Native Orchids in Southeast Alaska
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Native Orchids in Southeast Alaska with an Emphasis on Juneau
Native Orchids in Southeast Alaska with an Emphasis on Juneau Marlin Bowles & Bob Armstrong 2019 Acknowledgements We are grateful to numerous people and agencies who provided essential assistance with this project. Carole Baker, Gilbette Blais, Kathy Hocker, John Hudson, Jenny McBride and Chris Miller helped locate and study many elusive species. Pam Bergeson, Ron Hanko, & Kris Larson for use of their photos. Ellen Carrlee provided access to the Juneau Botanical Club herbarium at the Alaska State Museum. The U.S. Forest Service Forestry Sciences Research Station at Juneau also provided access to its herbarium, and Glacier Bay National Park provided data on plant collections in its herbarium. Merrill Jensen assisted with plant resources at the Jensen-Olson Arboretum. Don Kurz, Jenny McBride, Lisa Wallace, and Mary Willson reviewed and vastly improved earlier versions of this book. About the Authors Marlin Bowles lives in Juneau, AK. He is a retired plant conservation biologist, formerly with the Morton Arboretum, Lisle, IL. He has studied the distribution, ecology and reproductionof grassland orchids. Bob Armstrong has authored and co-authored several books about nature in Alaska. This book and many others are available for free as PDFs at https://www.naturebob.com He has worked in Alaska as a biologist, research supervisor and associate professor since 1960. Table of Contents Page The southeast Alaska archipellago . 1 The orchid plant family . 2 Characteristics of orchids . 3 Floral anatomy . 4 Sources of orchid information . 5 Orchid species groups . 6 Orchid habitats . Fairy Slippers . 9 Eastern - Calypso bulbosa var. americana Western - Calypso bulbosa var. occidentalis Lady’s Slippers . -
Biological Evaluation for US Trunk Highway 2 Passing Lane and Turn Lane Improvements
Draft Biological Evaluation for US Trunk Highway 2 Passing Lane and Turn Lane Improvements Prepared by: Minnesota Department of Transportation Prepared for: US Forest Service, Chippewa National Forest Minnesota Department of Natural Resources May 2014 US Highwy 2 Passing Lane and Turn Lane Improvements Biological Evaluation This Biological Evaluation was prepared pursuant to the National Environmental Policy Act, National Forest Management Act, and other applicable laws and regulations. For additional information, please contact the team leader for the US Trunk Highway 2 Passing Lane and Turn Lane Improvements Project. Ms. Christine Brown Chippewa National Forest Address: 200 Ash Avenue NW Cass Lake, MN 56633 Phone: (218) 335-8600 TTY: (218) 335-8632 FAX: (218)335-8637 Prepared by: ______________________________________ _______________ Antony Randazzo, HDR Engineering, Inc. Date Reviewed by: ______________________________________ _______________ Kirk W. Larson, U.S. Forest Service Date Chippewa National Forest Reviewed by: ______________________________________ _______________ Cory Mlodik, U.S. Forest Service Date Chippewa National Forest May 2014 Signature Page Page i US Highwy 2 Passing Lane and Turn Lane Improvements Biological Evaluation Table of Contents 1.0 Introduction ............................................................................................................................ 1-1 1.1 Purpose of this Report .............................................................................................................................. -
Willi Orchids
growers of distinctively better plants. Nunured and cared for by hand, each plant is well bred and well fed in our nutrient rich soil- a special blend that makes your garden a healthier, happier, more beautiful place. Look for the Monrovia label at your favorite garden center. For the location nearest you, call toll free l-888-Plant It! From our growing fields to your garden, We care for your plants. ~ MONROVIA~ HORTICULTURAL CRAFTSMEN SINCE 1926 Look for the Monrovia label, call toll free 1-888-Plant It! co n t e n t s Volume 77, Number 3 May/June 1998 DEPARTMENTS Commentary 4 Wild Orchids 28 by Paul Martin Brown Members' Forum 5 A penonal tour ofplaces in N01,th America where Gaura lindheimeri, Victorian illustrators. these native beauties can be seen in the wild. News from AHS 7 Washington, D . C. flower show, book awards. From Boon to Bane 37 by Charles E. Williams Focus 10 Brought over f01' their beautiful flowers and colorful America)s roadside plantings. berries, Eurasian bush honeysuckles have adapted all Offshoots 16 too well to their adopted American homeland. Memories ofgardens past. Mock Oranges 41 Gardeners Information Service 17 by Terry Schwartz Magnolias from seeds, woodies that like wet feet. Classic fragrance and the ongoing development of nell? Mail-Order Explorer 18 cultivars make these old favorites worthy of considera Roslyn)s rhodies and more. tion in today)s gardens. Urban Gardener 20 The Melting Plot: Part II 44 Trial and error in that Toddlin) Town. by Susan Davis Price The influences of African, Asian, and Italian immi Plants and Your Health 24 grants a1'e reflected in the plants and designs found in H eading off headaches with herbs. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
A PDF of the Presentation
Plymouth County Extension Blake Dinius Entomologist Educator [email protected] 774-773-3404 Introduction Introduction What is a mosquito? • Diptera: Two wings • Family: Culicidae • Scaled wings Richard Migneault Not mosquitoes Robber fly Midge Crane fly Mosquitoes are old • Oldest fossils: ~30-60 mya • Probably, older than birds and mammals (70-230 mya) Mosquitoes are diverse • 3,500 species of mosquitoes worldwide • 6,495 species of mammals worldwide • ~51 mosquitoes in MA Ae. albopictus Ae. canadensis An.Ps. feroxquadrimaculatus Anopheles sergenti Siwa-oasis, Egypt Günter C. Müller and Yosef Schlein Shehata, M., Kenawy, M., Said, S., Beier, J., Gwadz, R., and Shaaban, M. (1989). Anopheles sergenti (Theobald) a potential malaria vector in Egypt. Annales de parasitologie humaine et comparée. 64. 72-6. Ochlerotatus pullatus 2300-3400 m West, David & Black, W. (1998). Breeding structure of three snow pool Aedes mosquito species in northern Colorado. Heredity. 81 ( Pt 4). 371-80. Wyeomyia smithii Purple pitcher plant (Sarracenia purpurea) Tom Murray Tom Murray But, they all require water! Eggs Laid in or near water Larva “Wrigglers” Develop in water Algae, plankton, fungi, bacteria, and other micro-organisms Some eat other mosquitoes! Pupa (active) “Tumblers” Also, develop in water Adult Emerge from water and lay eggs in/near water Ever wonder why there are never mosquitoes in Disney? Basically a swamp William “Joe” Potter • Governor of the Panama canal zone • Engineer • Knew A LOT about mosquitoes Food for other animals • Dragonflies • Damselflies • Fish • Other insects! Jakob, C. and Poulin, B.. (2016). Indirect effects of mosquito control using Bti on dragonflies and damselflies (Odonata) in the Camargue. -
Phylogenetics of Tribe Orchideae (Orchidaceae: Orchidoideae)
Annals of Botany 110: 71–90, 2012 doi:10.1093/aob/mcs083, available online at www.aob.oxfordjournals.org Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes Luis A. Inda1,*, Manuel Pimentel2 and Mark W. Chase3 1Escuela Polite´cnica Superior de Huesca, Universidad de Zaragoza, carretera de Cuarte sn. 22071 Huesca, Spain, 2Facultade de Ciencias, Universidade da Corun˜a, Campus da Zapateira sn. 15071 A Corun˜a, Spain and 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK * For correspondence. E-mail [email protected] Received: 3 November 2011 Returned for revision: 9 December 2011 Accepted: 1 March 2012 Published electronically: 25 April 2012 † Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. -
Orchids of Lakeland
a field guide to OrchidsLakeland Provincial Park, Provincial Recreation Area and surrounding region Written by: Patsy Cotterill Illustrated by: John Maywood Pub No: I/681 ISBN: 0-7785-0020-9 Printed 1998 Sepal Sepal Petal Petal Seed Sepal Lip (labellum) Ovary Finding an elusive (capsule) orchid nestled away in Sepal the boreal forest is a Scape thrilling experience for amateur and Petal experienced naturalists alike. This type Petal of recreation has become a passion for Column some and, for many others, a wonder- ful way to explore nature and learn Ovary Sepal (capsule) more about the living world around us. Sepal But, we also need to be careful when Lip (labellum) looking at these delicate plants. Be mindful of their fragile nature... keep Spur only memories and take only photo- graphs so that others, too, can enjoy. Corm OrchidsMany people are surprisedin Alberta to learn that orchids grow naturally in Alberta. Orchids are typically associated with tropical rain forests (where indeed, many do grow) or flower-shop purchases for special occasions, exotic, expensive and highly ornamental. Wild orchids in fact are found world-wide (except in Antarctica). They constitute Roots Tuber the second largest family of flowering plants (the Orchidaceae) after the Aster family, with upwards of 15,000 species. In Alberta, there are 26 native species. Like all Roots orchids from north temperate regions, these are terrestrial. They grow in the ground, in contrast to the majority of rain forest species which are epiphytes, that is, they grow attached to trees for support but do not derive nourishment from them. -
Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees. -
Biosystematic Studies in the Genus Piperia (Orchidaceae)
BIOSYSTEMATIC STUDIES IN THE GENUS PIPERIA (ORCHIDACEAE) by James D. Ackerman A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts June, 1976 BIOSYSTEMATIC STUDIES IN THE GENUS PIPERIA (ORCHIDACEAE) by James D. Ackerman Approved by the Master's Thesis Committee Chairman Approved by the Graduate Dean ACKNOWLEDGEMENTS Dennis E. Anderson's patience, guidance and support throughout this project is most gratefully acknowledged. I appreciate members of my committee, Richard L. Hurley, Robert A. Rasmussen, and Farris R. Meredith for lively discussions and reading the manuscript. I also thank William V. Allen for access to laboratory equipment, Jerry A. Powell for identifying the moths, Arlee M. Montalvo for aid through various aspects of this work, and the curators and staffs of those herbaria that provided specimens for study. TABLE OF CONTENTS Page Acknowledgements Introduction 1 Taxonomic History 7 Materials and Methods 12 Results and Discussion 22 Osmophors 22 Chromosomes 22 Chromatography 27 Interfertility 37 Field Studies 46 Morphology 49 Character analysis 49 Taxonomic concepts 60 Summary 66 Distribution 68 Conclusions 74 Taxonomy 79 Keys to Piperia taxa 79 Piperia 81 Piperia elegans 82 Piperia unalascensis 86 Piperia maritima 89 Piperia maritima var. multiflora 92 Piperia transversa 94 Piperia michaeli 96 iii Table of Contents. Continued. Page Appendices 98 Literature Cited 107 INTRODUCTION Piperia Rydberg is a polymorphic genus and presents complex taxonomic and nomenclatural problems. Variability exists in nearly all morphological aspects including the usually conservative features of the column. Many species have been proposed based on plants showing limited ranges of continuous characters; this has resulted in considerable confusion. -
Herbarium Vascular Plant Collection Herbarium Vascular Plant Collection Specify Web Results Page [Display Options] [Advanced Search]
Herbarium Vascular Plant Collection Herbarium Vascular Plant Collection Specify Web Results Page [Display Options] [Advanced Search] Access Species/Full Taxon Name County Special Area Number State 240115 Botrychium simplex California Mariposa Yosemite Nat. Park 240181 Botrychium simplex California Tuolumne Yosemite Nat. Park 825215 Botrychium multifidum Minnesota Aitkin Hill River SF 824614 Botrychium multifidum Minnesota Aitkin Hill River SF 824455 Botrychium lanceolatum Minnesota Aitkin Nemadji SF 447448 Botrychium simplex Minnesota Aitkin 447447 Botrychium simplex Minnesota Aitkin 476354 Malaxis unifolia Minnesota Aitkin Hill River SF 452731 Physalis heterophylla Minnesota Aitkin Hill River SF 476350 Cypripedium acaule Minnesota Aitkin Hill River SF 514606 Botrychium simplex Minnesota Aitkin 433314 Monotropa hypopitys Minnesota Aitkin Hill River SF 447156 Botrychium simplex Minnesota Aitkin Savanna SF 430388 Botrychium simplex Minnesota Aitkin 447560 Botrychium simplex Minnesota Aitkin Solana SF 519469 Botrychium simplex Minnesota Aitkin Solana SF 430387 Botrychium simplex Minnesota Aitkin 519545 Botrychium simplex Minnesota Aitkin Savanna Portage SP 922197 Botrychium simplex Minnesota Beltrami Chippewa NF 922197 Botrychium simplex Minnesota Beltrami Chippewa NF 435285 Botrychium pallidum Minnesota Cass Chippewa NF / Leech Lake http://ssrs.cfans.umn.edu:8080/PlantsWebSearch/index.jsp[8/16/2011 10:27:35 AM] Herbarium Vascular Plant Collection 456063 Botrychium minganense Minnesota Cass Chippewa NF / Leech Lake 456064 Botrychium simplex