Nitrous Acid)
Total Page:16
File Type:pdf, Size:1020Kb
5. Nitrogen Group Content 5.1 Occurrence 5.2 Group Properties Group 5.3 Physical Properties 15 or VA 5.4 Syntheses 7 1772 5.5 Chemical Behaviour N 15 5.6 Applications 1669 5.7 Chemistry of Elemental Nitrogen P 33 5.8 Compounds Made of Nitrogen and Hydrogen Antique 5.9 Nitrogen Compounds with Oxygen As 51 5.10 Nitrogen Compounds with Halides Antique Sb 5.11 Phosphorus/Hydrogen Compounds 83 1753 5.12 Phosphorus Oxides Bi 5.13 Oxo Acids of Phosphorus 115 2003 5.14 Phosphorus Compounds with Halides Mc 5.15 Arsenic, Antimony and Bismuth 5.16 Biological Aspects „Penteles“ Inorganic Chemistry I Slide 1 Prof. Dr. T. Jüstel 5.1 Occurrence Außer Phosphor kommen alle Pentele auch elementar (gediegen) vor Nitrogen (nitrogenium) N2 (78.1% in the air) NaNO3 Chile saltpetre KNO3 Saltpetre Phosphorus (phosphoros) Ca5(PO4)3(OH,F) Apatite greek: lightbearer Ca3(PO4)2 Phosphorite . Fe3(PO4)2 8H2O Vivianite Arsenic (arsenikos) FeAsS Arsenopyrite greek: mineral name As4S4 Realgar As4S3 Antimony (antimonium) Sb native Stibium = greek mineral name Sb2S3 Bismuth (bismutum) Bi native german: Wismut = Mutung “in the meadows” Bi2S3 Inorganic Chemistry I Slide 2 Prof. Dr. T. Jüstel 5.2 Group Properties Whereas Nitrogen Exhibits the Typical Properties of A Non-Metal, Bismuth Is Solely Metallic N P As Sb Bi Atomic number 7 15 33 51 83 Electronic [He] [Ne] [Ar] [Kr] [Xe]4f14 configuration 2s22p3 3s23p3 3d104s24p3 4d105s25p3 5d106s26p3 Electronegativity 3.0 2.1 2.2 1.8 1.7 Ionisation energy [eV] 14.5 11.0 9.8 8.6 7.3 Electronic affinity [eV] -0.3 0.6 0.7 0.6 > 0.7 Character of oxides acidic acidic amphoteric amphoteric alkaline Oxidation states -3, ...…, +5 With increasing atomic number, the oxidation state +3 becomes more stable, whilst the oxidation state +5 becomes instable. In conclusion does this behaviour lead to a higher oxidising potential Inorganic Chemistry I Slide 3 Prof. Dr. T. Jüstel 5.3 Physical Properties Only Nitrogen Is a Gas, the Other Penteles are solids N P As Sb Bi Colour (non-metallic) transparent white yellow yellow - Colour (metallic) - black steel grey silvery white silvery white Melting point [°C] -210 44 817 630 271 Boiling point [°C] -196 280 616 1635 1580 Conductivity [µ.cm] - 1017 33 42 120 Polymorphism of P, As and Sb d) Rhombohedral P, As, Sb (grey) a) Tetrahedral P4, As4, Sb4 b) Rhombohedral P, As (black) c) Amorphous P (red), As (black) d) Rhombohedral P, As, Sb (grey) Inorganic Chemistry I Slide 4 Prof. Dr. T. Jüstel 5.4 Synthesis Technical Methods Nitrogen Linde-Process → (s.a. general chemistry) at the laboratory: NH4NO2 → 2 H2O + N2 2 NaN3 → 2 Na + 3 N2 Phosphorus 2 Ca3(PO4)2 + 6 SiO2 + 10 C → 6 CaSiO3 (slag) + 10 CO + P4 Arsenic Thermal treatment of arsenopyrite: FeAsS → FeS + As Antimony Precipitation process: Sb2S3 + 3 Fe → 3 FeS + 2 Sb Reduct. roasting process: Sb2S3 + 5 O2 → Sb2O4 + 3 SO2 Sb2O4 + 4 C → 4 CO + 2 Sb Bismuth Reduction of oxidic ores: Bi2O3 + 3 C → 3 CO + 2 Bi Inorganic Chemistry I Slide 5 Prof. Dr. T. Jüstel 5.5 Chemical Behaviour Nitrogen 0 • Highly inert, due to extremely stable NN bonds: N2 ⇌ 2 N: H = -946 kJ/mol That is why the earth’s crust is made up mostly of oxidic but not nitric minerals Exception: Si2N2O sinoite (impactmineral) + - • N2 is isoelectronic to CO, NO , and CN and also forms complexes with transition II 2+ II 2+ metals: [Ru (H2O)(NH3)5] + N2 → [Ru (N2)(NH3)5] + H2O Phosphorus • White phosphorus is highly reactive and pyrophoric in air: P4 + 3 O2 → P4O6 + h • All other modifications of phosphorus are by far less reactive • The bonding energy of P-P bonds is significantly higher than those of N-N or As-As bonds P tends to form chains and/or cyclic systems Arsenic, Antimony and Bismuth • Thermodynamically stable are the grey metallic modifications of As and Sb. The non- metallic modifications are transformed into the metallic ones at room temperature, already • As, Sb and Bi are stable in air at room temperature. Only upon heating they combust and form the trioxides Me2O3 Inorganic Chemistry I Slide 6 Prof. Dr. T. Jüstel 5.6 Application Nitrogen • Inert gas for synthetic chemistry • Fertilizer: ammonium compounds and nitrates • Frothing agents: cream, whipped egg white • InN/GaN in UV-A and blue emitting light diodes Phosphorus • Matches: striking surface Pred + glass powder, matchstick head KClO3 + S • Fertilizer: phosphates • Pesticides Arsenic, Antimony and Bismuth • GaAs/GaSb solar cells • GaAs in IR-A and red emitting light diodes • As component in low-melting alloys, e.g. Wood’s metal (50% Bi, 25% Pb, 12.5% Sn, 12.5% Cd) melting point about 70 °C Inorganic Chemistry I Slide 7 Prof. Dr. T. Jüstel 5.7 Chemistry of Elemental Nitrogen Reactions with Nitrogen a) Fixation of nitrogen (→ presentations) 0 -III N 2 → N H3 b) As complexing agent Mo, Fe and Ru complexes → c) Formation of nitrides 3 Mg(s) + N2(g) → Mg3N2(s) Nitrides Imides Amides 3- 2- - N NH NH2 hydrolysis with H2O NH3 Inorganic Chemistry I Slide 8 Prof. Dr. T. Jüstel 5.7 Chemistry of Elemental Nitrogen Reactions with Nitrogen d) Ammonia synthesis (Haber-Bosch-Process): -Fe + K2O + Al2O3 + CaO Oberflächennitrid Inorganic Chemistry I Slide 9 Prof. Dr. T. Jüstel 5.7 Chemistry of Elemental Nitrogen 1. Ionic (salt-like) Nitrides Alkaline metals Li3N Alkaline earth metals M3N2 (M = Be – Ba) Group IB, IIB M3N (M =Cu, Ag) and M3N2 (M = Zn, Cd, Hg) 2. Covalent (molecular) Nitrides With non-metals: S4N4, S2N2, P3N5, (CN)2 3. Complexes with the Nitrido, N3-, Ligand With transition metals in high oxidation states VIII - VIII - Os O4 + NH3 + OH → [Os O3N ] + 2 H2O 4. Nitrides with diamond-like structure (III-V semi-conductors) With elements of the III. Main group: BN, AlN, GaN, InN, BiN Synthesis from gas phase: NH3(g) + Ga(CH3)3(g) → GaN(s) + 3 CH4(g) Inorganic Chemistry I Slide 10 Prof. Dr. T. Jüstel 5.7 Chemistry of Elemental Nitrogen 5. Metallic Nitrides (Intercalation compounds) • The small nitride anions can occupy interstices within the hexagonal or cubic close packages of the metal lattices • Typical compositions are (roughly) MN, M2N, M4N • Analogous to that do carbides and borides exist Nitride Tm [°C] Mohs Hardness Carbide Tm [°C] Mohs Hardness TiN 3220 8-9 TiC 3410 8-9 ZrN 3250 8 ZrC 3800 8-9 TaN 3360 TaC 4150 (TaC and HfC possess the two highest melting points known) Properties Applications • Great hardness nitration of metallic materials • Chemically inert by heating in NH3 atmosphere • Conductive through salt baths (cyanates) • Opaque through treatment in a plasma (glow discharge in N2 atmosphere) Inorganic Chemistry I Slide 11 Prof. Dr. T. Jüstel 5.8 Compounds Made of Nitrogen and Hydrogen At Room Temperature Ammonia, NH3, Hydrazine, N2H4, and Hydrazoic Acid, HN3 Are Stable. At Low Temperatures even Diimine N2H2 and Tetrazene N4H4 Can Be Isolated NH3 Ammonia Synthesis •Nature: N2 assimilation by micro organisms (→ presentations) •Technical: N2 + 3 H2 → 2 NH3 Haber-Bosch-Process (→ presentations) > 350 °C < 350 °C •Laboratory: NH4Cl → NH3 + HCl → NH4Cl (apparent sublimation) Structure N P As Sb Bi H H H H H H H H H H H H H H H 107.2° 93° 91.8° 91° ~90° s-Character of lone pair Inorganic Chemistry I Slide 12 Prof. Dr. T. Jüstel 5.8 Compounds Made of Nitrogen and Hydrogen Properties of Ammonia NH3 • Polar solvents (Tm = -78 °C, Tb = -33 °C), whichs dissolves alkaline metals and solvates + . - electrons: NH3(l) + Na(s) → [Na(NH3)n] + [e (NH3)m] (blue) • Readily soluble in water, because of the formation of hydrogen bonds - + . -30 • Auto-protolysis: 2 NH3 ⇌ NH2 + NH4 K = 1.0 10 • Weak base in water + - . -5 NH3 + H2O ⇌ NH4 + OH K = 1.8 10 • Weak acid + - 2 NH3 + 2 Li ⇌ 2 Li + 2 NH2 + H2 • Decomposition Thermal: 2 NH3 → N2 + 3 H2 Oxidation: 4 NH3 + 3 O2 → 2 N2 + 6 H2O Inorganic Chemistry I Slide 13 Prof. Dr. T. Jüstel 5.8 Compounds Made of Nitrogen and Hydrogen Hydrazine, N2H4, (transparent, greasy liquid, Tm = 2.0 °C, Tb = 113 °C) Synthesis a) Raschig-Synthesis 1. NaOCl + NH3 → NaOH + NH2Cl (chloramine) 2. NH2Cl + NaOH + NH3 → NaCl + H2O + N2H4 b) Bayer-Process 1. NaOCl + 2 NH3 + 2 CH3-CO-CH3 → (CH3)2C=N-N=C(CH3)2 + NaCl + 3 H2O 2. (CH3)2C=N-N=C(CH3)2 + 2 H2O → N2H4 + 2 CH3-CO-CH3 Properties and structure + - • Base: N2H4 + H2O → N2H5 + OH + 2+ - N2H5 + H2O → N2H6 + OH • Strong reducing agent: N2H4 + 2 I2 → 4 HI + N2 2+ + N2H4 + 2 Cu → 2 Cu + 4 H + N2 • Thermal decomposition: 3 N2H4 → 4 NH3 + N2 Applications • Rocket propellant in the form of dimethyl hydrazine (CH3)2N-NH2 • AR agent in water circulation formation of magnetite (Fe3O4) Inorganic Chemistry I Slide 14 Prof. Dr. T. Jüstel 5.8 Compounds Made of Nitrogen and Hydrogen Hydrazoic Acid, HN3 (transparent, explosive liquid, Tb = 36 °C) Synthesis -III +I NaN H2 + N 2O → NaN3 + H2O + + NaN3 + H → HN3 + Na Properties and structure • Highly explosive: 2 HN3(l) → H2(g) + 3 N2(g) - + • Weak acid: HN3 + H2O → N3 + H3O (pKs = 4.55) + 2+ • Strong oxidising agent: Zn + HN3 + 2 H → Zn + NH3 + N2 - • N3 is isoelectronic to CO2 - - + - - - • Photolysis in water: 2 N3 → 3 N2 + 2 e 2 H + 2 OH + 2 e → H2 + 2 OH Application of the salts (azides) • Starting substance for azide chemistry • Detonator, e.g. Pb(N3)2 Inorganic Chemistry I Slide 15 Prof. Dr. T. Jüstel 5.8 Compounds Made of Nitrogen and Hydrogen Azides MeN3 Ionic azides • Examples: NaN3, Ba(N3)2 • Stable because of resonance structures - 2 2 N N N N N N N N N Covalent azides • Examples: AgN3, Pb(N3)2 (schwerlöslich) - - • Chlorineazides: N3 + Cl2 → Cl-N3 + Cl • Iodineazides: AgN3 + I2 → I-N3 + AgI • Explosive, since the azide ion is polarised by the covalent bond (symmetrical distribution of electrons in the linear azide anion is disturbed) Inorganic Chemistry I Slide 16 Prof.