SHEET METAL WORKS Sheet Metal Works Involves the Development of Surface Or Layout of the Sheet for Many Important Engineering Ar

Total Page:16

File Type:pdf, Size:1020Kb

SHEET METAL WORKS Sheet Metal Works Involves the Development of Surface Or Layout of the Sheet for Many Important Engineering Ar SHEET METAL WORKS Sheet metal works involves the development of surface or layout of the sheet for many important engineering article for applications in houses, agriculture machine, decorative articles etc. it involves manufacturing articles from sheet metal or thin sheets. Sheet metal is generally considered to be a plate with thickness less than about 5 mm. As compared to casting and forging, sheet-metal parts offer advantages of lightweight, less expensive and versatile in shapes. There is also no need for further machining as required for casting and forging works. Types of Sheet Metals Metals used in sheet metal work are black iron, galvanized iron, stainless steel, copper, brass, zinc, aluminum, tin plate and lead. Black Iron Sheet It is probably the cheapest of all the metal used for sheet metal work. It is bluish black in appearance and is used generally in form of uncoated sheet. It can be easily rolled into the desired thickness. Since it is uncoated it corrodes rapidly. Hence to increase its life it can be painted or enameled. This metal is generally used in the making or roofs, food containers, stove pipes, furnace fittings, dairy equipment, tanks, cans and pans, etc. Galvanized Iron (G.I.) It is popularly known as G.I. sheets. It is soft steel coated with molten zinc. This coating resists rust formation on surface and improves appearance and water resistance. Articles such as pans, furnaces, buckets, cabinets etc. are made from GI sheets. Copper sheet It is commonly used for making radiators of automobile engine, heating appliances, equipment for chemical plant. These sheets are costly and have better resistance to corrosion. Brass sheet They are used in making varieties of articles through cold working process like pressing, drawing, etc. It is often used for making kitchen wares and utensils. Tin sheet They are tin coated and have silvery appearance. They offer good resistance to rusting and atmospheric corrosion. They are used in containers for edible oils, dairy products etc. Aluminum sheet They are extensively used in industries for dairy or milk products. They are normally used for roofing, doors, window frame, kitchen cabinets, kitchen wares, containers etc. Stainless Steel It is an alloy of steel with nickel, chromium and small percentages of other metals. It has good corrosion resistance. It is costlier but tougher than GI sheets. 1t is used in kitchenware, food processing equipment, food 1 handling articles, tools and instruments for surgery work in hospitals and components of chemical plants etc. Tools used in sheet metal work The following tools are commonly used for sheet-metal work: (i) Measuring and marking tools These tools are used to mark the sheets according to the required dimension. The most commonly used are Steel rule T-square Scriber Divider Trammel Punches Circumference rule Vernier caliper Micrometer Thickness gauge (i) Cutting tools Commonly used cutting tools involve types of files, chisels, hollow punch, snips, scraper and hacksaws. Files: These are flat, square, round, triangular, knife, pillar, needle and mill types. Chisels: The flat chisel and round nose chisel are most widely used in sheet metal work for cutting sheets, rivets and bolts. Scrapers: These are flat, hook; triangular, half round types. Hollow punch: used when circular holes are to be cut in thin sheet. Hallow punch Hacksaws: Hacksaw may be hand hacksaw or power hacksaw. Straight snip: Blades are straight and it is used for cutting along straight lines. Straight snip 2 Bent snip: Blades are curved back from the cutting edge which allows the metals to slid over top blades. Bent snip (ii) Striking tools Hammers The uses of different kind of hammers are given as under: (a) Smoothing hammer: used for leveling and smoothing a sheet metal joint. (b) Stretching hammer: used for stretching sheet. (c) Creasing hammer: used to close down joint edges of sheets metal part. (d) Hollowing hammer: used for hollowing sheet metal part. It is used for generating sharp radii also. (e) Riveting hammer: used for forming riveted heads. (f) Planishing hammer: used for removing small marks or indentations from the sheet metal job surface and to true the shape of the work. It smoothens off the finished sheet metal work. Soft hammer or Mallets Mallets are used when working with soft metal sheets and light force is required. They may be of wood, rubber or raw hide. A mallet strikes a blow with the minimum damage to the surface. It is used for smoothening of sheet. In sheet metal work, the commonly used mallets are bossing mallet, tinman’s mallet and rawhide mallet. 3 Bossing mallet Tinman’s mallet Rawhide mallet (iii) Supporting tools Stakes Stakes are used to form the metal sheets into various shapes. It is a sort of anvil, which supports the sheet for sheet metal work. It consists of a shank and a head or horn. The shank of stake is designed to fit into a tapered bench socket. The head or horn of stake is available in a number of varieties of sizes and shapes. Their working faces of stakes are machined or ground to needed shape. With the help of a hammer, operations such as bending, seaming or forming can be easily performed on these stakes. Some stakes are made of forged mild steel faced with cast steel whereas the better class stakes are made either of cast iron or cast steel. Types of stakes a) Beak horn stake. It is basically used for forming, riveting and seaming articles made of sheet metal part. It is not much suitable like blow horn stake. It has a thick tapered horn at one end and a rectangular shaped horn at the other. b) Funnel stake. Funnel stake is commonly used for planishing tapered work and hand forming of funnels and similar conical shapes of sheet metal. c) Half-moon stake. It is basically used for throwing up edges of curved sheet metal work and for preliminary stages of wiring curved edges. d) Round bottom stake. It is commonly used for squaring up edges and setting up the bottom of cylindrical jobs made up of sheets. e) Bick iron. It is mainly used for forming taper handles, spouts and tubular work in general. The narrow flat anvil end of bick iron is very useful on rectangular work. f) Hatchet stake. Hatchet stake is generally used for making sharp bends, bending edges and forming boxes and pans of sheet metal by hand. This stake has a sharp straight edge beveled along one side. g) Creasing with horn stake. Creasing horn stake has a round horn used for forming conical shaped pieces in sheets. The other end has a tapering square horn with grooved slots for wiring and beading. h) Needle case stake. It is generally used for bending of sheets. It has a round slender horn for forming wire rings and tubes. 4 i) Candle mold stake. It has two horns for different tapers when forming, seaming and riveting long flaring articles made up of sheet metal. j) Blow horn stake. Blow horn stake is generally used in forming, riveting and seaming tapered articles such as funnels. k) Conductor stake. It has two cylindrical horns of different diameters. It is used for forming, riveting, and seaming small sized pipes and tubes. l) Double seaming stake. Double seaming stake consists of two cylindrical horns of different diameters and it is commonly used for riveting forming, and seaming tubes and small pipes. Types of stakes Stake Holder It is a rectangular cast iron plate that has conveniently arranged tapered holes so that the various stakes may fit in and may be used in different positions for tackling the sheet metal job for a particular work. Stake holder 5 (iv) Hand shears or snips They resemble a pair of scissors and are used to cut thin soft metal sheets of 20 gauge or thinner. They can make straight or circular cuts. Different types of hand shears are: Straight hand shear: It is used for general purpose cutting, making straight cuts and trimming away extra metal. Universal shear: Its blades are designed for universal cutting straight line or internal and external cutting of contours. It may be of right hand or left hand type, easily identifiable, as the top blade is either on the right of on the left. Curved hand shear: It is used for cutting circular or irregular curved shapes ranging from 20 to 35 cm. Types of hand shear or snips Sheet Metal Joints Joints used in sheet metal works are commonly used to fasten bottoms to cylinders, square or rectangular containers. Some of the commonly used such joints are Lap joint: It is very frequently used in sheet metal work and can be prepared by means of soldering or riveting. It is the most common type for general use. Seam joint: This joint is commonly used in sheet metal work. It is locked, so as to ensure a positive grip and also to make the joint flush with the surface. Locked seam joint: This joint is used for locking seam joints in sheet metal work. Hem (single and double), wired edge, cup and angular joints: These enable the edges of sheet metal part to join to the pieces along them. Flanged joint: It is commonly used in making pipe connections. Flush joint: Used where one face of the article is required to be level or flush. Cap joint: It provides another useful form of locked seam joint on sheet metal component with good appearance and strength. It is generally used for assembling cross seam of ducts made up of in sheet metal part.
Recommended publications
  • Modification in Forming Die to Overcome Manufacturing Process
    International Journal of Scientific & Engineering Research Volume 11, Issue 7, July-2020 ISSN 2229-5518 41 Modification in Forming Die to Overcome Manufacturing Process Limitation Prof.B.R.Chaudhari[1], PrathmeshKulkarni[2], Tejas Potdar[3], Omkar Pawar[4], Akhilesh Nikam[5] Abstract—Forming of sheet metal is common and vital process in manufacturing industry. Sheet metal forming is the plastic deformation of the work over an axis, creating a change in the parts geometry. Generally, there are two parts used in forming process; one of the part is punch which performs the stretching, bending and blanking operation and another is Die block which secularly clamps the workpiece and same operation as punch. Forming processes are particular manufacturing processes which make use of suitable stresses like compression, tension, shear, combined stresses which causes plastic deformation of the material to produce required shapes. During Forming process, no material is removed i.e. they are deformed and displaced. Some examples of forming processes are Forging, Sheet metal working, thread rolling, Electromagnetic forming, Explosive forming, rotary swaging, etc. Here the problem statement of the project is to combine these two parts design in one forming die which is now manufacturing separately on two different forming dies. Index Terms—Forming Die, Die Design, Blanking Process, Importance of Material Selection; ———————————————————— 1 INTRODUCTION heet metal is simply metal formed into thin and flat pieces. B. Plastic Deformation process: Bending, twisting, curling, S It is one of the fundamental forms used in metal forming deep drawing, necking, ribbing, seaming. can be cut and bent into variety of different shapes.
    [Show full text]
  • Guide to Stainless Steel Finishes
    Guide to Stainless Steel Finishes Building Series, Volume 1 GUIDE TO STAINLESS STEEL FINISHES Euro Inox Euro Inox is the European market development associa- Full Members tion for stainless steel. The members of Euro Inox include: Acerinox, •European stainless steel producers www.acerinox.es • National stainless steel development associations Outokumpu, •Development associations of the alloying element www.outokumpu.com industries. ThyssenKrupp Acciai Speciali Terni, A prime objective of Euro Inox is to create awareness of www.acciaiterni.com the unique properties of stainless steels and to further their use in existing applications and in new markets. ThyssenKrupp Nirosta, To assist this purpose, Euro Inox organises conferences www.nirosta.de and seminars, and issues guidance in printed form Ugine & ALZ Belgium and electronic format, to enable architects, designers, Ugine & ALZ France specifiers, fabricators, and end users, to become more Groupe Arcelor, www.ugine-alz.com familiar with the material. Euro Inox also supports technical and market research. Associate Members British Stainless Steel Association (BSSA), www.bssa.org.uk Cedinox, www.cedinox.es Centro Inox, www.centroinox.it Informationsstelle Edelstahl Rostfrei, www.edelstahl-rostfrei.de Informationsstelle für nichtrostende Stähle SWISS INOX, www.swissinox.ch Institut de Développement de l’Inox (I.D.-Inox), www.idinox.com International Chromium Development Association (ICDA), www.chromium-asoc.com International Molybdenum Association (IMOA), www.imoa.info Nickel Institute, www.nickelinstitute.org
    [Show full text]
  • 6 W Elding Accessories Tungsten Electrodes Magnesium Aluminum
    Sylvania Tungsten Vendor Code: SYL Tungsten Electrodes Magnesium Magnesium alloys are in 3 groups. They are: (1) aluminum-zinc-magnesium, (2) aluminum-magnesium and (3) manganese-magnesium. Since magnesium will absorb a number of harmful ingredients and oxidize rapidly when subjected to welding heat, TIG welding in an inert gas atmosphere is distinctly advantageous. The welding of magnesium is similar, in many respects, to the welding of aluminum. Magnesium was one of the first metals to be welded commercially by the inert-gas nonconsumable process (TIG). Accessories Welding Aluminum The use of TIG welding for aluminum has many advantages for both manual and automatic processes. Filler metal can be either wire or rod and should be compatible with the base alloy. Filler metal must be Ground Dia. Length Electrodes dry, free of oxides, grease or other foreign matter. If filler metal becomes damp, heat for 2 hours at Part No. (inches) (inches) 250˚ F before using. Although AC high-frequency stabilized current is recommended, DC reverse polarity 0407G .040 7 has been successfully used for thicknesses up to 3/32". 1167G 1/16 7 Stainless Steel Pure 3327G 3/32 7 In TIG welding of stainless steel, welding rods having the AWS-ASTM prefixes of E or ER can be used as 187G 1/8 7 filler rods. However, only bare uncoated rods should be used. Stainless steel can be welded using AC high frequency stabilized current, however, for DC straight polarity current recommendations must be increased 5327G 5/32 7 6 25%. Light gauge metal less than 1/16" thick should always be welded with DC straight polarity using 0407GL .040 7 argon gas.
    [Show full text]
  • Pexto PS-66 Sheet Metal Notcher Manual
    PEXTO PS-66 COMBINATION NOTCHER, COPER & SHEAR OPERATING INSTRUCTIONS AND PARTS IDENTIFICATION ROPER WHITNEY 2833 HUFFMAN BLVD., ROCKFORD, IL 61103-3990 * 815/962-3011 * FAX 815/962-2227 Website: www.roperwhitney.com * Email: [email protected] Roper Whitney - Model PS-66 Notcher, Coper & Shear Manual OPERATING INSTRUCTIONS FOR PS-66 PEXTO COMBINTATION NOTCHER, COPER & SHEAR WARNING: Before operating, machine must be bolted to work bench. If floor stand has been provided, machine must be bolted to floor stand with bolts provided. Stand must be securely lagged to floor. 1. Mount and level Notcher with drop-out overhanging edge of bench and bolt or lag in place. Lubricate all points with SAE 30 machine oil before operating. 2. Upper Standard Blades - (17) and (18) are set at factory for “pierce” cutting, starting at apex or corner of inside cut. To change to “splay” cutting, interchange blades (17) and (18) end for end so that cut starts at outside edge of sheet. Align blades at point (elongated holes are provided in blades for this purpose) before tightening blade bolts (16) securely. 3. Lower Standard Blades - (28) and (29) are each symmetrical and can be mounted to use all 4 cutting edges. Blades are positioned by blade bolts (32) from underneath table. 4. Blade Adjustment: a. Take off table (21) by removing two table screws (27). Position the slide at bottom of stroke. b. Loosen lower blade bolts (32) slightly. c. Turn blade adjusting screws (26) mounted in adjusting plate (25) to bring blade to .002 normal clearance between upper and lower blade.
    [Show full text]
  • Love That Door Catalog
    Welcome Home. Nothing adds a “wow” factor to a new home design like wrought iron doors and this is the #1 reason many homeowners make this front door statement. The juxtaposition of iron with brick construction visually suggests a permanence that no synthetic building material can emulate. The single or double wrought iron doors, manufactured by Love That Door and available from Acme Brick Stone & Tile stores, have multi-hued designs that demand attention, especially when framed by the rich patina of brick. We have over 100 designs to choose from and can custom design and build anything you desire in wrought iron access doors, iron garages and access gates, iron wine cellar doors, lighting fixtures and more. Wrought Iron Access Gates and Doors offer greater security than traditional wood doors. Keep your family and office more secure with a low maintenance, durable and custom iron door while increasing your curb appeal. Wrought Iron makes a fine choice for many reasons, but none more important than security. 2 lovethatdoor.com • brick.com 3 Transform Your Home Customers are amazed by the transformation that their iron dooor makes to their property. Versatile, robust and beautiful, it’s little wonder that a growing number of individuals are deciding on iron doors as the best option. We ensure that every single component of your iron entry door is tested and styled for optimal performance and durability. From compression tested locks to heavy duty barrel hinges, every part of the products we produce is fashioned with an exemplary end result in mind. 4 lovethatdoor.com • brick.com 5 Within an Arm’s Reach.
    [Show full text]
  • Basic Facts About Stainless Steel
    What is stainless steel ? Stainless steel is the generic name for a number of different steels used primarily for their resistance to corrosion. The one key element they all share is a certain minimum percentage (by mass) of chromium: 10.5%. Although other elements, particularly nickel and molybdenum, are added to improve corrosion resistance, chromium is always the deciding factor. The vast majority of steel produced in the world is carbon and alloy steel, with the more expensive stainless steels representing a small, but valuable niche market. What causes corrosion? Only metals such as gold and platinum are found naturally in a pure form - normal metals only exist in nature combined with other elements. Corrosion is therefore a natural phenomena, as nature seeks to combine together elements which man has produced in a pure form for his own use. Iron occurs naturally as iron ore. Pure iron is therefore unstable and wants to "rust"; that is, to combine with oxygen in the presence of water. Trains blown up in the Arabian desert in the First World War are still almost intact because of the dry rainless conditions. Iron ships sunk at very great depths rust at a very slow rate because of the low oxygen content of the sea water . The same ships wrecked on the beach, covered at high tide and exposed at low tide, would rust very rapidly. For most of the Iron Age, which began about 1000 BC, cast and wrought iron was used; iron with a high carbon content and various unrefined impurities. Steel did not begin to be produced in large quantities until the nineteenth century.
    [Show full text]
  • Implementation of Metal Casting Best Practices
    Implementation of Metal Casting Best Practices January 2007 Prepared for ITP Metal Casting Authors: Robert Eppich, Eppich Technologies Robert D. Naranjo, BCS, Incorporated Acknowledgement This project was a collaborative effort by Robert Eppich (Eppich Technologies) and Robert Naranjo (BCS, Incorporated). Mr. Eppich coordinated this project and was the technical lead for this effort. He guided the data collection and analysis. Mr. Naranjo assisted in the data collection and analysis of the results and led the development of the final report. The final report was prepared by Robert Naranjo, Lee Schultz, Rajita Majumdar, Bill Choate, Ellen Glover, and Krista Jones of BCS, Incorporated. The cover was designed by Borys Mararytsya of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy, the Advanced Technology Institute, and the Cast Metals Coalition in conducting this project. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof. The views and opinions expressed by the authors herein do not necessarily state or reflect those of the United States Government or any Agency thereof.
    [Show full text]
  • Punching Tools Truservices Punching Tools Truservices
    TruServices Punching Tools TruServices Punching Tools TruServices Expertise for every application Machine Tools / Power Tools Laser Technology / Electronics Medical Technology The perfect tooling structure. + = Alignment ring Punch Stripper + + = Die plate Die adapter Die Alignment ring The alignment ring is available in three different versions. Punch Punches are available in three different sizes (size 0, 1, and 2). Punch chuck The punch chuck is available in two different sizes and is used with size 0 punches. It has the same clamping diameter as all other punches. Stripper The outside diameter of the stripper is 100 mm. Die Dies are available in two different sizes (size 1 and 2). Size 1 can be used in the same way as size 2 with the help of a die adapter. Tool cartridge Both die sizes are used with the same tool cartridge and the same die plate. A die adapter is used for holding size 1 dies. 2 E-mail: [email protected] / Fax: 860-255-6433 Content General information Preface Expertise for every application TRUMPF quality – Made in USA General information General ... and much more from page 4 Punching Classic System Special shapes MultiTool Guided tools ... and much more from page 8 Cutting Slitting tool MultiShear Film slitting tool ... and much more from page 30 Forming Countersink tool Extrusion tool Tapping tool Emboss tool ... and much more from page 40 Marking Center punch tool Engraving tool Marking tool Embossing tools ... and much more from page 66 Accessories Tooling accessories Tool cartridges Setup and grinding tools Consumables and additional equipment ... and much more from page 78 Useful information Dimensions + regrinding Stripper selection Tool life Low-scratch/scratch-free processing ..
    [Show full text]
  • The Stainless Steel Family
    The Stainless Steel Family A short description of the various grades of stainless steel and how they fit into distinct metallurgical families. It has been written primarily from a European perspective and may not fully reflect the practice in other regions. Stainless steel is the term used to describe an extremely versatile family of engineering materials, which are selected primarily for their corrosion and heat resistant properties. All stainless steels contain principally iron and a minimum of 10.5% chromium. At this level, chromium reacts with oxygen and moisture in the environment to form a protective, adherent and coherent, oxide film that envelops the entire surface of the material. This oxide film (known as the passive or boundary layer) is very thin (2-3 namometres). [1nanometre = 10-9 m]. The passive layer on stainless steels exhibits a truly remarkable property: when damaged (e.g. abraded), it self-repairs as chromium in the steel reacts rapidly with oxygen and moisture in the environment to reform the oxide layer. Increasing the chromium content beyond the minimum of 10.5% confers still greater corrosion resistance. Corrosion resistance may be further improved, and a wide range of properties provided, by the addition of 8% or more nickel. The addition of molybdenum further increases corrosion resistance (in particular, resistance to pitting corrosion), while nitrogen increases mechanical strength and enhances resistance to pitting. Categories of Stainless Steels The stainless steel family tree has several branches, which may be differentiated in a variety of ways e.g. in terms of their areas of application, by the alloying elements used in their production, or, perhaps the most accurate way, by the metallurgical phases present in their microscopic structures: .
    [Show full text]
  • Power Assisted Metal Cutters & Shears
    Power Assisted Metal Cutters & Shears 41 malco tool book | better ideas for the real world. TurboShearHD™ Long lasting blades make fast, smooth trim cuts and tight left circular or square cuts in metal New! ductwork and metal roofing in 2011 and building panels. Applications: Metal Roofing | Building Panels | Metal Ductwork Stone Coated Metal Shingles | Furnace Jackets • Lightweight Shear head for easy one-hand control. TSHD • No. TSDC Drill clamp included for one-hand operation. • Jaw opening navigates tight curve patterns, U.S. Patent No. 7,093,365B2 • U.S. Patent No. D513,953 squares, mild profiles, layered metal & seams. • 18-Gauge capacity. ly • Wi b ll w • Blind cuts require a 1/2” (13 mm) starting hole. m o e r • Minimum 14.4 volt 3/8” (9.53 mm) Cordless or s k s Corded Drill required. a w New Telescoping Drill Clamp y i t adjusts to fit any corded or cordless drill, s h including compact Lithium-ion models. New Streamlined Design a m E o • s s t l l i c r o d r Min. 14.4V d d recommended l e e d s r s o 1. Wider-opening jaws 2. Long-life, dual ball bearings o c r Optional on No. TS1. 3. Non-slip flats on drive shaft. Comes packaged with No. TSHD TSDC TurboShear™ Makes your Corded or Cordless drill a POWER SHEAR INSTANTLY! Applications: Metal Ductwork | Furnace Jackets TS1 • Requires two (2) hands to operate. • Optional Drill clamp No. TSDC available for one-hand operation. • Blades cut straight and to the left.
    [Show full text]
  • Severance Tool Countersinks
    Phone: 989-777-5500 Fax: 989-777-0602 E-Mail: [email protected] Severance Tool Industries Inc. • POB 1866 • Saginaw, MI 48605 A Countersink For Every Use Severance Tool Industries, Inc. manufactures countersinks with one, four and six flutes, carbide and high speed steel, countersinks with pilots and drill points, heavy-duty tools and specials. Sizes range from 1/8" to 3", and almost any centerline angle can be specified. These standard tools will handle at least 99% of all countersinking applications ... and we can build specials to satisfy any other need. Carbide or Steel? When machining hard or abrasive materials, carbide countersinks will often give 10 or more times the service life of high speed steel tools. As a rule of thumb, consider carbide for production operations with cast iron, alloy steel or glass-reinforced plastics. High speed steel is generally more economical in low carbon steel and nonferrous machining applications. In automated production operations, the cost of changing a tool can exceed the cost of the tool. Consider long-running carbide in such situations. 1, 4, or 6 Flutes? In general, a six-fluted countersink will remove more material per revolution than will a four-flute or single-flute tool. While the single-flute countersink is slow cutting, it will work well in a non-rigid machining setup. Four flutes provide more chip clearance than six do. This is a consideration in machining stringy materials such as some plastics and nonferrous alloys. Other factors being equal, the six-flute countersink will give more service life than the four-flute tool because the cutting load is distributed over more edges.
    [Show full text]
  • Caliper Gauge
    Caliper Gauge As to internal caliper gauge IM-880 series, the distance between contact points facing outside is firstly set at standard dimension with ring gauge or micrometer. Then, it is measured by inserting contact point into internal dimension part to be measured after its outer dial of which moves together with rotated bezel is set at “0”. The displacement of indicator from “0” point of outer dial is to be measured at that time. The value adding to the read displacement to standard dimension or deducting it from standard dimension is the dimension of internal diameter. This series attaches spare contact point which cam set accurate dimension corresponding to size of internal dimension. External caliper gauge is opposite, namely reading the value by holding work piece with 2 contact points facing outside. Internal Dial Caliper Gauge • These gauges are designed for use in measuring deep internal diameter of bores of castings etc, and for internal reading in fabrications. Clearance has been provided for use in recessed bores. The convenient retraction lever allows one-hand operation. IM-1 IM-2 Maximum measuring depth 130mm Maximum measuring depth 180mm Graduation 0.1mm Graduation 0.1mm Measuring Range 10~100mm Measuring Range 10~100mm IM-4 Maximum measuring depth 100mm IM-5 Graduation 0.01mm Maximum measuring depth 150mm Measuring Range 10~30mm Graduation 0.01mm Measuring Range 20~40mm Specifications IM-1,2,4 IM-5 Dimensions (2.5) Measuring Indication Maximum Contact Point Measuring R1.5 Graduation Weight (2.5) 4 Model Range Error Measuring Depth Height Force φ2.5 (mm) (g) (mm) (mm) (mm) (mm) (N) IM-1 0.1 10~100 ±0.1 130 2 5 or less 500 IM-2 0.1 10~100 ±0.1 180 2 5 or less 620 IM-4 0.01 10~30 ±0.02 100 2 5 or less 500 24 IM-5 0.01 20~40 ±0.02 150 4 5 or less 600 Measuring Range Internal size of workpiece is 10mm, 15mm, 20mm and 30mm or over against measuring applicable depth.
    [Show full text]