Impacts of Queue Jumpers and Transit Signal Priority on Bus
Total Page:16
File Type:pdf, Size:1020Kb
IMPACTS OF QUEUE JUMPERS AND TRANSIT SIGNAL PRIORITY ON BUS RAPID TRANSIT by R. M. Zahid Reza A Thesis Submitted to the Faculty of College of Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 Copyright by R. M. Zahid Reza 2012 ii ACKNOWLEDGEMENTS I am heartily thankful to my supervisor Dr. Aleksandar Stevanovic for his expertise and circumspective guidance and support all through my graduate studies at the Florida Atlantic University. I also want to thank Dr. Khaled Sobhan for giving me an opportunity to pursuing higher study and Dr. Evangelos Kaisar for his helpful suggestions and comments during my research work. I would like to expand my thanks to Dr. Milan Zlatkovic, from the University of Utah whose sincere judgment and recommendations helped me to carry out the study. Finally, I would like to express my special thanks to my family whose continuous supports and encouragement was constant source of stimulus for this work. iv ABSTRACT Author: R. M. Zahid Reza Title: Impacts of Queue Jumpers and Transit Signal Priority on Bus Rapid Transit Institution: Florida Atlantic University Thesis Advisor: Dr. Aleksandar Stevanovic Degree: Master of Science Year: 2012 Exclusive bus lanes and the Transit Signal Priority are often not effective in saturated peak-traffic conditions. An alternative way of providing priority for transit can be queue jumpers, which allows buses to bypass and then cut out in front of waiting queue by getting an early green signal. Utah Transit Authority deployed Bus Rapid Transit system at Salt Lake County, Utah along W 3500 S. This research evaluates the impacts of queue jumpers with TSP on Bus Rapid Transit (BRT) and private vehicular traffic. Four VISSIM models were developed for analysis: Basic scenario, no TSP with queue jumpers, TSP with no queue jumpers, and TSP with queue jumpers. In TQ scenario travel time was reduced between 13.2-19.82% with respect to basic scenario. At the same time, travel time of private traffic increased vary little 0.38-3.28%. Two TSP strategies: green extension and red truncation are implemented in this research work. v IMPACTS OF QUEUE JUMPERS AND TRANSIT SIGNAL PRIORITY ON BUS RAPID TRANSIT LIST OF FIGURES ............................................................................................................ x LIST OF TABLES ............................................................................................................ xii 1. INTRODUCTION ...................................................................................................... 1 1.1. Problem Statement ............................................................................................... 1 1.2. Research Objectives ............................................................................................. 4 1.3. Research Tasks ..................................................................................................... 4 1.4. Thesis Organization.............................................................................................. 5 2. LITERATURE REVIEW ........................................................................................... 6 2.1. Overview of Performance of Bus Rapid Transit .................................................. 6 2.2. Review of Performance of Preferential Treatments ........................................... 11 2.2.1. Overview of Performance of Transit Signal Priority (TSP) ....................... 11 2.2.2. Review of Performance of Exclusive Bus lanes ......................................... 18 2.2.3. Review of Performance of Queue Jumpers ................................................ 22 2.3. Overview on Calibration .................................................................................... 26 2.4. Summary of the Literature Review .................................................................... 27 3. MICROSIMULATION MODEL DEVELOPMENT ............................................... 28 3.1. Study Area .......................................................................................................... 28 vi 3.2. Simulation Network ........................................................................................... 30 3.3. Traffic Control.................................................................................................... 31 3.4. Transit Operations .............................................................................................. 31 3.5. Preliminary Model building ............................................................................... 32 3.6. Scenario Design.................................................................................................. 33 3.7. Queue Jumpers ................................................................................................... 34 3.8. Queue Jumper Bus Bay ...................................................................................... 35 3.9. Relocating Bus Stops ......................................................................................... 39 3.10. Transit Signal Priority Implementation .............................................................. 42 3.11. Queue Jumper Phase Implementation ................................................................ 43 3.12. Summary of Model Development ...................................................................... 44 4. CALIBRATION AND VALIDATION OF THE MODEL ...................................... 45 4.1. Why necessary to calibrate? ............................................................................... 45 4.2. Overview of VISSIM ......................................................................................... 46 4.2.1. VISSIM Car Following Parameters ................................................................... 47 4.2.2. Lane change........................................................................................................ 50 4.2.3. Driving Behavior Parameters for the Model ...................................................... 52 4.3. Model Calibration .............................................................................................. 53 4.4. Validation ........................................................................................................... 55 vii 4.4.1. Model Validation ........................................................................................ 55 4.4.2. Summary ..................................................................................................... 57 5. RESULTS AND DISCUSSION ............................................................................... 58 5.1. BRT Travel Times .............................................................................................. 58 5.2. Private Vehicular Travel Times ......................................................................... 61 5.3. Bus Travel Times ............................................................................................... 62 5.4. Overall Comparison of Travel Times................................................................. 65 5.5. Network Performance Evaluation ...................................................................... 68 5.5.1. Average Stopped Delay .............................................................................. 68 5.5.2. Average Speed ............................................................................................ 69 5.5.3. Network Wide Comparison of Average Delay ........................................... 70 5.6. Average Cross Street Delay ............................................................................... 70 5.7. Impacts on Intersections on Major Corridor ...................................................... 71 5.8. BRT Time-Space Diagrams ............................................................................... 73 5.9. Summary of Overall Result Analysis ................................................................. 74 6. CONCLUSIONS....................................................................................................... 75 6.1. Conclusions ........................................................................................................ 75 6.2. Limitations of the study and future Research Work .......................................... 76 APPENDIX A ................................................................................................................... 78 APPENDIX B ................................................................................................................... 79 APPENDIX C ................................................................................................................... 80 viii BIBLIOGRAPHY ............................................................................................................. 81 ix LIST OF FIGURES Figure 1 Communication technologies integrated with BRT [Courtesy: Implementation of BRT Transportation System] ..........................................................8 Figure 2 Queue jumpers at Charlotte, NC ........................................................................ 23 Figure 3 3500 South RT 35 and BRT route with BRT bus stop locations ....................... 30 Figure 4 Study Areas along W 3500 S.............................................................................. 30 Figure 5 Queue jumper lane (Ottawa) (Courtesy: Bus Rapid Transit service design guideline) ...................................................................................................................