Annuaire De La Filière Française Photovoltaïque 2017-2018

Total Page:16

File Type:pdf, Size:1020Kb

Annuaire De La Filière Française Photovoltaïque 2017-2018 Annuaire de la filière française photovoltaïque Directory of the French Photovoltaic Industry 2017 - 2018 Annuaire de la filière française photovoltaïque Directory of the French Photovoltaic Industry 2017 - 2018 SOMMAIRE PRÉSENTATION DU SYNDICAT DES ÉNERGIES RENOUVELABLES ..........................4 PRÉSENTATION DE SOLER-SOLER, GROUPEMENT FRANÇAIS DES PROFESSIONNELS DU SOLAIRE PHOTOVOLTAÏQUE .........................................6 FAIRE RAYONNER LA FRANCE SUR LE MARCHÉ MONDIAL Jean-Louis Bal, Président du SER, Xavier DAVAL, Président de SER-SOLER ..........................................8 PRÉSENTATION DE FRANCE SOLAR INDUSTRY ........................................................12 PRÉSENTATION DE L’ALLIANCE QUALITÉ PHOTOVOLTAÏQUE .................................16 LES DOMAINES D’ACTIVITÉS ........................................................................................20 ENTREPRISES ADHÉRENTES DE SER-SOLER ............................................................33 AUTRES ADHÉRENTS SER-SOLER ..............................................................................196 AUTRES ENTREPRISES .................................................................................................198 INDEX Alphabétique ............................................................................................................................ 268 Par domaine ............................................................................................................................. 275 Par région ................................................................................................................................ 286 Des annonceurs ....................................................................................................................... 291 Edité par SER, février 2017 - Conception / réalisation : [email protected] - Note de l’éditeur : les informations publiées dans cet annuaire ont été fournies par les entreprises. Elles n’engagent en aucune manière la responsabilité du Syndicat des énergies renouvelables. Celui-ci ne saurait être tenu responsable du contenu des fiches des entreprises - Crédits photos : couverture (de gauche à droite) : © PHOTEC, © EDF ENR PWT, © Urbasolar, © Bosch, © Quadran. N°ISSN : Achevé d’imprimer par l’imprimerie : N° d’imprimeur : Dépôt légal : Référence : 2 TABLE OF CONTENT PRESENTATION OF THE SYNDICAT DES ENERGIES RENOUVELABLES...................5 PRESENTATION OF SER-SOLER, FRENCH SOLAR PHOTOVOLTAIC PROFESSIONALS GROUP.................................................................................................7 PUTTING FRANCE ON THE MAP Jean-Louis Bal, President of SER, Xavier DAVAL, President of SER-SOLER ............................................9 PRESENTATION OF FRANCE SOLAR INDUSTRY ........................................................13 PRESENTATION OF PHOTOVOLTAIC QUALITY ALLIANCE PHOTOVOLTAÏQUE .......17 AREAS OF ACTIVITY .........................................................................................................20 THE MEMBERS OF SER-SOLER .....................................................................................33 OTHER MEMBERS OF SER-SOLER .............................................................................196 OTHER COMPANIES ......................................................................................................198 INDEX Alphabetical ............................................................................................................................. 268 By activity ................................................................................................................................. 275 By region .................................................................................................................................. 286 Advertisers ............................................................................................................................... 291 Published by the SER, february 2017 – Design/Production: [email protected] – English Translation: ? - Editor’s note: The information published in this directory was provided by the companies. It in no way engages the responsibility of the Syndicat des Energies Renouvelables who cannot be held responsible for the contents of the businesses’ pages - Photo credits: cover (left to right): © PHOTEC, © EDF ENR PWT, © Urbasolar, © Bosch, © Quadran. N°ISSN : Printer: Printer number: Legal Deposit: Reference: 3 PRÉSENTATION LE SYNDICAT DES ÉNERGIES RENOUVELABLES, ACTEUR DE L’AVENIR ÉNERGÉTIQUE NOTRE MISSION Accroître la part des énergies renouvelables dans la production énergétique de la France en promouvant les intérêts des industriels et professionnels du secteur. Accompagner nos adhérents et faciliter leur déploiement en France et à l’international par le biais de ses marques Windustry France, France Solar Industry et French Fire. Participer activement à l’élaboration des textes législatifs et réglementaires. En contact permanent avec les responsables politiques, les cabinets ministériels et l’Administration, le Syndicat suit, au jour le jour, les discussions et les travaux de l’Assemblée Nationale et du Sénat et en informe ses membres. Développer des labels de qualité et gérer le label Flamme Verte avec le concours de l’ADEME. NOTRE VOCATION Promouvoir les intérêts des industriels et des professionnels des énergies renouvelables auprès des pouvoirs publics, du Parlement, des territoires et de toutes les instances en charge de l’énergie, de l’industrie, de l’emploi et de la Recherche. Le SER réalise des analyses, fait des propositions et lance des initiatives qui prennent en compte l’intérêt de toutes ses filières. Ses vingts et un permanents travaillent avec les adhérents dans des commissions et des groupes de travail dédiés pour recueillir leurs attentes, concevoir avec eux des propositions fortes et apporter aux décideurs politiques et aux pouvoirs publics idées et projets, qui permettent de faire avancer les différents secteurs. Le Livre blanc des énergies renouvelables adressé aux candidats à l’élection présidentielle constitue un exemple de travaux menés avec toutes les filières et tous les adhérents du SER. 4 PRESENTATION THE FRENCH UNION OF RENEWABLE ENERGY (SER), A PLAYER IN THE FUTURE OF THE ENERGY FIELD OUR MISSION Increase the share of renewable energy in France’s energy production while promoting the interests of the sector’s industrial figures and professionals. Assist our members and aide in their deployment in France and internationally through its Windustry France, France Solar Industry, and French Fire brand platforms. Actively participate in the drafting of legislative and regulatory texts. In permanent contact with political leaders, ministerial cabinets, and the Administration, the Syndicat follows, from day to day, the discussions and work of the Assemblée Nationale and the Sénat and informs its members. Develop quality labels and manage the Flamme Verte label in conjunction with the ADEME. OUR VOCATION Promote the interests of renewable energy industrial figures and professionals to public powers, Parlement, the regions, and all instances in charge of energy, industry, employment, and research. The SER carries out analysis, makes proposals, and launches initiatives that take into account the interests of all its industries. Its staff of twenty one employees work with members in committees and work groups dedicated to hearing their needs, forming strong proposals with them, and bringing ideas and projects to political deciders and public powers, allowing to advance the various sectors. The renewable energy white book, addressed to candidates for the presidential elections, constitutes an example of the work carried out with all the industries and members of the SER. 5 PRÉSENTATION SER-SOLER, Groupement français des professionnels du solaire photovoltaïque SER-SOLER est la branche photovoltaïque du SER et rassemble près de 200 acteurs disposant d’une activité dans ce domaine, répartis sur l’ensemble de la chaîne de valeur de la filière : centres de recherche et d’innovation, industriels (modules, cellules, matériel électrique et électronique, structures porteuses), développeurs et installateurs, bureaux d’études, professions support (cabinets d’avocats, assurances, banques et investisseurs, conseils…). SER-SOLER représente plus de 75 % des capacités françaises de production de modules et/ou de cellules photovoltaïques. SOLER décline, dans le photovoltaïque, les missions essentielles du SER : • Structurer la filière en stimulant la recherche et l’innovation d’une part, et le développement des outils industriels d’autre part. Ce soutien passe en particulier par la facilitation de l’accès aux marchés en France et à l’international grâce à la gestion et au développement de la marque France Solar Industry ; • Permettre au photovoltaïque de trouver toute sa place dans le mix énergétique et le paysage industriel français ; • Représenter la filière, notamment auprès des pouvoirs publics et des collectivités locales, en particulier dans le cadre de la concertation autour des mécanismes de soutien au secteur ; • Assurer l’animation de la filière pour rechercher le consensus autour des questions d’orientations stratégiques ; • Développer les bonnes pratiques, en particulier en assurant la promotion de la certification AQPV (Alliance Qualité Photovoltaïque) et en participant à l’élaboration de son référentiel associé ; • Assurer la promotion et la communication de la filière auprès des acteurs économiques
Recommended publications
  • CSP Technologies
    CSP Technologies Solar Solar Power Generation Radiation fuel Concentrating the solar radiation in Concentrating Absorbing Storage Generation high magnification and using this thermal energy for power generation Absorbing/ fuel Reaction Features of Each Types of Solar Power PTC Type CRS Type Dish type 1Axis Sun tracking controller 2 Axis Sun tracking controller 2 Axis Sun tracking controller Concentrating rate : 30 ~ 100, ~400 oC Concentrating rate: 500 ~ 1,000, Concentrating rate: 1,000 ~ 10,000 ~1,500 oC Parabolic Trough Concentrator Parabolic Dish Concentrator Central Receiver System CSP Technologies PTC CRS Dish commercialized in large scale various types (from 1 to 20MW ) Stirling type in ~25kW size (more than 50MW ) developing the technology, partially completing the development technology development is already commercialized efficiency ~30% reached proper level, diffusion level efficiency ~16% efficiency ~12% CSP Test Facilities Worldwide Parabolic Trough Concentrator In 1994, the first research on high temperature solar technology started PTC technology for steam generation and solar detoxification Parabolic reflector and solar tracking system were developed <The First PTC System Installed in KIER(left) and Second PTC developed by KIER(right)> Dish Concentrator 1st Prototype: 15 circular mirror facets/ 2.2m focal length/ 11.7㎡ reflection area 2nd Prototype: 8.2m diameter/ 4.8m focal length/ 36㎡ reflection area <The First(left) and Second(right) KIER’s Prototype Dish Concentrator> Dish Concentrator Two demonstration projects for 10kW dish-stirling solar power system Increased reflection area(9m dia. 42㎡) and newly designed mirror facets Running with Solo V161 Stirling engine, 19.2% efficiency (solar to electricity) <KIER’s 10kW Dish-Stirling System in Jinhae City> Dish Concentrator 25 20 15 (%) 10 발전 효율 5 Peak.
    [Show full text]
  • Nuclear Energy Education and Training in France
    NUCLEAR ENERGY IN FRANCE France now obtains about 78 percent of its electricity from nuclear energy, generated by 58 highly standardized pressurized-water reactors (PWR) at 19 locations. The operation of these reactors has provided extensive feedback on safety, cost effectiveness, proficiency, and public outreach. In producing nuclear energy, France has always relied on a closed- fuel-cycle approach, including reprocessing of the spent nuclear fuel, an approach deemed essential to conserve uranium resources and to manage the ultimate waste products efficiently and selectively. Recent years have confirmed the central role that safe and sustain- able nuclear energy plays in the French electricity supply with addi- tional renewable energy technologies. France is pursuing the development of fourth-generation fast-neutron reactors, as well as a continuing investigation of improved methods for the separation and transmutation of high-level, long-lived nuclear waste. Scientific and AERIAL VIEW OF LA HAGUE engineering research into the safe and appropriate geological REPROCESSING PLANT disposal of radioactive waste products is also ongoing. ©AREVA/J-M.TAILLAT In May 2006, the board of Electricité de France (EDF) approved the construction of a new 1650 MWe European Pressurized Reactor (EPR) at Flamanville near the tip of Normandy. In 2009, the French government strengthened its commitment to pressurized-water reactors by endorsing the construction of a second EPR unit at Penly, near Dieppe. NEW CHALLENGES AND NEW REQUIREMENTS In its continuing use of nuclear power, France faces numerous chal- lenges, including the operation and maintenance of its existing array of reactors, waste management, the decommissioning of obsolete reactors, and research and development for future nuclear systems.
    [Show full text]
  • Energies for the 21St Century
    THE collEcTion 1 w The atom 2 w Radioactivity 3 w Radiation and man 4 w Energy 5 w Nuclear energy: fusion and fission 6 w How a nuclear reactor works 7 w The nuclear fuel cycle 8 w Microelectronics 9 w The laser: a concentrate of light 10 w Medical imaging 11 w Nuclear astrophysics 12 w Hydrogen 13 w The Sun 14 w Radioactive waste 15 w The climate 16 w Numerical simulation 17 w Earthquakes 18 w The nanoworld 19 w Energies for the 21st century © French Alternative Energies and Atomic Energy Commission, 2010 Communication Division Head Office 91191 Gif-sur-Yvette cedex - www.cea.fr ISSN 1637-5408. w Low-carbon energies for a sustainable future FROM RESEARCH TO INDUSTRY 19 w energies for the 21st century InnovatIng for nuclear energy DomestIcatIng solar power BIofuel proDuctIon DevelopIng BatterIes anD fuel cells thermonuclear fusIon 2 w contents century © Jack Star/PhotoLink st Innovating for nuclear ENERgY 6 The beginnings of nuclear energy in France 7 The third generation 8 Generation IV: new concepts 10 DEveloping batteries and fuel cells 25 Domesticating solar Lithium-ion batteries 26 pOwer 13 A different application for Thermal solar power 15 each battery 27 Photovoltaic solar power 16 Hydrogen: an energy carrier 29 Concentrated solar power 19 Thermonuclear fusion 31 BIOFUEL production 20 Tokamak research 33 Biomass 21 ITER project 34 Energies for the 21 2nd generation biofuels 22 Designed and produced by: MAYA press - Printed by: Pure Impression - Cover photo: © Jack Star/PhotoLink - Illustrations : YUVANOE - 09/2010 Low-carbon energies for a sustainable future 19 w Energies for the 21st century w> IntroIntroDuctIon 3 The depletion of fossil resources and global warming are encoura- ging the development of research into new energy technologies (on the left, Zoé, France’s first nuclear reactor, on the right, the national institute for solar power).
    [Show full text]
  • From the History of Sources and Sectors to the History of Systems and Transitions
    Journal of Energy History Revue d’histoire de l’énergie AUTHOR Geneviève Massard- From the history of sources and Guilbaud sectors to the history of systems École des Hautes Études en Sciences Sociales and transitions: how the history of [email protected] energy has been written in France POST DATE and beyond* 04/12/2018 ISSUE NUMBER Abstract JEHRHE #1 This historiographical essay shows how historians have dealt with SECTION energy since the beginning of the 20th c. and until today. During the Special issue two first third of the 20th c., only a handful of authors have tried THEME OF THE SPECIAL ISSUE to give an overview of humans made use of the energy existing all For a history of energy around them over centuries. Historians of the last decades of the KEYWORDS 20th centuries were interested in specific energy sources as well as Transition, Production, in energy sectors. More recently, tendency has come back to con- Consumption, Environment, sidering energy as a whole, studying energetic systems and the Regime transitions between them. There has been so far no consensus on DOI the nature and the stakes involved in the past transitions. in progress Plan of the article TO CITE THIS ARTICLE → Historians and energy, initial research Geneviève Massard- → Studies by energy source and sector Guilbaud, “From the history → Wood, water, and wind of sources and sectors to → Fossil energies the history of systems and → Electricity transitions: how the history → Studies of energy systems and transitions of energy has been written → Conclusion: writing the history of energy during a time of global in France and beyond”, warming Journal of Energy History/ Revue d’Histoire de l’Énergie [Online], n°1, published 04 December 2018, URL: http:// energyhistory.eu/node/88.
    [Show full text]
  • Renewable Energy 2021
    Renewable Energy 2021 A practical cross-border insight into renewable energy law First Edition Featuring contributions from: Bracewell (UK) LLP Gómez-Acebo & Pombo Abogados POSSER SPIETH WOLFERS & PARTNERS Cliffe Dekker Hofmeyr Inc (CDH) Gonzalez Calvillo The Law Firm of Wael A. Alissa in Dentons & Co. Jones Day association with Dentons & Co. Doulah & Doulah Mazghouny & Co UMBRA – Strategic Legal Solutions DS Avocats Nishimura & Asahi Wintertons European Investment Bank Pillsbury Winthrop Shaw Pittman LLP Table of Contents Expert Chapters Renewable Energy Fuelling a Green Recovery 1 Mhairi Main Garcia, Dentons & Co. Trends and Developments in the European Renewable Energy Sector 5 from a Public Promotional Banking Perspective Roland Schulze & Matthias Löwenbourg-Brzezinski, European Investment Bank Q&A Chapters Australia Saudi Arabia 11 Jones Day: Darren Murphy, Adam Conway & 76 The Law Firm of Wael A. Alissa in association with Prudence Smith Dentons & Co.: Mahmoud Abdel-Baky & Mhairi Main Garcia Bangladesh 19 Doulah & Doulah: A.B.M. Nasirud Doulah & South Africa Dr. Amina Khatoon 83 Cliffe Dekker Hofmeyr Inc (CDH): Jay Govender, Emma Dempster, Tessa Brewis & Alecia Pienaar Egypt 26 Mazghouny & Co: Donia El-Mazghouny Spain 91 Gómez-Acebo & Pombo Abogados: Luis Gil Bueno & Ignacio Soria Petit France 33 DS Avocats: Véronique Fröding & Stéphane Gasne United Arab Emirates 99 Dentons & Co.: Mhairi Main Garcia & Germany Stephanie Hawes 41 POSSER SPIETH WOLFERS & PARTNERS: Dr. Wolf Friedrich Spieth, Niclas Hellermann, Sebastian Lutz-Bachmann & Jakob von Nordheim United Kingdom 109 Bracewell (UK) LLP: Oliver Irwin, Kirsty Delaney, Nicholas Neuberger & Robert Meade Indonesia 48 UMBRA – Strategic Legal Solutions: Kirana D. Sastrawijaya, Amelia Rohana Sonang, USA Melati Siregar & Junianto James Losari 117 Pillsbury Winthrop Shaw Pittman LLP: Mona E.
    [Show full text]
  • The Status of CSP Development
    The Status of CSP Development DISH STIRLING POWER TOWER CLFR Tom Mancini CSP Program Manager Sandia National Laboratories PARABOLIC TROUGH 505.844.8643 DISH STIRLING [email protected] [email protected] 1 Presentation Content • Brief Overview of Sandia National Laboratories • Background information • Examples of CSP Technologies − Parabolic Trough Systems − Power Tower Systems − Thermal Energy Storage − Dish Stirling Systems • Status of CSP Technologies • Cost of CSP and Resource Availability • Deployments • R & D Directions [email protected] 2 Four Mission Areas Sandia’s missions meet national needs in four key areas: • Nuclear Weapons • Defense Systems and Assessments • Energy, Climate and Infrastructure Security • International, Homeland, and Nuclear Security [email protected] 3 Research Drives Capabilities High Performance Nanotechnologies Extreme Computing & Microsystems Environments Computer Materials Engineering Micro Bioscience Pulsed Power Science Sciences Electronics Research Disciplines 4 People and Budget . On-site workforce: 11,677 FY10 operating revenue . Regular employees: 8,607 $2.3 billion 13% . Over 1,500 PhDs and 2,500 MS/MA 13% 43% 31% Technical staff (4,277) by discipline: (Operating Budget) Nuclear Weapons Defense Systems & Assessments Energy, Climate, & Infrastructure Security International, Homeland, and Nuclear Security Computing 16% Math 2% Chemistry 6% Physics 6% Other science 6% Other fields 12% Electrical engineering 21% Mechanical engineering 16% Other engineering 15% 5 Sandia’s NSTTF Dish Engine Engine Test Rotating Testing Facility Platform Established in 1976, we provide ………. • CSP R&D NSTTF • Systems analysis and FMEA • System and Tower Testing Solar Furnace component testing and support NATIONAL SOLAR THERMAL TEST FACILITY [email protected] 6 Labs Support the DOE Program The CSP Programs at Sandia and the National Renewable Energy Laboratory (NREL) support the DOE Solar Energy Technology Program.
    [Show full text]
  • Energy Security Concerns Versus Market Harmony: the Europeanisation of Capacity Mechanisms
    Politics and Governance (ISSN: 2183–2463) 2019, Volume 7, Issue 1, Pages 92–104 DOI: 10.17645/pag.v7i1.1791 Article Energy Security Concerns versus Market Harmony: The Europeanisation of Capacity Mechanisms Merethe Dotterud Leiren 1,*, Kacper Szulecki 2, Tim Rayner 3 and Catherine Banet 4 1 CICERO Center for International Climate Research, 0349 Oslo, Norway; E-Mail: [email protected] 2 Department of Political Science, University of Oslo, 0851 Oslo, Norway; E-Mail: [email protected] 3 Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, NR4 7TJ, UK; E-Mail: [email protected] 4 Scandinavian Institute of Maritime Law, University of Oslo, 0162 Oslo, Norway; E-Mail: [email protected] * Corresponding author Submitted: 21 October 2018 | Accepted: 7 December 2018 | Published: 28 March 2019 Abstract The impact of renewables on the energy markets–falling wholesale electricity prices and lower investment stability–are apparently creating a shortage of energy project financing, which in future could lead to power supply shortages. Govern- ments have responded by introducing payments for capacity, alongside payments for energy being sold. The increasing use of capacity mechanisms (CMs) in the EU has created tensions between the European Commission, which encour- ages cross-country cooperation, and Member States that favour backup solutions such as capacity markets and strategic reserves. We seek to trace the influence of the European Commission on national capacity markets as well as learning between Member States. Focusing on the United Kingdom, France and Poland, the analysis shows that energy security concerns have been given more emphasis than the functioning of markets by Member States.
    [Show full text]
  • Philippe2016-Energy Transition Policies in France and Their Impact
    Energy transition policies in France and their impact on electricity generation – DRAFT VERSION – Sébastien Philippe [email protected] Nuclear Futures Laboratory Department of Mechanical and Aerospace Engineering, Princeton University January 12, 2016 Abstract: France experienced recently the important transformation of its energy and environmental policy through the entry into force of the Energy Transition for Green Growth Act and the recent Paris agreement between the parties to the United Nations Framework Convention on Climate Change. In this paper, we study the economic implications of this transformation on electricity generation. In particular, we focus on the economic rationale of conducting France energy transition with an extraordinary portfolio of market-based policies including feed-in tariffs, auctions, carbon pricing and the European Union cap and trade scheme. We find that such approach can produce more economic inefficiencies than the sole application of a carbon pricing policy. We emphasized, however, that the uncertainties in the ability of the current wholesale and the newly created capacity markets to address both economical and physical requirements of security of supply, favored the continuation of conservative (and risk adverse) policies. Finally, we discuss the structure of the future electricity mix expected to emerge from the current policies and question its social optimality. Introduction In December of 2015, the parties to the United Nations Framework Convention on Climate Change agreed during the 21st session
    [Show full text]
  • Energy & Society Conference
    Energy & Society Conference March 22 - 24, 2012, Institute of Social Sciences (ICS-UL), Lisbon, Portugal Detailed program Thursday, 22th March 14:30 – 15:00 – Welcome and introduction (Auditório) Jorge Vala, director of ICS-UL Luísa Schmidt, ICS-UL Introduction of the keynote speaker: Françoise Bartiaux, UCL 15:00 – 16:30 - Keynote presentation: Harold Wilhite, Univ. Oslo: “The space accorded to the social science of energy consumption is (finally) expanding: Where can we draw inspiration?” 16:30 – 17:00 - Coffee break (fair trade) 17:00 – 18:30 - Parallel thematic sessions Thematic session 1 (Auditório) Energy consumption practices Chair: Luísa Schmidt, ICS-UL Bartiaux, Françoise & Reátegui Compartmentalisation or domino effects between ‘green’ Salmón, Luis consumers’ practices? Some topics of practice theories observed with an Internet survey Butler, Catherine Climate Change, Social Change and Social Reproduction: Exploring energy demand reduction through a biographical lens Battaglini, Elena Challenging the framing of ‘space’ in the Theory of Practice. Research findings from a European study on Energy-efficient renovation’s practices in the residential sector Berker, Thomas Kicking the habit. Identifying crucial themes of a sociology of energy sensibilities Fonseca, Susana & Nave, From structural factors to individual practices: reasoning on the main Joaquim Gil paths for action on energy efficiency Petersen, Lars Kjerulf Autonomy and proximity in household heating practices – the case of wood burning stoves Roudil, Nadine, Flamand, Energy housing consumption. Practices, rationalities and motivations Amélie & Douzou, Sylvie of inhabitants Huebner, Gesche, Cooper, Understanding energy consumption in domestic households Justine & Jones, Keith 1 Thematic session 2 (Sala polivalente) Energy policies and sustainability Chair: Júlia Seixas, FCT-UNL Beischl, Martin The Energy Community of South East Europe and its lacking social dimension.
    [Show full text]
  • Solar Thermal and Concentrated Solar Power Barometers 1 – EUROBSERV’ER –JUIN 2017 – EUROBSERV’ER BAROMETERS POWER SOLAR CONCENTRATED and THERMAL SOLAR
    1 2 - 4.6% The decrease of the solar thermal market in the European Union in 2016 Evacuated tube solar collectors, solar thermal installation in Ireland SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS A study carried out by EurObserv’ER. solar solar concentrated and thermal power barometers solar solar concentrated and thermal power barometers he European solar thermal market is still losing pace. According to the Tpreliminary estimates from EurObserv’ER, the solar thermal segment dedicated to heat production (domestic hot water, heating and heating networks) contracted by a further 4.6% in 2016 down to 2.6 million m2. The sector is pinning its hopes on the development of the collective solar segment that includes industrial solar heat and solar district heating to offset the under-performing individual home segment. ince 2014 European concentrated solar power capacity for producing Selectricity has been more or less stable. New project constructions have been a long time coming, but this could change at the end of 2017 and in 2018 essentially in Italy. 51 millions m2 2 313.7 MWth The cumulated surfaces of solar thermal Total CSP capacity in operation Glenergy Solar in operation in the European Union in 2016 in the European Union in 2016 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 3 4 The world largest solar thermal Tabl. n° 1 district heating solution - Silkeborg, Denmark (in operation end 2016) Main solar thermal markets outside European Union Total cumulative capacity Annual Installed capacity (in MWth) in operation (in MWth) 2015 2016 2015 2016 China 30 500 27 664 309 500 337 164 United States 760 682 17 300 17 982 Turkey 1 500 1 467 13 600 15 067 India 770 894 6 300 7 194 Japan 100 50 2 400 2 450 Rest of the world 6 740 6 797 90 944 97 728 Total world 39 640 36 660 434 700 471 360 Source: EurObserv’ER 2017 new build, because of the construction is now causing great concern, where as a water production.
    [Show full text]
  • Sizing and Economic Assessment of Photovoltaic and Diesel Generator for Rural Nigeria
    The International Journal of Engineering and Science (IJES) || Volume || 6 || Issue || 10 || Pages || PP 10-17 || 2017 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 Sizing and Economic Assessment of Photovoltaic and Diesel Generator for Rural Nigeria # * # Abaka J. U., Iortyer H.A., Ibraheem T. B. #Energy Commission of Nigeria [email protected] --------------------------------------------------------ABSTRACT----------------------------------------------------------- Sizing and economic assessment of solar photovoltaic (PV) and diesel power generators for Igu village in Bwari, FCT-Abuja was carried out. Load survey of the site was carried out in order to get the actual solar radiation (using full PV, HT ITALIA 2010 analyzer), village load requirement and other sundry data (using structured questionnaire). An off-grid solar PV design was done for the village. Life cycle cost analysis was used to assess the economic viability of the PV and diesel generating systems respectively using Music Macro Language (MML) to allow for the calculation and comparison of the levelised costs of electricity generation for the two systems. The total load of Igu village was estimated to be 140.24kW (Losses and tolerance inclusive). The system components computed include; 1194 PV modules of 235W, 351 batteries of 375Ah, 68 charge controllers of 60A and 14 inverters of 10kW each covering 3346.1m2 area of installation. The PV system cost is N268, 000,000.00. Two diesel generators of 350KVA costing N39, 433,419.00, each operating at 12 hours and ten (10) years apart within an estimated period of twenty (20) years, were also sized to meet this load requirement. It was discovered, using the life cycle analysis method, that the PV system has a lower levelised cost of electricity production ranging from 26.52 N/kWh in the first year to about 35.82 N/kWh in the twentieth year compared to the 81.27 N/kWh and 143.34 N/kWh in the first and twentieth years respectively for the diesel generator.
    [Show full text]
  • What Can EU Policy Do to Support Renewable Electricity in France? Oliver Sartor (IDDRI)
    N°06/16 APRIL 2016 | CLIMATE What can EU policy do to support renewable electricity in France? Oliver Sartor (IDDRI) ELECTRICITY IS A CRITICAL ELEMENT OF ACHIEVING THE EU’S 2030 RENEWABLE ENERGY TARGETS Under the 2030 Climate and Energy Package, the European Union has set itself a target of increasing the share of renewable energy from to 27%. Electricity will play a key role in achieving these goals, with the share of renewable power projected to increase to around 47% of the electricity mix by 2030. While electricity is only one part of the energy system, elec- tricity is therefore a vital sub-sector of the EU’s renewable energy strategy to 2030. FRANCE IS A CRITICAL PLAYER FOR MEETING THE EU’S 2030 RENEWABLE ELECTRICITY GOALS As the second largest energy consumer in Europe, and with relatively ambitious national goals of achieving 32% renewable energy and 40% renewable electricity (RES-E) by 2030, France will be critical to achieving the EU’s objectives. As the most interconnected electricity market in Europe, France’s approach to renewable electricity will also influence the redesign of electricity markets to cope with higher shares of variable RES-E in its region. Facilitating the efficient deployment and integration of renewable electricity in France is therefore an important sub-chapter of European renewable energy policy going forward. THE EU CAN FACILITATE THE ACHIEVEMENT OF FRANCE’S RES-E TARGETS IN SEVERAL WAYS The integration of higher shares of renewable electricity in France is a significant domestic policy challenge. But EU can take a number steps to facilitate the achievement of France’s goals.
    [Show full text]