Transit Speed and Reliability Guidelines and Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impacts of Queue Jumpers and Transit Signal Priority on Bus
IMPACTS OF QUEUE JUMPERS AND TRANSIT SIGNAL PRIORITY ON BUS RAPID TRANSIT by R. M. Zahid Reza A Thesis Submitted to the Faculty of College of Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 Copyright by R. M. Zahid Reza 2012 ii ACKNOWLEDGEMENTS I am heartily thankful to my supervisor Dr. Aleksandar Stevanovic for his expertise and circumspective guidance and support all through my graduate studies at the Florida Atlantic University. I also want to thank Dr. Khaled Sobhan for giving me an opportunity to pursuing higher study and Dr. Evangelos Kaisar for his helpful suggestions and comments during my research work. I would like to expand my thanks to Dr. Milan Zlatkovic, from the University of Utah whose sincere judgment and recommendations helped me to carry out the study. Finally, I would like to express my special thanks to my family whose continuous supports and encouragement was constant source of stimulus for this work. iv ABSTRACT Author: R. M. Zahid Reza Title: Impacts of Queue Jumpers and Transit Signal Priority on Bus Rapid Transit Institution: Florida Atlantic University Thesis Advisor: Dr. Aleksandar Stevanovic Degree: Master of Science Year: 2012 Exclusive bus lanes and the Transit Signal Priority are often not effective in saturated peak-traffic conditions. An alternative way of providing priority for transit can be queue jumpers, which allows buses to bypass and then cut out in front of waiting queue by getting an early green signal. Utah Transit Authority deployed Bus Rapid Transit system at Salt Lake County, Utah along W 3500 S. -
16Th Street Project Flyer ENGLISH
16th Street Improvement Project We’re Moving Muni Forward As part of Muni Forward, SFMTA is adding transit and safety improvements along the 22 Fillmore route that will make it safer to walk and bike, increase the reliability of transit service and enhance the customer experience on and off the bus. Project Overview BENEFITS AT A GLANCE The 16th Street Improvement Project aims to improve transit reliability and Reduce travel travel time for the 18,000 customers who ride Muni along the corridor on time by almost an average weekday, while enhancing safety and accessibility. It will address transportation needs of current and future residents, workers and visitors to the southeastern portion of the 22 Fillmore route along 2.3 miles of 16th Street. The 25% project also features utility upgrades as well as new trees, sidewalks and bus shelters. To allow for zero-emission transit service into Mission Bay, the project includes extending the overhead contact system (OCS) that powers our trolley buses on 16th Street from Kansas to Third streets. Additionally, new bike lanes have been added to 17th Street to create a continuous route from Mission Bay to the Mission neighborhood. Wider sidewalks at intersections This project is part of Muni Forward, an ongoing initiative to create a safe, reli- and bus bulb outs for safer able and comfortable experience on and off transit. crossings for people walking and quicker bus boardings. Schedule Stay Connected Construction will occur in two phases. First will be Potrero Hill/ Sign-up to get project updates and alerts: Mission Bay, followed by the Mission neighborhood section. -
Guidelines for the Safe Siting of School Bus Stops
Guidelines for the safe location of school bus stops 1. How are bus stops determined? Bus stops will be placed on public roadways and will avoid travel on private roads and/or driveways Bus routes are designed with buses traveling on main arterials with students picked up and dropped off at central locations. Visibility – Bus drivers need to have at least 500 feet of visible roadway to the bus stop. If there is not ample visibility (e.g. curve or hill) a “school bus stop ahead sign” is put in place before the stop in accordance with WAC 392-145-030 Bus drivers activate their school bus warning lights 300-100 feet before arriving at the bus stop, where the posted speed limit is 35 mph and under, and 500-300 feet before arriving at the bus stop where the posted speed limit is 35 mph and over. 2. Why are bus stops located at corners? Bus stops may be located at corners or intersections whenever possible. Corner stops are much more visible to drivers than house numbers. Students are generally taught to cross at corners rather than in the middle of the street. Traffic controls, such as stoplights or signs, are located at corners. These tend to slow down motorists at corners, making them more cautious as they approach intersections. The motoring public generally expects school buses to stop at corners rather than individual houses. Impatient motorists are also less likely to pass buses at corners than along a street. Cars passing school buses create the greatest risk to students who are getting on or off the bus. -
Utica Avenue Select Bus Service Workshop Summary | November 13, 2014
Utica Avenue Select Bus Service Workshop Summary | November 13, 2014 New York City Transit +selectbusservice , Utica Avenue On November 13, 2014, the New York City transit signal priority to improve the quality and Department of Transportation (DOT) and the performance of transit and, in turn, to improve Metropolitan Transportation Authority (MTA) kicked mobility and access in the neighborhoods that off the public outreach process for the Utica it serves. SBS projects are designed to make it Avenue Select Bus Service (SBS) project. The MTA easier, safer, and more comfortable to travel by and DOT hosted a public workshop at PS 167 on bus, through features like bus bulbs, high-quality Eastern Parkway to gather initial feedback from passenger information, and overall attention to community members on plans to upgrade the B46 pedestrian and vehicular safety. limited bus to Select Bus Service. The project aims to improve bus service while maintaining traffic Utica Avenue Select Bus Service flow and curb access and to increase safety for all During the 2009 Bus Rapid Transit Phase II users along the Utica Avenue corridor in Brooklyn. Study, Brooklyn community members identified Utica Avenue as a corridor that could support The workshop brought together community and benefit from a Select Bus Service project. members, bus riders, transit advocates, Sixty-one percent of residents along the corridor representatives from elected offices, community commute to work on public transit. However, the boards, and police precincts to share their route is characterized by slow and crowded bus experiences as transit riders, drivers, and trips. The community ranked the Utica Avenue B46 pedestrians traveling along the Utica Avenue corridor as one of two corridors most in need of corridor. -
Surface Transportation Optimization and Bus Priority Measures Future of MBTA Bus Operations
Surface Transportation Optimization and Bus Priority Measures Future of MBTA Bus Operations Project Sponsored by Thursday, May 29, 2014 Executive Summary • Bus transit is a critical component of the MBTA services and will be for the foreseeable future • Corridor study demonstrated ability to increase reliability for multiple routes • Some fleet replacement and maintenance facility issues coming to a head • Opportunities exist to cost‐effectively reduce MBTA’s carbon footprint through fleet and infrastructure investments 2 Agenda • Why Bus Transportation Important • Operational Reliability through Bus Priority Measures • Alternative Propulsion for a Sustainable Future • Bringing it all together: Pilot Opportunities 3 Why is Bus Transportation Important • Large percentage of MBTA ridership (~30%) o Still Growing…11% growth in unlinked passenger trips from Jan 2007 to Mar 2012 • Environmental justice Minority Low Income English Proficiency* Bus 37% 21% 0.63% Rapid Transit 27% 13% 0.14% Commuter Rail 11% 2% 0.02% 4 Why is Bus Transportation Important • Mobility o 34% of bus users have no household vehicle • Service availability (Coverage) o % of street miles covered by transit market Bus Subway Commuter Rail Total 73% 7% 3% • Lower capital cost to implement bus improvements vs. rail • Public transportation’s role in global warming 5 Project Methodology • Researched bus priority best practices • Researched alternative propulsion systems • Fact finding mission – London, UK • Developed corridor selection criteria/methodology • Developed conceptual -
Transit Capacity and Quality of Service Manual (Part B)
7UDQVLW&DSDFLW\DQG4XDOLW\RI6HUYLFH0DQXDO PART 2 BUS TRANSIT CAPACITY CONTENTS 1. BUS CAPACITY BASICS ....................................................................................... 2-1 Overview..................................................................................................................... 2-1 Definitions............................................................................................................... 2-1 Types of Bus Facilities and Service ............................................................................ 2-3 Factors Influencing Bus Capacity ............................................................................... 2-5 Vehicle Capacity..................................................................................................... 2-5 Person Capacity..................................................................................................... 2-13 Fundamental Capacity Calculations .......................................................................... 2-15 Vehicle Capacity................................................................................................... 2-15 Person Capacity..................................................................................................... 2-22 Planning Applications ............................................................................................... 2-23 2. OPERATING ISSUES............................................................................................ 2-25 Introduction.............................................................................................................. -
SEPTA Bus Stop Design Guidelines
The Delaware Valley Regional Planning Commission is The symbol in our logo is adapted from the dedicated to uniting the region’s elected officials, planning official DVRPC seal professionals and the public with a common vision of and is designed as a making a great region even greater. Shaping the way we stylized image of the live, work, and play, DVRPC builds consensus on Delaware Valley. The outer ring symbolizes the region as improving transportation, promoting smart growth, a whole while the diagonal bar signifies the Delaware River. The two adjoining crescents represent the protecting the environment, and enhancing the economy. Commonwealth of Pennsylvania and the State of We serve a diverse region of nine counties: Bucks, New Jersey. Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; and Burlington, Camden, Gloucester, and DVRPC is funded by a variety of funding sources including federal grants from the U.S. Department of Mercer in New Jersey. DVRPC is the federally designated Transportation’s Federal Highway Administration Metropolitan Planning Organization for the Greater (FHWA) and Federal Transit Administration (FTA), Philadelphia Region — leading the way to a better future. the Pennsylvania and New Jersey departments of transportation, as well as by DVRPC’s state and local member governments. The authors, however, are solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies. DVRPC fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities. DVRPC’s website (www.dvrpc.org) may be translated into multiple languages. -
Framework for Transit Equity: Metrobus Service Guidelines
Executive Committee Action Item IV-A December 10, 2020 Framework for Transit Equity: Metrobus Service Guidelines Page 36 of 105 Washington Metropolitan Area Transit Authority Board Action/Information Summary MEAD Number: Resolution: Action Information 202236 Yes No TITLE: Framework for Transit Equity: Metrobus Guidelines PRESENTATION SUMMARY: Action item to request adoption of Metrobus Service Guidelines PURPOSE: Staff will recommend Board adoption of new Metrobus Service Guidelines. DESCRIPTION: This presentation will update the Board on changes to the draft Service Guidelines based on comments from Metro’s jurisdictional partners and local bus service providers. Summary results from the application of the guidelines to Metrobus Lines/Routes will be provided based on data from July 2019-February 2020. A discussion of how the results can be used to improve bus service and equity will be provided. Staff will recommend Board adoption of Metrobus Service Guidelines to inform future service plans. Contractors and Interested Parties Involved in the Service Guidelines and Annual Line Performance Work: AECOM, Foursquare Integrated Transportation Planning, and IBI Group Key Highlights: • Metrobus Service guidelines are fundamental to ensuring equitable service across the region and are one of the main building blocks for service planning, budget decisions, and conducting a network redesign. Metrobus Service guidelines have not been updated since 2000. • Improving Metrobus directly helps address longstanding inequities in the region. • Updating Metrobus service guidelines was a Bus Transformation Project recommendation and was widely supported by our jurisdictional partners. The guidelines will create a clear and formalized approach to routing, service, and budget decisions. • Feedback from jurisdictions and local bus providers is incorporated into the service guidelines. -
Directions from the Heathrow Terminals to the Airline Coach
Directions from the Heathrow Terminals to the Airline Coach Terminal 2 - Enter the arrivals area, here you will see lots of people waiting. - Exit the terminal building and walk to the elevators straight ahead - Take the elevator down to floor -1 - Turn right out of the elevator - Follow the signs to the Central Bus station - Take the travellator - You will see an elevator with signs on it to the Central Bus station and to the Chapel - Take the elevator up to floor 0 Central Bus station - Turn right out of the elevator and go to Exit A. - Go to Stand 15 and wait for the Airline coach Terminal 3 - Enter the arrivals area, here you will see lots of people waiting. - Straight ahead of you is a ramp. - Walk down the ramp following the signs to the Central Bus station - Take the travellator - Turn left to the Central Bus station - Turn left again following signs to the Central Bus station - Turn right - You will see an elevator with signs on it to the Central Bus station and to the Chapel - Take the elevator up to floor 0 Central Bus station - Turn right out of the elevator and go to Exit A. - Go to Stand 15 and wait for the Airline coach Terminal 4 - Enter the arrivals area, here you will see lots of people waiting. - Walk towards the sign that says ‘Meeting Point’ - Pass the shop called ‘Boots’ - Look for the sign which says ‘free transfer to all terminals’ - Pass the ticket machines and walk through the glass doorway. - Turn left towards the elevators and take the elevator down to floor -1 - Come out of the elevator and follow the signs -
Public Transport Priority for Brussels: Lessons from Zurich, Eindhoven, and Dublin
Public Transport Priority for Brussels: Lessons from Zurich, Eindhoven, and Dublin Peter G. Furth Visiting Researcher, Université Libre de Bruxelles* Report Completed Under Sponsorship of the Brussels Capital Region Program “Research in Brussels” July 19, 2005 *Permanent position: Chair, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA. Telephone +1.617.373.2447, email [email protected]. Acknowledgements Thank you to the many people who gave me time to share information about their traffic control and public transport systems: STIB: Alain Carle (Stratégie Clients), Christian Dochy (Dévelopment du Reseau), Jean-Claude Liekendael (Délegué Général à la Qualité), Louis-Hugo Sermeus and Freddy Vanneste (Définition et Gestion de l’Offre), Thierry Villers (Etudes d’Exploitation), Jean-Philippe Gerkens (Exploitation Métro). Brussels Capital Region: Michel Roorijck (A.E.D., program VICOM). Université Libre de Bruxelles: Martine Labbé (Service d’Informatique), my promoter during this research program. Zurich: Jürg Christen and Roger Gygli (City of Zurich, Dienstabteiling Verkehr DAV), A. Mathis (VBZ) Dublin: Margaret O’Mahony (Trinity University Dublin), Colin Hunt and Pat Mangan (Rep. of Ireland Department of Transport), Frank Allen and Jim Kilfeather (Railway Procurement Agency), Owen Keegan and David Traynor (Dublin City Council, Roads and Traffic Department). Peek Traffic, Amersfoort (NL): Siebe Turksma, Martin Schlief. 1 Introduction Priority for public transport is an objective of Brussels and other large cities. It is the key to breaking the vicious cycle of congestion that threatens to bring cities to gridlock. In that cycle, increasing private traffic makes public transport become slower and less reliable, especially because while motorists are free to seek less congested routes, public transport lines cannot simply change their path, and therefore suffer the worst congestion. -
Schedules & Route Maps
8/30/2021 Schedules & Route Maps NORTH KITSAP Save paper Scan the QR code to access this book online. COMPLETE GUIDE TO ROUTED BUS SCHEDULES 93, 94, 95, 96, 97, 98, 99, 106, 301, 302, 307, 332, 333, 338, 344 & 390 Refer to the following individual schedules for additional service in this area: BI Ride • Kingston Ride • Kingston / Seattle Fast Ferry Do you have questions about a schedule? 360.377.BUSS (2877) 800.501.RIDE (7433) Email: [email protected] Connect with Us Kitsap Transit is Committed Visit Kitsap Transit online for the most up-to-date to Your Safety information and to subscribe to Rider Alerts. www.kitsaptransit.com Doing Our Part For assistance contact Customer Service In response to the pandemic, we’re doing everything 360.377.BUSS (2877) 800.501.RIDE (7433) we can to keep you healthy and safe when you ride. Email: [email protected] Face Coverings: Customers must wear Follow us @kitsaptransit a face covering to ride, unless exempt by law. Masks available upon request. Hablas español? Para obtener información sobre los servicios o tarifas de Kitsap Daily Disinfection: We disinfect Transit en español, llame al 1-800-501-7433 durante el horario regular de oficina. El personal de servicio al cliente le conectará a high-touch areas daily with a non-toxic un intérprete para ayudar a responder sus preguntas. cleaner certified to kill coronaviruses. Tagalog? Hand Sanitizer: Dispensers are Upang makakuha ng impormasyon tungkol sa mga serbisyo o singil ng Kitsap Transit sa wikang Tagalog, mangyaring installed on Routed and ACCESS buses. -
2017 Bus Stop Procedures Manual
2017 Bus Stop Procedures Manual GREENVILLE TRANSIT AUTHORITY dba GREENLINK Table of Contents Purpose ......................................................................................................................................................... 2 Stop Parameters ........................................................................................................................................... 3 Bus Dimensions and turn radii .................................................................................................................. 3 Bus Stop Typology ..................................................................................................................................... 4 Near-side ............................................................................................................................................... 4 Far-side .................................................................................................................................................. 5 Mid-block .............................................................................................................................................. 6 Stop Spacing and Placement ..................................................................................................................... 7 Service Delivery ......................................................................................................................................... 8 Stop Design/Environment ...........................................................................................................................