Biosystematic Studies in the Genus Piperia (Orchidaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Biosystematic Studies in the Genus Piperia (Orchidaceae) BIOSYSTEMATIC STUDIES IN THE GENUS PIPERIA (ORCHIDACEAE) by James D. Ackerman A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts June, 1976 BIOSYSTEMATIC STUDIES IN THE GENUS PIPERIA (ORCHIDACEAE) by James D. Ackerman Approved by the Master's Thesis Committee Chairman Approved by the Graduate Dean ACKNOWLEDGEMENTS Dennis E. Anderson's patience, guidance and support throughout this project is most gratefully acknowledged. I appreciate members of my committee, Richard L. Hurley, Robert A. Rasmussen, and Farris R. Meredith for lively discussions and reading the manuscript. I also thank William V. Allen for access to laboratory equipment, Jerry A. Powell for identifying the moths, Arlee M. Montalvo for aid through various aspects of this work, and the curators and staffs of those herbaria that provided specimens for study. TABLE OF CONTENTS Page Acknowledgements Introduction 1 Taxonomic History 7 Materials and Methods 12 Results and Discussion 22 Osmophors 22 Chromosomes 22 Chromatography 27 Interfertility 37 Field Studies 46 Morphology 49 Character analysis 49 Taxonomic concepts 60 Summary 66 Distribution 68 Conclusions 74 Taxonomy 79 Keys to Piperia taxa 79 Piperia 81 Piperia elegans 82 Piperia unalascensis 86 Piperia maritima 89 Piperia maritima var. multiflora 92 Piperia transversa 94 Piperia michaeli 96 iii Table of Contents. Continued. Page Appendices 98 Literature Cited 107 INTRODUCTION Piperia Rydberg is a polymorphic genus and presents complex taxonomic and nomenclatural problems. Variability exists in nearly all morphological aspects including the usually conservative features of the column. Many species have been proposed based on plants showing limited ranges of continuous characters; this has resulted in considerable confusion. Piperia has been split into as many as nine species by Rydberg (1901b, and in Abrams, 1922) whereas others have consolidated all forms into one (Correll, 1943 and 1950; Calder and Taylor, 1968). Occasionally two different forms grow together without intermixing. Evidence such as this casts doubt upon the validity of consolidating all forms under one or a few taxonomic categories. In contrast, upon examining herbarium specimens, most of these forms, at least superficially, appear to intergrade with one another. Obviously, a reevaluation and enhancement of characters used to delineate piperias is needed. A combination of classical morphology, biochemistry, and reproductive biology is the basis of this study. The distribution of Piperia is largely western: from Baja California to the Aleutian Islands of Alaska and throughout much of British Columbia and the Western States; however, there are disjunct populations in South Dakota, around the Great Lakes, and in the vicinity of the St. Lawrence Seaway. 2 Piperias shy from boggy habitats. Except for Piperia maritima Rydberg, a species often found on open coastal bluffs, they prefer relatively dry coniferous forest and in their southernmost outposts, chaparral. In early spring, mature piperias produce 2-4 basal leaves, which wither before or during anthesis. In Southern California, piperias may flower as early as April but northward they do not flower until early to late summer. The genus Piperia is usually included in either Platanthera L. C. Rich. or Habenaria Willd. According to Dressler's (1974) classification of the Orchidaceae, Piperia, although not accepted by him, belongs in the tribe Orchideae. Recently, American orchidologists have reconsidered the generic concept of Habenaria. This reevaluation resulted in recognition of several segregate genera, including Piperia. Traditionally, European botanists have recognized many segregate genera (at least seven) whose defining characteristics are rather nebulous. The unifying features of one genus often intergrade with another (see Lindley, 1830-1840). At the other extreme, American orchidologists have allowed for a high degree of variability. Ames (1910) and, later, Correll (1943 and 1950), in their treatments of North American habenarias, readily accept a polymorphic concept of Habenaria, which has been used widely in floristic treatments of North America. Rydberg (1901a and 1901b) took exception and followed European botanists by retaining a restricted 3 concept of the genus and recognizing many segregate genera. A compromising approach, though not without error, was given by Schlecter (1927) but was not widely accepted. Dressler and Dodson (1960) suggested reassessment of the genus for they were dissatisfied with the polarity in concepts of Habenaria. Love and Simon (1968) argued for retaining 14 segregate genera, an approach as extreme as that of Ames and Correll. Since then, intermediate schemes have been suggested by Luer (1975) and Dressler (1974). From North America, these authors recognize Platanthera, Coeloglossum Hartman (monotypic), Habenaria, and Piperia (Luer only) as distinct genera. The true habenarias (Ames' section Euhabenaria) grow only in the tropical and subtropical regions (Rydberg, 1901b; Ames, 1910; Schlecter, 1927; Stoutamire, 1974; Luer, 1972 and 1975). Table 1 compares various generic treatments of the Habenaria complex in North America, north of Mexico. The validity of generic status for Piperia is briefly discussed by Luer (1975) and some of his arguments reflect those of Rydberg (1901b). They suggest, in part, that recognition of Piperia is justified by the general acceptance of similar taxonomic treatments of related problematic groups. The addition of several more diagnostic features than mentioned by Luer and Rydberg presents a convincing argument for retention of generic status. The most noteworthy features are: usually two ovoid tubers; Table 1. Selected generic treatments of the Habenaria complex in North America north of Mexico. Ames (1910) & Schlecter Dressier Luer (1975) Britton & Brown Correll (1950) (1927) (1974) (1913; follows Rydberg) Habenaria Habenaria Habenaria Habenaria Habenaria Platanthera Platanthera Platanthera ---- Lysias Lysiella 4 Blephariglottis Limnorchis Piperia Piperia Gymnadenia Platanthera Gymnadeniopsis Denslovia* Platanthera Perularia Coeloglossum Coeloglossum Coeloglossum * Not in Britton and Brown (1913) but later provided by Rydberg (1931). 5 basal leaves withering before or during anthesis; perianth parts one-nerved; two viscidia close together above the orifice to the spur; anther cells parallel and adjacent; stigma simple; caudicles very short; pollinaria not hygroscopic following removal; and flowers protandrous by movement of the lip. Table 2 lists differences and similarities between Habenaria, Piperia, Coeloglossum, and Platanthera. Table 2. Differences and similarities of North American genera of the Habenaria complex. The generic treatment follows Luer (1975). Character Coeloglossum Habenaria Platanthera Piperia roots fusiform tuberoid usiform tuberoid anther cells diverging diverging diverging parallel (rarely parallel) anthero- slightly developed absent or absent phores developed developed viscidia protected by naked naked naked a membrane entire and stigma entire and bipartite and entire and 6 above spur lateral or above spur above spur orifice below spur orifice orifice orifice leaves cauline, cauline or cauline or basal, fugacious persistent basal, basal, persistent persistent distribution N. temperate, subtropical & N. temperate, N. temperate; arctic; E. & tropical; E. & arctic; E. & W. hemisphere W. hemispheres W. hemispheres W. hemispheres TAXONOMIC HISTORY OF PIPERIA The taxonomic history of Piperia, at both the generic and subgeneric levels, is complicated. The following is a chronological outline of nomenclatural changes. 1826: Sprengel briefly described the first Piperia as Spiranthes unalascensis Sprengl. based upon a collection from "Ins. Aleut.". 1828: Naming possibly the same collection as Sprengel, Chamisso described a short-spurred form as Habenaria schischmareffiana Cham. from "Unalasheae Aleutorum, ad radices montium passim". 1835: Lindley transferred H. schischmareffiana to Platanthera. He was aware of Spiranthes unalascensis but was not sure to what the name referred. In the same publication, Lindley was the first to describe a long-spurred member of the complex, Platanthera elegans Lindl. 1851: H. G. Reichenbach recognized Spiranthes unalascensis And H. schischmareffiana as the same but mistakenly placed the species in the spurless genus Herminium L. 1855: Hooker published Platanthera foetida Geyer but there was no description, only the name and references to the collection locality (plateaux of Spokan Mountains). 1855: Durand, apparently unaware of Lindley's Platanthera elegans, described a similar specimen and named it Gymnadenia longispica Durand. 8 1870: Bolander transferred Platanthera elegans to Habenaria. 1871: Sereno Watson provided a description of Platanthera foetida Geyer ex Hook., which is a short-spurred piperia, but he transferred the epithet to Habenaria. 1877: At this time Watson transferred Spiranthes unalas- censis to Habenaria and recognized H. foetida (Geyer ex Hook.) S. Wats. as a synonym of this new combina- tion. He wrongly referred Gymnadenia longispica to this species. Watson also, in the same publication, described a robust short-spurred form from the ... clay hills near San Diego, California" as Habenaria cooperi Wats. 1885: Greene described H. michaeli Greene, a long-spurred piperia from San Luis Obispo Co., California. This plant, according to Greene, differed from H. elegans by more
Recommended publications
  • Liliaceae S.L. (Lily Family)
    Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior.
    [Show full text]
  • Native Orchids in Southeast Alaska
    Native Orchids in Southeast Alaska Marlin Bowles & Bob Armstrong 2019 Preface Southeast Alaska's rainforests, peatlands and alpine habitats support a wide variety of plant life. The composition of this vegetation is strongly influenced by patterns of plant distribution and geographical factors. For example, the ranges of some Asian plant species extend into Southeast Alaska by way of the Aleutian Islands; other species extend northward into this region along the Pacific coast or southward from central Alaska. Included in Southeast Alaska's vegetation are at least 27 native orchid species and varieties whose collective ranges extend from Mexico north to beyond the Arctic Circle, and from North America to northern Europe and Asia. These orchids survive in a delicate ecological balance, requiring specific insect pollinators for seed production, and mycorrhizal fungi that provide nutrients essential for seedling growth and survival of adult plants. These complex relationships can lead to vulnerability to human impacts. Orchids also tend to transplant poorly and typically perish without their fungal partners. They are best left to survive as important components of biodiversity as well as resources for our enjoyment. Our goal is to provide a useful description of Southeast Alaska's native orchids for readers who share enthusiasm for the natural environment and desire to learn more about our native orchids. This book addresses each of the native orchids found in the area of Southeast Alaska extending from Yakutat and the Yukon border south to Ketchikan and the British Columbia border. For each species, we include a brief description of its distribution, habitat, size, mode of reproduction, and pollination biology.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Identification and Comparison of the Pollinators for the Purple-Fringed
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Fall 1-2006 Identification and Comparison of the ollinatP ors for the Purple- fringed Orchids Platanthera psycodes and P.grandiflora John Richard Evans University of Tennessee-Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Evans, John Richard, "Identification and Comparison of the ollinatP ors for the Purple-fringed Orchids Platanthera psycodes and P.grandiflora" (2006). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/953 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Identification and Comparison of the Pollinators for the Purple-fringed Orchids Platanthera psycodes and P. grandijlora John R. Evans Department of Ecology and Evolutionary Biology The University of Tennessee Advised by John A. Skinner Professor, Department of Entomology and Plant Pathology The University of Tennessee Abstract The pollination ecologies of the two purple-fringed orchids, Platanthera psycodes and P. grandiflora, are compared to test the prediction that, despite an extraordinary similarity in appearance, internal differences in the position and shape of fertile structures contributes to a distinct difference in their respective pollination ecologies. Field observations and experiments conducted during the 2003 flowering season in Great Smoky Mountains National Park revealed a number of effective pollen vectors not previously documented for P.
    [Show full text]
  • Angiosperm Latin Name: Brassia Spp. Common Name: Spider Orchid Family: Orchidaceae Geographic Origin: Brazil Soil: Use Orchid Po
    Latin Name: Brassia spp. Common Name: Spider Orchid Family: Orchidaceae Geographic Origin: Brazil Soil: Use orchid potting mix. Temperature: Daytime temperatures should be between 75°-85°F and nighttime temperatures should be between 65°-75°F. Light: This plant prefers full sun with partial shade. Moisture: Soak plant in a bucket of water for one hour every week. Fertilization: This plant should be fertilized every other week, alternating between fish and seaweed fertilizers. Grooming: Repot every year or two. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate through division or plantlets. Pests and Diseases: Check for root rot, mealy bugs, and whitefly. Angiosperm Latin Name: Dendrobium kingianum Common Name: Pink Rock Orchid Family: Orchidaceae Geographic Origin: Australia Soil: Use orchid potting mix. Temperature: Daytime temperatures should be between 75°-85°F and nighttime temperatures should be between 65°-75°F. Light: This plant prefers full sun with partial shade. Moisture: Soak plant in a bucket of water for one hour every week. Fertilization: This plant should be fertilized every other week, alternating between fish and seaweed fertilizers. Grooming: Repot every year or two. Seasonal Care: Reduce watering and fertilizing during winter months. Propagation: Propagate through division or plantlets. Pests and diseases: Check for root rot, mealy bugs, and whitefly. Angiosperm Latin Name: Dendrobium ‘Wave King’ Common Name: Wave King Orchid Family: Orchidaceae Geographic Origin: South Asia Soil: Use orchid potting mix. Temperature: Daytime temperatures should be between 75°-85°F and nighttime temperatures should be between 65°-75°F. Light: This plant prefers full sun with partial shade.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Native Orchids in Southeast Alaska Marlin Bowles & Bob Armstrong Juneau, Alaska 2019
    Native Orchids in Southeast Alaska Marlin Bowles & Bob Armstrong Juneau, Alaska 2019 Preface Southeast Alaska's rainforests, peatlands and alpine habitats support a wide variety of plant life. The composition of this vegetation is strongly influenced by surrounding biogeographical factors. For example, the ranges of some Asian plant species extend into Southeast Alaska by way of the Aleutian Islands; other species extend northward into this region along the Pacific coast or southward from central Alaska. Included in Southeast Alaska's vegetation are at least 27 native orchid species and varieties whose collective ranges extend from Mexico north to beyond the Arctic Circle, and from North America to northern Europe and Asia. These orchids survive in a delicate ecological balance, requiring specific insect pollinators for seed production, and mycorrhizal fungi that provide nutrients essential for seedling growth and survival of adult plants. These complex relationships can lead to vulnerability to human impacts. Orchids also tend to transplant poorly and typically perish without their fungal partners. They are best left to survive as important components of biodiversity as well as resources for our enjoyment. Our goal is to provide a useful description of Southeast Alaska's native orchids for readers who share enthusiasm for the natural environment and desire to learn more about our native orchids. This book addresses each of the native orchids found in the area of southeast Alaska extending from Yakutat and the Yukon border south to Ketchikan and the British Columbia border. For each species, we include a brief description of its distribution, habitat, size, mode of reproduction, and pollination biology.
    [Show full text]
  • NJ Native Plants - USDA
    NJ Native Plants - USDA Scientific Name Common Name N/I Family Category National Wetland Indicator Status Thermopsis villosa Aaron's rod N Fabaceae Dicot Rubus depavitus Aberdeen dewberry N Rosaceae Dicot Artemisia absinthium absinthium I Asteraceae Dicot Aplectrum hyemale Adam and Eve N Orchidaceae Monocot FAC-, FACW Yucca filamentosa Adam's needle N Agavaceae Monocot Gentianella quinquefolia agueweed N Gentianaceae Dicot FAC, FACW- Rhamnus alnifolia alderleaf buckthorn N Rhamnaceae Dicot FACU, OBL Medicago sativa alfalfa I Fabaceae Dicot Ranunculus cymbalaria alkali buttercup N Ranunculaceae Dicot OBL Rubus allegheniensis Allegheny blackberry N Rosaceae Dicot UPL, FACW Hieracium paniculatum Allegheny hawkweed N Asteraceae Dicot Mimulus ringens Allegheny monkeyflower N Scrophulariaceae Dicot OBL Ranunculus allegheniensis Allegheny Mountain buttercup N Ranunculaceae Dicot FACU, FAC Prunus alleghaniensis Allegheny plum N Rosaceae Dicot UPL, NI Amelanchier laevis Allegheny serviceberry N Rosaceae Dicot Hylotelephium telephioides Allegheny stonecrop N Crassulaceae Dicot Adlumia fungosa allegheny vine N Fumariaceae Dicot Centaurea transalpina alpine knapweed N Asteraceae Dicot Potamogeton alpinus alpine pondweed N Potamogetonaceae Monocot OBL Viola labradorica alpine violet N Violaceae Dicot FAC Trifolium hybridum alsike clover I Fabaceae Dicot FACU-, FAC Cornus alternifolia alternateleaf dogwood N Cornaceae Dicot Strophostyles helvola amberique-bean N Fabaceae Dicot Puccinellia americana American alkaligrass N Poaceae Monocot Heuchera americana
    [Show full text]
  • Carrick & Buffalo Point, July 16, 2016
    Native Orchid Conservation Inc. Carrick and Buffalo Point Field Trip, July 16, 2016 While it is only in the extreme southeastern tip of Manitoba, the small purple-fringed orchid (Platanthera psycodes) occurs eastward to Newfoundland, in the east-central and northeastern United States (Great Lakes region, Appalachian Mountains and New England). It is imperiled in Illinois, Tennessee, North Carolina and Kentucky. Minnesota is at the western edge of the range. Like many other orchids it is a plant of wet habitats: sedge meadows, flatwoods, sphagnum bogs, cedar or alder swamps, on stream edges or the moist edges of coniferous forests. It is occasionally found in wet swales adjoining freshwater sandy beaches. Preferring cooler habitats, its range is being pushed northwards as global temperatures warm. It has been found in locations of 1,500 foot altitudes in Vermont, 4,000 foot altitudes in Virginia, and 6,500 foot altitudes in North Carolina and Tennessee. The lesser rattlesnake orchid (Goodyera repens) is a green underground creeper that sends out occasional skinny stems above the surface. During the summer, these stems bear flowers arranged in a spiral. These flowers twist themselves to face toward the sun. It is a protected species throughout most of its range. It does not survive fire, and does not soon re- enter an area after fire or logging. It is generally found only in forests at least 95 years old. The seeds are probably the smallest of any plant. The checkered rattlesnake plaintain (Goodyera tesselata) is native to eastern Canada from Manitoba to Newfoundland, and to the northeastern United States from Maine to Maryland, and west to Minnesota .
    [Show full text]
  • Field Identification of the 50 Most Common Plant Families in Temperate Regions
    Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae
    [Show full text]
  • Orchidaceae – Orchid Family
    ORCHIDACEAE – ORCHID FAMILY Plant: herbs, vines rare Stem: rhizomes or corms may be present Root: Leaves: simple, usually alternate but rarely opposite or whorled; parallel veined, somewhat fleshy and often forming a sheath at base; no stipules Flowers: perfect; often showy and unusual (irregular) and solitary or in spikes; flower with bract; 3 sepals or 2 by fusion, colored or green; 3 petals, colored or white, often with 2 lateral petals with a third larger petal modified into a lip, sometimes with a backward spur; stamens usually 1, rarely 2-3; ovary inferior, 3 carpels, many ovules (stamens adnate to pistil) (flower is rotated 180 degrees, resupinate, in most species but not all) Fruit: capsule, 3-chambered, very small and very numerous seeds, or berry Other: very large family, most abundant in the tropics, many are epiphytic; Monocotyledons Group Genera: 800+ genera; locally Cypripedium (lady-slipper); Epipactis; Goodyera; Spiranthes and others WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Orchid flowers are complex examples of adaptation with Orchidaceae (Orchid Family) many and varied insect pollinators Many, but not all, orchid flowers are rotated by 180 degrees (resupinate 3 sepals – free or 2 may be fused, condition) by rotation of the ovary or The lower resupinate lower lip colored or green; 3 petals – free or the pedicle with the now basal petal may form a pouch in some forming a long lip that benefits insect 2 may be fused, usually colored, 1 species pollination (sort of a runway perhaps) petal (lower in resupinate flowers) usually forms a lip (various sizes Resupinate condition and shapes including a pouch in (flower upside down) one genus, and spurs in several others).
    [Show full text]