Study of Various Aqueous and Non-Aqueous Amine Blends for Hydrogen Sulfide Removal from Natural Gas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oxidation of Amines at Absorber Conditions for CO2 Capture from Flue Gas
Energy Procedia Energy Procedia 4 (2011) 171–178 Energy Procedia 00 (2010) 000–000 www.elsevier.com/locate/procedia www.elsevier.com/locate/XXX GHGT-10 Oxidation of amines at absorber conditions for CO2 capture from flue gas Alexander K. Voice, Gary T. Rochelle* Department of Chemical Engineering, Luminant Carbon Management Program, University of Texas, 1 University Station C0400, Austin, TX 78712, USA Elsevier use only: Received date here; revised date here; accepted date here Abstract Eleven amines that are suitable for CO2 capture by an amine scrubbing system have been evaluated for their stability in the presence of oxygen. Six amines produced measureable quantities of ammonia in the order: 1,2-diamino-propane (DAP) > monoethanolamine (MEA) > ethylene diamine (EDA) > 3-methylamino-1-propylamine (MAPA) > potassium glycinate (GLY) > potassium taurinate (TAU). Five other amines produced no detectable ammonia (<0.2mmol/kg/hr): piperazine (PZ), 1-methyl-piperazine (1-MPZ), diglycolamine (DGA®), 2-amino-2-methyl-propanol (AMP), and 1- methyl-diethanolamine (MDEA). The effect of temperature on ammonia production from aqueous MEA in the presence of Inh. A was also measured. The activation energy of ammonia production varied from 86 kJ/mol with no inhibitor to 133 kJ/mol with 200 mM Inh. A. At 55°C, ammonia production was reduced by 74-99% with 50-200 mM Inh. A. ⃝©c 20102011 Elsevier Published Ltd. by ElsevierAll rights Ltd. reserved Keywords: Oxidative degradation; amine screening; ammonia rates; activation energy. 1.0 Introduction Aqueous monoethanolamine (MEA) is the baseline solvent for carbon dioxide capture from flue gas by absorption- stripping. MEA is an attractive solvent, because it is relatively cheap, has a fast reaction rate with CO2, and has a high heat of absorption. -
Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard
Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude To cite this version: Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas. Journal of Physical Chemistry A, American Chemical Society, 2017, 121 (17), pp.3254-3262. 10.1021/acs.jpca.7b01238. hal-01708219 HAL Id: hal-01708219 https://hal.archives-ouvertes.fr/hal-01708219 Submitted on 13 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta†, Baptiste Sirjean†, Laurent Verdier‡, René Fournet†, Pierre-Alexandre Glaude†,* †Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville BP 20451 54001 Nancy Cedex, France ‡DGA Maîtrise NRBC, Site du Bouchet, 5 rue Lavoisier, BP n°3, 91710 Vert le Petit, France *corresponding author: [email protected] Abstract The destruction of stockpiles or unexploded ammunitions of nitrogen mustard (tris (2- chloroethyl) amine, HN-3) requires the development of safe processes. -
Monoethanolamine Diethanolamine Triethanolamine DSA9781.Qxd 1/31/03 10:21 AM Page 2
DSA9781.qxd 1/31/03 10:21 AM Page 1 ETHANOLAMINES Monoethanolamine Diethanolamine Triethanolamine DSA9781.qxd 1/31/03 10:21 AM Page 2 CONTENTS Introduction ...............................................................................................................................2 Ethanolamine Applications.........................................................................................................3 Gas Sweetening ..................................................................................................................3 Detergents, Specialty Cleaners, Personal Care Products.......................................................4 Textiles.................................................................................................................................4 Metalworking ......................................................................................................................5 Other Applications...............................................................................................................5 Ethanolamine Physical Properties ...............................................................................................6 Typical Physical Properties ....................................................................................................6 Vapor Pressure of Ethanolamines (Figure 1).........................................................................7 Heat of Vaporization of Ethanolamines (Figure 2)................................................................7 Specific -
Use of Monoethanolamine (MEA) for CO2 Capture in a Global Scenario: Consequences and Alternatives☆
DES-12667; No of Pages 7 Desalination xxx (2015) xxx–xxx Contents lists available at ScienceDirect Desalination journal homepage: www.elsevier.com/locate/desal Engineering advance Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives☆ Patricia Luis Materials & Process Engineering (iMMC-IMAP), Université catholique de Louvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium article info abstract Available online xxxx Recent research on CO2 capture is focusing on the optimization of CO2 absorption using amines (mainly monoethanolamine—MEA) in order to minimize the energy consumption of this very energy-intensive process Keywords: and improve the absorption efficiency. Process optimization is always required and this research is worth and CO2 absorption necessary. However, the main concern arises when thinking of the overall process: solvent production, solvent MEA use and regeneration, and environmental effects related to its use/emissions. The production of MEA from ammo- Amines nia involves important CO emissions during the Haber–Bosch process. The regeneration of the solvent after the Global demand 2 Alternative solvents absorption is also an indirect source of CO2 related to the use of fuels (i.e., combustion processes for energy Alternative technologies supply). Thus, the evaluation of the overall balance of CO2 emitted and captured is essential to determine the efficiency of the process. In addition, other environmental impacts associated to the toxicity and environmental fate of the solvent have to be considered. The use of MEA and other amines in CO2 capture is a point of concern and a global application does not seem to be the best strategy. -
APPENDIX G Acid Dissociation Constants
harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants § ϭ 0.1 M 0 ؍ (Ionic strength ( † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form. -
CO2 Utilization Via Integration of an Industrial Post-Combustion Capture Process with a Urea Plant: Process Modelling and Sensitivity Analysis
processes Article CO2 Utilization via Integration of an Industrial Post-Combustion Capture Process with a Urea Plant: Process Modelling and Sensitivity Analysis Reza Shirmohammadi 1 , Alireza Aslani 1,*, Roghayeh Ghasempour 1,* and Luis M. Romeo 2,* 1 Department of Renewable Energy and Environment, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1417466191, Iran; [email protected] or [email protected] 2 Departamento de Ingeniería Mecánica, Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza, María de Luna 3, 50018 Zaragoza, Spain * Correspondence: [email protected] (A.A.); [email protected] (R.G.); [email protected] (L.M.R.) Received: 6 August 2020; Accepted: 10 September 2020; Published: 13 September 2020 Abstract: Carbon capture and utilization (CCU) may offer a response to climate change mitigation from major industrial emitters. CCU can turn waste CO2 emissions into valuable products such as chemicals and fuels. Consequently, attention has been paid to petrochemical industries as one of the best options for CCU. The largest industrial CO2 removal monoethanol amine-based plant in Iran has been simulated with the aid of a chemical process simulator, i.e., Aspen HYSYS® v.10. The thermodynamic properties are calculated with the acid gas property package models, which are available in Aspen HYSYS®. The results of simulation are validated by the actual data provided by Kermanshah Petrochemical Industries Co. Results show that there is a good agreement between simulated results and real performance of the plant under different operational conditions. The main parameters such as capture efficiency in percent, the heat consumption in MJ/kg CO2 removed, and the working capacity of the plant are calculated as a function of inlet pressure and temperature of absorber column. -
TR-449: Triethanolamine (CASRN 102-71-6) in F344 Rats and B6c3f1mice (Inhalation Studies)
NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF TRIETHANOLAMINE (CAS NO. 102-71-6) IN F344/N RATS AND B6C3F1 MICE (DERMAL STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 November 1999 NTP TR 449 NIH Publication No. 00-3365 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. -
Experimental Study Into Carbon Dioxide Solubility and Species Distribution in Aqueous Alkanolamine Solutions
Air Pollution XX 515 Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions H. Yamada, T. Higashii, F. A. Chowdhury, K. Goto S. Kazama Research Institute of Innovative Technology for the Earth, Japan Abstract We investigated the solubility of CO2 in aqueous solutions of alkanolamines at 40C and 120C over CO2 partial pressures ranging from a few kPa to 100 kPa to evaluate the potential for CO2 capture from flue gas. CO2 capacities were compared between monoethanolamine, N-ethyl ethanolamine and N-isopropyl ethanolamine. Speciation analyses were conducted in the alkanolamine solutions 13 at different CO2 loadings by accurate quantitative C nuclear magnetic resonance spectroscopy. N-isopropyl ethanolamine showed a large capacity for CO2 because of the formation of bicarbonate. However, we also found that at a lower CO2 loading a significant amount of carbamate was present in the aqueous N-isopropyl ethanolamine solutions. Keywords: carbon capture, amine absorbent, CO2 solubility, vapour-liquid equilibrium, nuclear magnetic resonance. 1 Introduction Carbon capture and storage is of central importance for the reduction of anthropogenic CO2 emissions in the atmosphere. Amine scrubbing is the most promising and currently applicable technology used in an industrial scale for the capture of CO2 from a gas stream [1]. To maximise the capture efficiency and to reduce energy costs we previously developed CO2 capture systems and high performance CO2 absorbents [2–5]. Recently, we demonstrated that hindered amino alcohols for the promotion of CO2 capture can be developed by rational molecular design and by the placement of functional groups [4, 5]. For aqueous solutions of primary and secondary amines the CO2 absorption proceeds by the formation of a carbamate anion or a bicarbonate anion. -
Nitrosamines EMEA-H-A5(3)-1490
25 June 2020 EMA/369136/2020 Committee for Medicinal Products for Human Use (CHMP) Assessment report Procedure under Article 5(3) of Regulation EC (No) 726/2004 Nitrosamine impurities in human medicinal products Procedure number: EMEA/H/A-5(3)/1490 Note: Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ...................................................................................... 2 1. Information on the procedure ............................................................... 7 2. Scientific discussion .............................................................................. 7 2.1. Introduction......................................................................................................... 7 2.2. Quality and safety aspects ..................................................................................... 7 2.2.1. Root causes for presence of N-nitrosamines in medicinal products and measures to mitigate them............................................................................................................. 8 2.2.2. Presence and formation of N-nitrosamines -
Ethanolamines Storage Guide Dow Manufactures Ethanolamines for A
DSA9782.qxd 1/29/03 2:34 PM Page 1 DSA9782.qxd 1/29/03 2:34 PM Page 2 DSA9782.qxd 1/29/03 2:34 PM Page 3 Contents PAGE Introduction 2 Product Characteristics 3 Occupational Health 3 Reactivity 3 Oxidation 4 Liquid Thermal Stability 4 Materials of Construction 5 Pure Ethanolamines 5 Aqueous Ethanolamines 6 Gaskets and Elastomers 7 Transfer Hose 8 Preparation for Service 9 Thermal Insulation Materials 10 Typical Storage System 11 Tank and Line Heating 11 Drum Thawing 11 Special Considerations 14 Vent Freezing 14 Color Buildup in Traced Pipelines 14 Thermal Relief for Traced Lines 14 Product Unloading 15 Unloading System 15 Shipping Vessel Descriptions 16 General Unloading Procedure 17 Product Handling 18 Personal Protective Equipment 18 Firefighting 18 Equipment Cleanup 18 Product Shipment 19 Environmental Considerations 19 Product Safety 20 1 DSA9782.qxd 1/29/03 2:34 PM Page 4 Ethanolamines Storage and Handling The Dow Chemical Company manufactures high-quality ethanolamines for a wide variety of end uses. Proper storage and handling will help maintain the high quality of these products as they are delivered to you. This will enhance your ability to use these products safely in your processes and maximize performance in your finished products. Ethanolamines have unique reactivity and solvent properties which make them useful as intermediates for a wide variety of applications. As a group, they are viscous, water-soluble liquids. In their pure, as-delivered state, these materials are chemically stable and are not corrosive to the proper containers. Ethanolamines can freeze at ambient temperatures. -
Stable Lithium Diisopropylamide and Method of Preparation
Europaisches Patentamt J European Patent Office Publication number: 0 205 583 Office europeen des brevets B1 EUROPEAN PATENT SPECIFICATION (45) Date of publication of patent specification: 30.01.91 Intel.5: C 07 C 211/65 (3) Application number: 86900522.3 @ Date of filing: 17.12.85 (8) International application number: PCT/US85/02509 ® International publication number: WO 86/03744 03.07.86 Gazette 86/14 STABLE LITHIUM DIISOPROPYLAMIDE AND METHOD OF PREPARATION. (M) Priority: 24.12.84 US 685318 Proprietor: LITHIUM CORPORATION OF AMERICA, INC. Post Office Box 795 Date of publication of application: Bessemer City, NC 28016 (US) 30.12.86 Bulletin 86/52 Inventor: MORRISON, Robert, Charles Publication of the grant of the patent: 1946 Elmwood Drive 30.01.91 Bulletin 91/05 Gastonia, NC 28054 (US) Inventor: HALL, Randy, Winf red Route 4 Box 697 (M) Designated Contracting States: Kings Mountain, NC 28086 (US) AT BE CH DE FR GB IT LI LU NL SE Inventor: RATHMAN, Terry, Lee 3843 Gardner Park Drive Gastonia, NC 28054 (US) References cited: US-A-3197 516 US-A-3 694516 US-A-3388178 US-A-4 006187 Representative: Gore, Peter Manson et al US-A-3446 860 US-A-4399 078 W.P. THOMPSON & CO. Coopers Building Church Street JOURNAL OF ORGANOMETALLIC CHEMISTRY, Liverpool L1 3AB (GB) vol. 4, 1965; GILMAN et al.: "Stabilities of some n-alkyllithium compounds in mixed solvent CO I References cited: 00 systems", pp. 483-487 JOURNAL OF ORGANOMETTALIC CHEMISTRY, m JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 29, 1971; HONEYCUTT: "Kinetics of the in vol. -
Catalyst and Method for Production of Alkylamines
Europaisches Patentamt its; European Patent Office © Publication number: 0 127 874 Office europeen des brevets A2 (121 EUROPEAN PATENT APPLICATION © Application number: 84106136.9 © Int. CI.3: C 07 C 85/06 C 07 C 85/08, B 01 J 23/80 @ Date of filing: 29.05.84 © Priority: 01.06.83 US 500037 @ Applicant: LEHIGH UNIVERSITY 28.11.83 US 555579 203 East Parker Avenue Bethlehem, PA 18015(US) © Date of publication of application: @ Inventor: Klier, Kamil 12.12.84 Bulletin 84/50 3474 Lord Byron Drive Bethlehem PA 18017(US) © Designated Contracting States: BE DE FR GB NL @ Inventor: Herman, Richard G. 409 Fifth Street Whitehall PA 18052(US) @ Inventor: Vedage, Gamini A. 532 Carlton Avenue Bethlehem PA 18015IUS) © Representative: Berg, Wilhelm, Dr. et al, Patentanwalte Dr. Berg Dipl.-lng. Stapf Dipl.-lng. Schwabe Dr. Dr. Sandmair Postfach 86 02 45 Stuntzstrasse 16 D-8000 Munchen 86(DE) © Catalyst and method for production of alkylamines. This invention relates to an improved catalyst and method for the selective production of alkylamines. More particularly, it is concerned with the preparation of stable highly active catalysts for producing alkylamines by a cataly- tic reaction of ammonia or substituted amines and binary synthesis gas (CO + H2). Introduction This invention relates to an improved catalyst and method for the selective production of alkylamines. More particularly, it is concerned with the preparation of stable highly active catalysts for producing alkylamines by a catalytic reaction of ammonia, primary amines, or substituted amines and binary synthesis gas (CO + H2), or alcohols. Background of the Invention The preparation of methylamines of general formula (CH3)n NH3-n and (CH3)n NH2-nR occurs by the reactions depicted in equations (1) and (2).