Energy Management Strategies Applied to Photovoltaic-Based Residential Microgrids for flexibility Services Purposes
Total Page:16
File Type:pdf, Size:1020Kb
THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE NANTES COMUE UNIVERSITÉ BRETAGNE LOIRE ÉCOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l’Information et de la Communication Spécialité : Génie Électrique Par Rémy VINCENT Energy management strategies applied to photovoltaic-based residential microgrids for flexibility services purposes Thèse présentée et soutenue à Saint-Nazaire, le 15 Juillet 2020 Unités de recherche : Institut de Recherche en Énergie Électrique de Nantes Atlantique, France Thèse N° : Rapporteuses : Corinne ALONSO Professeur des Universités, Université Paul Sabatier, Toulouse Manuela SECHILARIU Professeur des Universités, UTC Composition du Jury : Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du Jury ne comprend que les membres présents Examinatrice : Corinne ALONSO Professeur des Universités, Université Paul Sabatier, Toulouse Examinatrice : Manuela SECHILARIU Professeur des Universités, UTC Président du Jury : Josep M. GUERRERO Professor, Aalborg University, Danemark Dir. de thèse : Mourad AIT-AHMED Maître de Conférences Hors-Classe HDR, Polytech Nantes Codir. de thèse : Mohamed Fouad BENKHORIS Professeur des Universités, Polytech Nantes Encadrant de thèse : Azeddine HOUARI Maître de Conférences, IUT de Saint-Nazaire Invitée : Lamya BELHAJ Electric Machine and Power Electronics expert, PSA Groupe ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratitude to my supervisor Dr. Mourad Ait-Ahmed for his continuous support during my Ph.D study and related research, for his patience, kind- ness and motivation. Besides, his excellent guidance helped me throughout the whole process of research and writing of this thesis. I could not have imagined having a better supervisor for this study. Besides my supervisor, I would like to thank the rest of my thesis committee: Prof. Mohamed Fouad Benkhoris and Dr. Azeddine Houari, for their insightful comments and encouragement, but also for couple of questions which incented me to widen my research from various perspec- tives (especially regarding the management of uncertainties). I also would like to thank jury members who accepted to assess this thesis and for their availability the day of the final defense. Many thanks to Prof. Corinne Alonso and Prof. Manuela Sechilaru, reviewers of this work, for their constructive key-points. Besides, also many thanks to Prof. Josep M. Guerrero, examiner of this thesis for its insightful remarks. My sincere thanks also goes to Dr. Lamya Belhaj, Institut catholique d’arts et métiers (Icam) and Institut de Recherche en Energie Electrique de Nantes Atlantique (IREENA) who provided me an opportunity to apply for a Ph.D student position. Without their precious support it would not have been possible to conduct this research. I would like to thank my family: my parents and to my sisters for supporting me throughout writing this thesis and my life in general. To that extent, I would like to thank Luce who has heartened me during so many years. Besides, I would like to extend heartfelt thanks to all my friends (particularly Diane and Allison for being my friends for ages). Last but not the least, I thank my fellow labmates - Océane, Quentin, Corentin, Ryad, Nidhal, Jean-Marie, Antoine and Rémy - for the stimulating discussions (and particularly Sarra for her famous "little tea" break), for the long days at the lab we were working on our respective papers to submit them before deadlines, and for all the fun we have had in the last three years. 3 Throughout space there is energy. Is this energy static or kinetic? If static our hopes are in vain; if kinetic - and this we know it is, for certain then it is a mere question of time when men will succeed in attaching their machinery to the very wheel work of nature. NIKOLA TESLA, "Experiments With Alternate Currents Of High Potential And High Fre- quency" an address to the Institution of Electrical Engineers, London (February 1892). 4 TABLE OF CONTENTS List of figures 10 List of tables 11 Acronyms 12 Introduction 18 1 Smart Grids and Microgrids: towards more smartness 24 1.1 Introduction....................................... 25 1.1.1 Renewable energy in Europe......................... 25 1.1.2 Incentives and deployment programs for renewable energy sources in Europe..................................... 28 1.1.3 Residential energy consumption and Renewable Energy Sources (RES) integration.................................... 34 1.1.4 Microgrid definition and specifications.................... 35 1.1.5 General summary............................... 38 1.2 Microgrid challenges and perspectives........................ 39 1.2.1 Microgrid challenges and perspectives.................... 39 1.3 Microgrid sizing and management strategies.................... 44 1.3.1 Optimization methods............................. 44 1.3.2 Microgrid sizing................................. 51 1.3.3 Microgrid management............................ 52 1.4 Research work, methodology, and thesis outline.................. 58 1.4.1 Objectives and outline............................. 58 2 Sizing optimization of pv-bess based community microgrid 60 2.1 Distributed energy resources modeling........................ 61 2.1.1 Photovoltaic generation............................ 63 2.1.2 Battery energy storage system........................ 67 2.1.3 Loads...................................... 70 2.1.4 Aggregator................................... 72 5 TABLE OF CONTENTS 2.1.5 Optimization.................................. 73 2.2 Problem formulation.................................. 80 2.2.1 Context..................................... 80 2.2.2 Key Performance Indicators.......................... 81 2.2.3 Proposed cost functions............................ 82 2.3 Results and discussion................................ 84 2.3.1 Results (single-family houses)........................ 84 2.3.2 Results (community microgrid)........................ 91 2.3.3 Results summary................................ 93 2.3.4 Discussion................................... 96 2.4 Conclusion....................................... 98 3 Relevance of time horizon-based battery energy management strategies for com- munity microgrids 99 3.1 Introduction to horizon-based energy management strategies........... 99 3.2 System model..................................... 101 3.2.1 Solar irradiation uncertainties......................... 103 3.2.2 Energy storage system degradation..................... 106 3.3 Management framework................................ 108 3.3.1 Key zone designation............................. 109 3.3.2 State selection................................. 111 3.3.3 Proposed cost functions............................ 113 3.4 Results and discussion................................ 115 3.4.1 Uncertainty management........................... 115 3.4.2 24 and 48-hour horizon comparison..................... 117 3.4.3 Sensitivity analysis............................... 122 3.4.4 Discussion................................... 127 3.5 Conclusion....................................... 128 4 Residential microgrid energy management considering flexibility services oppor- tunities and forecast uncertainties 129 4.1 Context for community microgrid operation under uncertainties.......... 129 4.2 System model..................................... 131 4.2.1 Smart persistence model........................... 132 4.2.2 Recursive Least Squares predictor-corrector algorithm........... 133 4.2.3 Algorithm performance comparison..................... 134 4.2.4 Aggregator model............................... 139 6 TABLE OF CONTENTS 4.3 Management framework................................ 140 4.3.1 Microgrid bidding process mechanism.................... 141 4.3.2 Case studies.................................. 141 4.4 Results and discussion................................ 144 4.4.1 Results..................................... 144 4.4.2 Sensitivity Analysis............................... 153 4.4.3 Discussion................................... 155 4.5 Conclusion....................................... 157 Conclusion and perspectives 159 Appendices 163 A Extra information related to renewable energy and microgrids 164 A.1 Current data for energy consumption and production................ 164 A.2 Feed-in Tariffs in France................................ 167 A.3 Experimentel smart grid projects in Europe..................... 169 A.4 Flexibility services................................... 170 A.5 Microgrid challenges.................................. 173 A.5.1 Technical challenges.............................. 173 A.5.2 Regulatory/Social challenges......................... 174 A.5.3 Financial challenges.............................. 175 A.5.4 Technical perspectives............................. 176 Bibliography 187 Résumé en français 206 7 LIST OF FIGURES 1 Diagram presenting relations between different Chapters of this thesis...... 22 1.1 Electricity consumption by sector (2017)....................... 34 1.2 Household energy consumption (2018)....................... 35 1.3 Urban microgrid classic scheme........................... 37 1.4 Illustration of graphical construction method for a photovoltaic-wind system sat- isfying a given load satisfaction............................ 46 2.1 Studied smart home scheme............................. 61 2.2 Community microgrid general scheme........................ 62 2.3 Price per installed kWp in function of system size.................. 65 2.4 Battery capacity degradation over time.......................