The Synthesis and Characterization of Energetic Materials from Sodium Azide

Total Page:16

File Type:pdf, Size:1020Kb

The Synthesis and Characterization of Energetic Materials from Sodium Azide THE SYNTHESIS AND CHARACTERIZATION OF ENERGETIC MATERIALS FROM SODIUM AZIDE A Thesis Presented to The Academic Faculty By Joshua Aronson In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology October 2004 THE SYNTHESIS AND CHARACTERIZATION OF ENERGETIC MATERIALS FROM SODIUM AZIDE Approved by: Charles L. Liotta, Advisor Kent Richman Charles A. Eckert Julia Kubanek David Collard November 17, 2004 ii This thesis is dedicated to M. G. iii ACKNOWLEDGEMENT I would first like to thank Dr. Liotta and Dr. Eckert for their support and encouragement. I will forever envy your enthusiasm and spirit. I would also like to extend my appreciation to everyone at American Pacific. My experiences in Utah and Las Vegas contributed a great deal to my graduate education. In addition, I want to thank the entire Liotta-Eckert research group—especially Kris and Pamela. The two of you made all of this not only bearable, but fun. Finally, I would like to thank my mom and Mary Katherine for their support. I would not have made it without you. iv TABLE OF CONTENTS Acknowledgement iv List of Figures viii List of Tables xii List of Abbreviations xiii Summary xv Chapter I Introduction 1 Chapter II A Novel Approach To The Synthesis Of Tetrazoles 5 Introduction 5 Experimental Methods 10 Materials 10 Apparatus 10 Procedures 11 Results and Discussion 14 Conclusion 37 References 38 Chapter III The Synthesis and Characterization Of Glycidyl 40 Azide Polymer Introduction 40 Experimental Methods 43 Materials 43 Apparatus 43 Procedures 43 Results and Discussion 46 v Conclusion 56 References 57 Chapter IV The Synthesis and Characterization Of Glycidyl 58 Tetrazole Polymers Introduction 58 Experimental Methods 60 Materials 60 Apparatus 60 Procedures 62 Results and Discussion 65 Conclusion 74 References 78 Chapter V The Synthesis and Characterization Of Energetic 80 Foams Introduction 80 Experimental Methods 87 Materials 87 Apparatus 87 Procedures 87 Results and Discussion 89 Conclusion 92 References 96 Chapter VI The Synthesis and Characterization Of Energetic 97 Ionic Liquids Introduction 97 Experimental Methods 104 Materials 104 vi Apparatus 104 Procedures 104 Results and Discussion 106 Conclusion 119 References 122 Chapter VII The Synthesis and Characterization Of Novel 123 Energetic Gels Introduction 123 Experimental Methods 125 Materials 125 Apparatus 125 Procedures 125 Results and Discussion 127 Conclusions 133 References 135 Chapter VIII Recommendations 137 Vita 147 vii LIST OF FIGURES Figure 2-1 Comparison of the carboxylic acid type moiety present 6 in the tetrazole ring. Figure 2-2 The reactive species formed between the teriary amines 16 and sodium azide. Figure 2-3 Reaction scheme using triethylamine hydrochloride and 17 sodium azide in equimolar amounts with benzonitrile as solvent and reactant for the preparation of 5-phenyl-1H-tetrazole. Figure 2-4 Graph of the isolated yields of 5-phenyl-1H-tetrazole 17 versus time for the reaction shown in Figure 5-2 at 50oC. Figure 2-5 The structures of the various amines tested for their 19 effectiveness and solubility in benzonitrile. Figure 2-6 Stepwise reaction scheme showing the formation of tri- 24 ethylammonium 5-phenyltetrazolate and subsequent tetrazole ring protection by reaction with triphenylmethyl chloride. Figure 2-7 Proposed mechanism of the basic tetrazole reaction 27 Figure 2-8 Proposed catalytic cycle for the preparation of 5-pheny 30 -1H-tetrazole using a stoichiometric amount of triethylamine hydrochloride (TEAHC) and a 10 mol% of benzyltriethylammonium chloride (BTEAC). Figure 2-9 Reaction showing the deprotonation of the 5-phenyl-1H- 33 Tetrazole to produce a soluble triethylammonium 5-phenyltetrazolate species. Figure 2-10 Intermolecular hydrogen bonding network of 5-phenyl- 34 1H-tetrazole. Figure 2-11 Reaction scheme for the production of 5-phenyl-1H- 34 tetrazole with 10mol% TEAPT as the proton source. Figure 2-12 Proposed catalytic cycle for the reaction that uses a 10 36 Mol % of the quaternary ammonium salt viii Figure 3-1 The structure of glycidyl azide polymer 41 Figure 3-2 The general process for synthesizing the polyepichloro- 47 Hydrin staring material Figure 3-3 The mechanism for the polymerization of epichlorohydrin 48 using a tin catalyst and trifluoroacetic acid Figure 3-4 The standard process used to generate glycidyl azide 51 polymer from polyepichlorohydrin and sodium azide Figure 3-5 Pictures of common GAP samples 53 Figure 3-6 A depiction of the ionic liquids in which the synthesis of 55 GAP was attempted. Figure 3-7 The procedure used to synthesize GAP in ionic liquids 55 Figure 4-1 The structure of glycidyl azide polymer 59 Figure 4-2 The two isomer of glycidyl tetrazole polymer that are 61 possible Figure 4-3 The scheme using phase transfer catalysis attempted to 66 replace the chlorine of the epichlorohydrin with a nitrile Figure 4-4 The “click” process designed by K. Barry Sharpless for 68 synthesizing tetrazoles Figure 4-5 The physical properties of a wide range of tosyl- 69 Substituted tetrazole Figure 4-6 Differential Scanning Calorimetry Data for the GAP/ 71 Ts-GTP polymers Figure 4-7 Exotherm values (J/g) for GAP/Ts-GTP polymers 72 Figure 4-8 Synthesis of GTP polymers with ethyl and benzyl 73 cyanoformate Figure 4-9 Decarboxylation of GTP polymers with LiOH 73 Figure 4-10 Differential Scanning Calorimetry data for all of 75 the GTP derivatives ix Figure 5-1 A general urethane linkage and the general scheme 81 for the reaction between the hydroxyl-terminated polymer and the diisocyanate Figure 5-2 The mechanism by which water reacts with the 85 diisocyanate to generate the carbon dioxide bubbles in the foam Figure 5-3 The mechanism between the hydroxyl-terminated 86 polymer and the diisocyanate Figure 5-4 Water blown foams created with 5, 10, and 25 mol 90 percent of diisophorone diisocyanate Figure 5-5 The stir blade used in an attempt to mechanically 91 introduce air bubbles into the plastic matrix of the energetic foams Figure 5-6 Comparison of the foams created with mechanical 93 technique and a water blown foam Figure 5-7 Differential scanning calorimetry plots of pure GAP, 94 the energetic foam, and H-GTP Figure 6-1 Two generalized structures for common ionic liquids 98 Figure 6-2 Phase changes of the ionic liquid dictacted by the 100 length of the alkyl chain Figure 6-3 5,5-bi-1H-tetrazole and 5-methyltetrazole 102 Figure 6-4 Class I and Class II tetrazole based ionic liquids 103 Figure 6-5 Acid-base reaction that yields the formation of 107 5-methyl tetrazole salts Figure 6-6 Comparion of specific impulse versus oxidizer/fuel 112 ratio for ionic liquids and other common energetic materials Figure 6-7 Density impulse versus oxidizer/fuel ratio for the 113 tetrazole based ionic liquids and other common energetic materials Figure 6-8 Differential scanning calorimetry plot for butyl- 114 ammonium-5-methyltetrazole and the amyl- x ammonium-5-methyltetrazolide ionic liquids Figure 6-9 Differential scanning calorimetry data for saturated 117 solution of KClO4 in butylammonium-5-methyl- tetrazolide Figure 6-10 Differential scanning calorimetry data for saturated 118 solution of KClO4 in amylammonium 5-methyl- tetrazolide Figure 6-11 Differential scanning calorimetry date for saturated 120 solution of NH4ClO4 in butylammonium 5-methyl- tetrazolide Figure 6-12 Differential scanning calorimetry data for saturated 121 solution of NH4ClO4 in amylammonium 5-methyl- tetrazolide Figure 7-1 General scheme for the preparation of the tetrazole 128 substituted monomer and the polymerization Figure 7-2 General scheme for the preparation of the three- 131 dimensional polymer network Figure 7-3 The three-dimensional polymers 131 Figure 7-4 General scheme for the preparation of the ionic species 132 from the monomer Figure 8-1 Synthetic scheme to prepare long alkyl chain azido- 142 amines Figure 8-2 Synthetic scheme to prepare DMAZ, 5-alkylamino- 143 tetrazole, and 1-alkylaminotetrazole Figure 8-3 Synthesis pathways to prepare novel and enhance 145 energetic polymers xi LIST OF TABLES Table 2-1 The yield of 5-phenyl-1H-tetrazole using each of 20 the amines. Table 2-2 Results from the gaseous HCl recycled experiments 22 Table 2-3 Results from the trityl protection of the 5-phenyl- 26 1H-tetrazole experiments. Table 2-4 Results from the experiments using only a catalytic 29 amount of quaternary ammonium salt. Table 2-5 The results from the temperature, time, and mol% 31 of TEAHC variations. Table 4-1 Exotherm values for each of the glycidyl tetrazole 75 derivatives Table 6-1 Melting points for BHT and 5-MT salts 102 Table 6-2 The six selected and tested amines and their alkyl 105 chain substitution pattern Table 6-3 Amine salts of 5-MT including substitution patterns 109 and physical properties Table 6-4 Amound of NH4ClO4, NaClO4, and NaNO3 needed 114 to reach the saturation of 1g of tetrazole ionic liquids Table 8-1 Energetic azido-amines and tetrazole based amines 140 xii LIST OF ABBREVIATIONS BHT 5,5’-bi-1H-tetrazole BTEACH benzyltriethylammonium chloride DMAZ dimethylethylamino azide DMSO dimethylsulfoxide DSC differential scanning calorimetry ECH epichlorohydrin GAP glycidyl azide polymer GPC gel permeation chromatography GTP glycidyl tetrazole polymer IR infrared spectroscopy Isp specific impulse MMH monomethylhydrazine 5-MT 5-methyltetrazole NaEDTA sodium ethylenediaminetetraacetic acid NMR nuclear magnetic resonance O/F oxidizer/fuel ratio PDI polydispersity index PECH polyepichlorohydrin 5-PT 5-phenyl-1H-tetrazole PTC phase transfer catalysis TBAB tetrabutylammonium bromide xiii TEAHC triethylamine hydrochloride TFA trifluoroacetic acid xiv SUMMARY A tetrazole is a 5-membered ring containing 4 nitrogens and 1 carbon. Due to its energetic potential and structural similarity to carboxylic acids, this ring system has a wide number of applications.
Recommended publications
  • Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas
    processes Article Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas Usman Shoukat , Diego D. D. Pinto and Hanna K. Knuutila * Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; [email protected] (U.S.); [email protected] (D.D.D.P.) * Correspondence: [email protected] Received: 8 February 2019; Accepted: 8 March 2019; Published: 15 March 2019 Abstract: Various novel amine solutions both in aqueous and non-aqueous [monoethylene glycol (MEG)/triethylene glycol(TEG)] forms have been studied for hydrogen sulfide (H2S) absorption. The study was conducted in a custom build experimental setup at temperatures relevant to subsea operation conditions and atmospheric pressure. Liquid phase absorbed H2S, and amine concentrations were measured analytically to calculate H2S loading (mole of H2S/mole of amine). Maximum achieved H2S loadings as the function of pKa, gas partial pressure, temperature and amine concentration are presented. Effects of solvent type on absorbed H2S have also been discussed. Several new solvents showed higher H2S loading as compared to aqueous N-Methyldiethanolamine (MDEA) solution which is the current industrial benchmark compound for selective H2S removal in natural gas sweetening process. Keywords: H2S absorption; amine solutions; glycols; desulfurization; aqueous and non-aqueous solutions 1. Introduction Natural gas is considered one of the cleanest forms of fossil fuel. Its usage in industrial processes and human activities is increasing worldwide, providing 23.4% of total world energy requirement in 2017 [1]. Natural gas is half of the price of crude oil and produces 29% less carbon dioxide than oil per unit of energy output [2].
    [Show full text]
  • Nitrosamines EMEA-H-A5(3)-1490
    25 June 2020 EMA/369136/2020 Committee for Medicinal Products for Human Use (CHMP) Assessment report Procedure under Article 5(3) of Regulation EC (No) 726/2004 Nitrosamine impurities in human medicinal products Procedure number: EMEA/H/A-5(3)/1490 Note: Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ...................................................................................... 2 1. Information on the procedure ............................................................... 7 2. Scientific discussion .............................................................................. 7 2.1. Introduction......................................................................................................... 7 2.2. Quality and safety aspects ..................................................................................... 7 2.2.1. Root causes for presence of N-nitrosamines in medicinal products and measures to mitigate them............................................................................................................. 8 2.2.2. Presence and formation of N-nitrosamines
    [Show full text]
  • Stable Lithium Diisopropylamide and Method of Preparation
    Europaisches Patentamt J European Patent Office Publication number: 0 205 583 Office europeen des brevets B1 EUROPEAN PATENT SPECIFICATION (45) Date of publication of patent specification: 30.01.91 Intel.5: C 07 C 211/65 (3) Application number: 86900522.3 @ Date of filing: 17.12.85 (8) International application number: PCT/US85/02509 ® International publication number: WO 86/03744 03.07.86 Gazette 86/14 STABLE LITHIUM DIISOPROPYLAMIDE AND METHOD OF PREPARATION. (M) Priority: 24.12.84 US 685318 Proprietor: LITHIUM CORPORATION OF AMERICA, INC. Post Office Box 795 Date of publication of application: Bessemer City, NC 28016 (US) 30.12.86 Bulletin 86/52 Inventor: MORRISON, Robert, Charles Publication of the grant of the patent: 1946 Elmwood Drive 30.01.91 Bulletin 91/05 Gastonia, NC 28054 (US) Inventor: HALL, Randy, Winf red Route 4 Box 697 (M) Designated Contracting States: Kings Mountain, NC 28086 (US) AT BE CH DE FR GB IT LI LU NL SE Inventor: RATHMAN, Terry, Lee 3843 Gardner Park Drive Gastonia, NC 28054 (US) References cited: US-A-3197 516 US-A-3 694516 US-A-3388178 US-A-4 006187 Representative: Gore, Peter Manson et al US-A-3446 860 US-A-4399 078 W.P. THOMPSON & CO. Coopers Building Church Street JOURNAL OF ORGANOMETALLIC CHEMISTRY, Liverpool L1 3AB (GB) vol. 4, 1965; GILMAN et al.: "Stabilities of some n-alkyllithium compounds in mixed solvent CO I References cited: 00 systems", pp. 483-487 JOURNAL OF ORGANOMETTALIC CHEMISTRY, m JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 29, 1971; HONEYCUTT: "Kinetics of the in vol.
    [Show full text]
  • Nitrous Acid)
    5. Nitrogen Group Content 5.1 Occurrence 5.2 Group Properties Group 5.3 Physical Properties 15 or VA 5.4 Syntheses 7 1772 5.5 Chemical Behaviour N 15 5.6 Applications 1669 5.7 Chemistry of Elemental Nitrogen P 33 5.8 Compounds Made of Nitrogen and Hydrogen Antique 5.9 Nitrogen Compounds with Oxygen As 51 5.10 Nitrogen Compounds with Halides Antique Sb 5.11 Phosphorus/Hydrogen Compounds 83 1753 5.12 Phosphorus Oxides Bi 5.13 Oxo Acids of Phosphorus 115 2003 5.14 Phosphorus Compounds with Halides Mc 5.15 Arsenic, Antimony and Bismuth 5.16 Biological Aspects „Penteles“ Inorganic Chemistry I Slide 1 Prof. Dr. T. Jüstel 5.1 Occurrence Außer Phosphor kommen alle Pentele auch elementar (gediegen) vor Nitrogen (nitrogenium) N2 (78.1% in the air) NaNO3 Chile saltpetre KNO3 Saltpetre Phosphorus (phosphoros) Ca5(PO4)3(OH,F) Apatite greek: lightbearer Ca3(PO4)2 Phosphorite . Fe3(PO4)2 8H2O Vivianite Arsenic (arsenikos) FeAsS Arsenopyrite greek: mineral name As4S4 Realgar As4S3 Antimony (antimonium) Sb native Stibium = greek mineral name Sb2S3 Bismuth (bismutum) Bi native german: Wismut = Mutung “in the meadows” Bi2S3 Inorganic Chemistry I Slide 2 Prof. Dr. T. Jüstel 5.2 Group Properties Whereas Nitrogen Exhibits the Typical Properties of A Non-Metal, Bismuth Is Solely Metallic N P As Sb Bi Atomic number 7 15 33 51 83 Electronic [He] [Ne] [Ar] [Kr] [Xe]4f14 configuration 2s22p3 3s23p3 3d104s24p3 4d105s25p3 5d106s26p3 Electronegativity 3.0 2.1 2.2 1.8 1.7 Ionisation energy [eV] 14.5 11.0 9.8 8.6 7.3 Electronic affinity [eV] -0.3 0.6 0.7 0.6 > 0.7 Character of oxides acidic acidic amphoteric amphoteric alkaline Oxidation states -3, ...…, +5 With increasing atomic number, the oxidation state +3 becomes more stable, whilst the oxidation state +5 becomes instable.
    [Show full text]
  • Catalyst and Method for Production of Alkylamines
    Europaisches Patentamt its; European Patent Office © Publication number: 0 127 874 Office europeen des brevets A2 (121 EUROPEAN PATENT APPLICATION © Application number: 84106136.9 © Int. CI.3: C 07 C 85/06 C 07 C 85/08, B 01 J 23/80 @ Date of filing: 29.05.84 © Priority: 01.06.83 US 500037 @ Applicant: LEHIGH UNIVERSITY 28.11.83 US 555579 203 East Parker Avenue Bethlehem, PA 18015(US) © Date of publication of application: @ Inventor: Klier, Kamil 12.12.84 Bulletin 84/50 3474 Lord Byron Drive Bethlehem PA 18017(US) © Designated Contracting States: BE DE FR GB NL @ Inventor: Herman, Richard G. 409 Fifth Street Whitehall PA 18052(US) @ Inventor: Vedage, Gamini A. 532 Carlton Avenue Bethlehem PA 18015IUS) © Representative: Berg, Wilhelm, Dr. et al, Patentanwalte Dr. Berg Dipl.-lng. Stapf Dipl.-lng. Schwabe Dr. Dr. Sandmair Postfach 86 02 45 Stuntzstrasse 16 D-8000 Munchen 86(DE) © Catalyst and method for production of alkylamines. This invention relates to an improved catalyst and method for the selective production of alkylamines. More particularly, it is concerned with the preparation of stable highly active catalysts for producing alkylamines by a cataly- tic reaction of ammonia or substituted amines and binary synthesis gas (CO + H2). Introduction This invention relates to an improved catalyst and method for the selective production of alkylamines. More particularly, it is concerned with the preparation of stable highly active catalysts for producing alkylamines by a catalytic reaction of ammonia, primary amines, or substituted amines and binary synthesis gas (CO + H2), or alcohols. Background of the Invention The preparation of methylamines of general formula (CH3)n NH3-n and (CH3)n NH2-nR occurs by the reactions depicted in equations (1) and (2).
    [Show full text]
  • United States Patent Office Patented Aug
    3,832,364 United States Patent Office Patented Aug. 27, 1974. 2 zene, o-, m- and p-dichlorobenzene, anisole, methyl. 3,832,364 benzyl ether, n-propyl phenyl ether, m-ethyl-anisole, 4 AMINATION OF AROMATIC COMPOUNDS IN methyldiphenyl ether, di-p-tolyl ether, ethyl 2-cyclohexyl LIQUID HYDROGEN FLUORIDE Dale Robert Coulson, Wilmington, Del assignor to E. I. phenyl ether, n-heptyl phenyl ether, isobutyl phenyl ether, du Pont de Nemours and Company, Wilmington, Del. 5 cyclohexyl phenyl ether, n-octyl phenyl ether, n-octyl p No Drawing. Filed May 25, 1972, Ser. No. 256,770 tolyl ether, n-octyl m-tolyl ether, decyl phenyl ether, 1 Int. C. C07c87/50, 97/12 benzylethylheptyl ether, benzoic acid, p-toluic acid, p U.S. C. 260-378 26 Claims chlorobenzoic acid, phthalic acid, nitrobenzene, m-dinitro benzene, o-, m- and p-nitrotoluene, acetophenone, methyl O benzyl ketone, p-methylacetophenone, 3-phenyl-2-buta ABSTRACT OF THE DISCLOSURE none, propriophenone, 2-methyl-1-tetralone, phenyl. n Disclosed herein is a process for making aromatic butyl ketone, benzophenone, p-methylbenzophenone, di amines from benzene or substituted benzene and an o-tolyl ketone, phenyl isobutyl ketone, phenyl n-hexyl aminating agent via direct amination in liquid hydrogen ketone, phenyl n - undecyl ketone, anthraquinone, 2 - fluoride medium as solvent and catalyst. 15 methylanthraquinone, and 1-methyl-4-isopropylanthra quinone. Preferred aromatic compounds are those containing BACKGROUND OF THE INVENTION two or fewer substituents. Especially preferred com 1. Field of the Invention pounds are those containing two or fewer substituents 20 selected from halogen and alkyl of up to four carbons.
    [Show full text]
  • Production of Malonic Acid Through the Fermentation of Glucose
    University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-20-2018 Production of Malonic Acid through the Fermentation of Glucose Emily P. Peters University of Pennsylvania, [email protected] Gabrielle J. Schlakman University of Pennsylvania, [email protected] Elise N. Yang University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Peters, Emily P.; Schlakman, Gabrielle J.; and Yang, Elise N., "Production of Malonic Acid through the Fermentation of Glucose" (2018). Senior Design Reports (CBE). 107. https://repository.upenn.edu/cbe_sdr/107 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/107 For more information, please contact [email protected]. Production of Malonic Acid through the Fermentation of Glucose Abstract The overall process to produce malonic acid has not drastically changed in the past 50 years. The current process is damaging to the environment and costly, requiring high market prices. Lygos, Inc., a lab in Berkeley, California, has published a patent describing a way to produce malonic acid through the biological fermentation of genetically modified easty cells. This proposed technology is appealing as it is both better for the environment and economically friendly. For the process discussed in this report, genetically modified Pichia Kudriavzevii yeast cells will be purchased from the Lygos lab along with the negotiation of exclusive licensing rights to the technology. The cells will be grown in fermentation vessels, while being constantly fed oxygen, glucose and fermentation media. The cells will excrete malonic acid in the 101 hour fermentation process.
    [Show full text]
  • Preparation of Amine Alanes
    Europaisches Patentamt J European Patent Office 00 Publication number: 0 273 229 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION © Application number: 87117901.6 © mt. ci.<: C01B 6/06 , C07C 87/00 © Date of filing: 03.12.87 © Priority: 22.12.86 US 945286 © Applicant: ETHYL CORPORATION Ethyl Tower 451 Florida Boulevard ® Date of publication of application: Baton Rouge Louisiana 70801 (US) 06.07.88 Bulletin 88/27 @ Inventor: Marlett, Everett Michael ® Designated Contracting States: 9355 Greenbriar Drive AT BE CH DE ES FR GB IT LI LU NL SE Baton Rouge Louisiana 7081 5(US) 0 Representative: Sandmair, Kurt, Dr. Patentanwalte Schwabe, Sandmair, Marx Stuntzstrasse 16 D-8000 MUnchen 80(DE) © Preparation of amine alanes. © Process for the preparation of an amine alane, said process comprising reacting: (a) an alkali metal aluminum tetrahydride having the formula MAIH4, wherein M is an alkali metal selected from the class consisting of lithium, sodium and potassium, (b) a hydrogen halide, and (c) a complexing tertiary amine. In this process, NaAlhU, HCI, and (C2H5)3N are preferred reactants. CM CM a. LU Xerox Copy Centre 0 273 229 PREPARATION OF AM1NE ALANES The invention pertains to the formation of amine alanes AIH3«NR3. These materials are useful as chemical intermediates. For example, they can be reacted with a silicon halide such as SiCU or SiF4 to produce silane. Reference is made to U.S. 4,474,743. It pertains to production of silane and aluminum fluoride from silicon tetrafluoride and amine alanes. Reference is also made to U.S. 4,006,095. It teaches, inter alia, that SiCU reacts with a toluene solution of AIH3 containing dimethyl ether or a stabilizing amine.
    [Show full text]
  • WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every B01J 31/04 (2006.01) B01J 31/18 (2006.01) kind of national protection available): AE, AG, AL, AM, B01J 31/14 (2006.01) B01J 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 12/065285 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 15 November 2012 (15.1 1.2012) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13/323,328 12 December 201 1 (12. 12.201 1) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): CHEV¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, RON PHILLIPS CHEMICAL COMPANY LP UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 10001 Six Pines Drive, The Woodlands, Texas TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 77380 (US).
    [Show full text]
  • PESTICIDES Criteria for a Recommended Standard
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES criteria for a recommended standard... OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES * U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health July 1978 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-174 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) has implemented a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the effects of exposure on health. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in developing regulatory standards. Successive reports will be presented as research and epideiriologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of workers. The contributions to this document on pesticide manufacturing and formulating industries by NIOSH staff members, the review consultants, the reviewer selected by the American Conference of Governmental Industrial Hygienists (ACGIH), other Federal agencies, and by Robert B.
    [Show full text]
  • United States Patent Office Patented Dec
    3,60,601 United States Patent Office Patented Dec. 3, 1964 2 fied by oxygen atoms attached to other silicon atoms to 3,60,601 form siloxane linkages, monovalent hydrocarbon radicals, AMNE SALTS OF PHOSPHORIC ACED AND AANE SALS OF CAR30XYECAC AS hydrocarbon radicals which are polyvalent, i.e. which SLANO, CONDENSATON CATALYSTS have a valence higher than one, each valence of which James Franklia Hyde, Midland, Mich, assigaor ig Bow is attached to another silicon atom to form silcarbane Corning Corporation, Midland, Mich., a corporation linkages and similar monovalent and polyvalent hydro of Michigan carbon radicals containing such functions as ether link No Drawing. Filed July 3, 1959, Ser. No. 826,421 ages, aromatic halogen atoms, aliphatic fluorine atoms, 7. Caimas. (C. 260-46.5) hydroxyl groups and nitrile groups. Any aliphatic fluo 0 line atoms should be separated from any silicon atom This invention relates to the use of amine salts as by at least three carbon atoms. catalysts for the condensation of silicon-bonded hydroxyl More specifically, the silicon valences of the organe groups. silicon compound employed in this invention can be The condensation of silicon-bonded hydroxyl groups Satisfied by, for example, any alkyl radical such as the employing as catalysts alkali metal and quaternary am 5 Inethyl, ethyl, isopropyl, tert-butyl, 2-ethylhexyl, dodecyl, Inonium hydroxides and organosilicon salts thereof is ccitadecyl and myricyl radicals; any alkenyl radical such now well known in the art. However, these catalysts have as the vinyl, allyl and hexadienyl radicals; any cycloalkyl a primary disadvantage of breaking siloxane bonds causing radical such as the cyclopentyl and cyclohexyl radicals; random rearrangement of siloxane units in a polymer.
    [Show full text]
  • Inorganic Seminar Abstracts
    C 1 « « « • .... * . i - : \ ! -M. • ~ . • ' •» »» IB .< L I B RA FLY OF THE. UN IVERSITY Of 1LLI NOIS 546 1^52-53 Return this book on or before the Latest Date stamped below. University of Illinois Library «r L161— H41 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/inorganicsemi195253univ INORGANIC SEMINARS 1952 - 1953 TABLE OF CONTENTS 1952 - 1953 Page COMPOUNDS CONTAINING THE SILICON-SULFUR LINKAGE 1 Stanley Kirschner ANALYTICAL PROCEDURES USING ACETIC ACID AS A SOLVENT 5 Donald H . Wilkins THE SOLVENT PHOSPHORYL CHLORIDE, POCl 3 12 S.J. Gill METHODS FOR PREPARATION OF PURE SILICON 17 Alex Beresniewicz IMIDODISULFINAMIDE 21 G.R. Johnston FORCE CONSTANTS IN POLYATOMIC MOLECILES 28 Donn D. Darsow METATHESIS IN LIQUID ARSENIC TRICHLORIDE 32 Harold H. Matsuguma THE RHENI DE OXIDATION STATE 40 Robert L. Rebertus HALOGEN CATIONS 45 L.H. Diamond REACTIONS OF THE NITROSYL ION 50 M.K. Snyder THE OCCURRENCE OF MAXIMUM OXIDATION STATES AMONG THE FLUOROCOMPLEXES OF THE FIRST TRANSITION SERIES 56 D.H. Busch POLY- and METAPHOSPHATES 62 V.D. Aftandilian PRODUCTION OF SILICON CHLORIDES BY ELECTRICAL DISCHARGE AND HIGH TEMPERATURE TECHNIQUES 67 VI. £, Cooley FLUORINE CONTAINING OXYHALIDES OF SULFUR 72 E.H. Grahn PREPARATION AND PROPERTIES OF URANYL CARBONATES 76 Richard *• Rowe THE NATURE OF IODINE SOLUTIONS 80 Ervin c olton SOME REACTIONS OF OZONE 84 Barbara H. Weil ' HYDRAZINE BY ELECTROLYSIS IN LIQUID AMMONIA 89 Robert N. Hammer NAPHTHAZARIN COMPLEXES OF THORIUM AND RARE EARTH METAL IONS 93 Melvin Tecotzky THESIS REPORT 97 Perry Kippur ION-PAIR FORMATION IN ACETIC ACID 101 M.M.
    [Show full text]