as a dense wall of bone but compact contains blood vessels and nerves. In the interior is trabecular bone that consists of network of bone struts. Trabecular bone reduces the weight of bone while still providing robust mechanical support. It also allows space for bone marrow and diferentiation of blood cells. Because we are focusing on the mechanical functions of bone, it’s important to appreciate the structure and sections of long bone that are the primary load-bearing bones in the body. Long bones, as the name implies, are longer in one direction and consist of a shaft with two knob-like structures at either end. The shaft is called the diaphysis and the ends epiphysis. The outer portion of long bone is all compact bone and the inner portion is trabecular.
    [Show full text]
  • Basic Science of Osteoarthritis Magali Cucchiarini1*, Laura De Girolamo2, Giuseppe Filardo3, J
    Cucchiarini et al. Journal of Experimental Orthopaedics (2016) 3:22 Journal of DOI 10.1186/s40634-016-0060-6 Experimental Orthopaedics MEETING REPORT Open Access Basic science of osteoarthritis Magali Cucchiarini1*, Laura de Girolamo2, Giuseppe Filardo3, J. Miguel Oliveira4,5, Patrick Orth1,6, Dietrich Pape7,8 and Pascal Reboul9 Abstract Osteoarthritis (OA) is a prevalent, disabling disorder of the joints that affects a large population worldwide and for which there is no definitive cure. This review provides critical insights into the basic knowledge on OA that may lead to innovative end efficient new therapeutic regimens. While degradation of the articular cartilage is the hallmark of OA, with altered interactions between chondrocytes and compounds of the extracellular matrix, the subchondral bone has been also described as a key component of the disease, involving specific pathomechanisms controlling its initiation and progression. The identification of such events (and thus of possible targets for therapy) has been made possible by the availability of a number of animal models that aim at reproducing the human pathology, in particular large models of high tibial osteotomy (HTO). From a therapeutic point of view, mesenchymal stem cells (MSCs) represent a promising option for the treatment of OA and may be used concomitantly with functional substitutes integrating scaffolds and drugs/growth factors in tissue engineering setups. Altogether, these advances in the fundamental and experimental knowledge on OA may allow for the generation of improved, adapted therapeutic regimens to treat human OA. Keywords: Osteoarthritis, Articular cartilage, Bone, Animal models, Pathomechanisms, Interface, Stem cells, Tissue engineering Introduction and obesity. Knee OA affects over 70 million Europeans, Osteoarthritis (OA) is a systemic, chronic joint disorder and the direct costs exceed 2 billion euros.
    [Show full text]
  • Compact Bone Spongy Bone Lamella (B) Bone Matrix Central (Haversian
    2/7/20 (b) Flat bone (sternum) (a) Long bone (humerus) Spongy bone (d) Irregular bone (vertebra), Compact right lateral view (c) Short bone (talus) bone © 2018 Pearson Education, Inc. 1 © 2018 Pearson Education, Inc. 2 Articular cartilage Proximal epiphysis Spongy bone Epiphyseal line Periosteum Trabeculae of spongy bone Compact bone Osteon (Haversian Perforating Medullary (Volkmann’s) cavity (lined system) by endosteum) canal Blood vessel continues Diaphysis into medullary cavity containing marrow Blood vessel Lamellae Compact bone Central (Haversian) canal Perforating (Sharpey’s) fibers Periosteum Distal Periosteal epiphysis blood vessel (a) (a) © 2018 Pearson Education, Inc. 3 © 2018 Pearson Education, Inc. 4 Lamella Osteon Osteocyte Interstitial lamellae Canaliculus Lacuna Lacuna Central Central Bone matrix (Haversian) canal (Haversian) canal (b) (c) © 2018 Pearson Education, Inc. 5 © 2018 Pearson Education, Inc. 6 2/7/20 Articular cartilage Bone growth Hyaline Spongy cartilage bone Bone grows in length because: New center of bone growth New bone Articular cartilage Epiphyseal forming 1 Cartilage plate grows here. cartilage Growth Epiphyseal plate Medullary in bone cavity width 2 Cartilage is replaced Bone starting Invading by bone here. to replace Growth blood cartilage in bone vessels length 3 Cartilage New bone grows here. Bone collar forming Hyaline Epiphyseal cartilage plate cartilage model In an embryo In a fetus In a child © 2018 Pearson Education, Inc. 7 © 2018 Pearson Education, Inc. 8 Bone remodeling Growing shaft is remodeled as: Hematoma Articular cartilage External Bony callus callus of spongy Epiphyseal plate bone New Internal blood Healed 1 Bone is callus vessels resorbed by (fibrous fracture tissue and Spongy osteoclasts here.
    [Show full text]