Compilation of Chemical Kinetic Data for Combustion Chemistry. Part 2. Non-Aromatic C, H, O, N, and S Containing Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Compilation of Chemical Kinetic Data for Combustion Chemistry. Part 2. Non-Aromatic C, H, O, N, and S Containing Compounds v NBS PUBLICATIONS r A111D2 TBOmi NAT'L INST OF STANDARDS & TECH R.I.C. All 102730091 Westley, Francls/Compllatlon of chemical 2 QC100 .11573 NO. 73 V2;1987 C.2 NBS-PUB-C NSRDS-NBS 73, Part U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards 1 BB he National Bureau of Standards was established by an act of Congress on March 3, 1901. The Bureau’s overall M goal is to strengthen and advance the nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research to assure international competidveness and leadership of U.S. industry, science arid technology. NBS work involves development and transfer of measurements, standards and related science and technology, in support of continually improving U.S. productivity, product quality and reliability, innovation and underlying science and engineering. The Bureau’s technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering. The National Measurement Laboratory Provides the national system of physical and chemical measurement; • Basic Standards 2 coordinates the system with measurement systems of other nations and • Radiation Research furnishes essential services leading to accurate and uniform physical and • Chemical Physics chemical measurement throughout the Nation’s scientific community, • Analytical Chemistry industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; provides calibration services; and manages the National Standard Reference Data System. The Laboratory consists of the following centers: The National Engineering Laboratory Provides technology and technical services to the public and private sectors • Applied Mathematics to address national needs and to solve national problems; conducts research • Electronics and Electrical in engineering and applied science in support of these efforts; builds and Engineering 2 maintains competence in the necessary disciplines required to carry out this • Manufacturing Engineering research and technical service; develops engineering data and measurement • Building Technology capabilities; provides engineering measurement traceability services; • Fire Research develops test methods and proposes engineering standards and code • Chemical Engineering 3 changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers: The Institute for Computer Sciences and Technology Conducts research and provides scientific and technical services to aid • Information Systems Engineering Federal agencies in the selection, acquisition, application, and use of • Systems and Software computer technology to improve effectiveness and economy in Government Technology operations in accordance with Public Law 89-306 (40 U.S.C. 759), • Computer Security relevant Executive Orders, and other directives; carries out this mission by • Systems and Network managing the Federal Information Processing Standards Program, Architecture developing Federal ADP standards guidelines, and managing Federal • Advanced Computer Systems participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions: The Institute for Materials Science and Engineering Conducts research and provides measurements, data, standards, reference • Ceramics materials, quantitative understanding and other technical information • Fracture and Deformation 3 fundamental to the processing, structure, properties and performance of « Polymers materials; addresses the scientific basis for new advanced materials • Metallurgy technologies; plans research around cross-cutting scientific themes such as • Reactor Radiation nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Institute consists of the following Divisions: 'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Gaithersburg, MD 20899. 2 Some divisions within the center are located at Boulder, CO 80303. ^Located at Boulder, CO, with some elements at Gaithersburg, MD Research Information Center National Bureau of Standards Gaithersburg, Maryland 20899 Compilation of Chemical Kinetic AiBst Data for Combustion Chemistry. DUoo - u<is Part 2. Non-Aromatic C, H, O, N, and S no 13 Containing Compounds. (1983) V-t - y 14?7 Geo- Francis Westley, John T. Herron, and R. J. Cvetanovid chemical Kinetics Division Center for Chemical Physics National Bureau of Standards Gaithersburg, MD 20899 U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director Issued December 1987 Library of Congress Cataloging-in-Publication Data (Revised for VoL 2) Westley, Francis. Compilation of chemical kinetic data for combustion chemistry. (NSRDS-NBS; 73, pt. 1- ) Includes bibliographies and index. Contents: Pt. 1. Non-aromatic C, H, O, N, and S containing compounds (1971- 1982)— pt. 2. Non-aromatic C, H, O, N, and S containing compounds (1983). 1. Combustion — Tables. 2. Chemical reaction. Rate of— Tables. L Herron, John Thomas, 1931- EL CvetanoviC, Ratimir J. HI. Center for Chemical Physics (U.S.). Chemical Kinetics Division. IV. Title. V. Series: NSRDS-NBS ; 73, pt 1, etc. QC100.U573 no. 73 pL 1, etc. 602M8s 87-20244 [QD516] [541.3’6T0212] NSRDS-NBS 73, Part 2 Natl. Stand. Ret Data Ser., Natl. Bur. Stand. (U.S.), 73, Part 2, 142 pages (Dec. 1987) CODEN: NSRDAP © 1987 by the Secretary of Commerce on Behalf of the United States Government U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1987 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword The National Standard Reference Data System was established in 1963 for the purpose of pro- moting the critical evaluation and dissemination of numerical data of the physical sciences. The program is coordinated by the Office of Standard Reference Data of the National Bureau of Stan- dards but involves the efforts of many groups in universities, government laboratories, and private industry. The primary aim of the program is to provide compilations of critically evaluated physi- cal and chemical property data. These tables are published in the Journal of Physical and Chemical Reference Data, in the NSRDS-NBS series of the National Bureau of Standards, and through other appropriate channels. The task of critical evaluation is carried out in various data centers, each with a well-defined technical scope. A necessary preliminary step to the critical evaluation process is the retrieval from the world scientific literature of all papers falling within the scope of the center, followed by the extraction and organization of the numerical data contained in these papers. The present publication presents such a compilation of data prepared by the NBS Chemical Kinetics Data Center. Further information on NSRDS and the publications which form the primary output of the program may be obtained by writing to the Office of Standard Reference Data, National Bureau of Standards, Gaithersburg, MD 20899. David R. Lide, Jr., Director Office of Standard Reference Data III Contents 1. Introduction 1 1.1. Overview 1 1.2. Scope 1 1.3. Guide to the Table 2 1.3.1. General 2 1.3.2. Arrangement of the Table 2 1.3.3. Order of Reactions 2 L3.4. Chemical Formulas and Nomenclature 2 1.4. Acknowledgments 2 1.5. References to the Introduction 2 2. Summary of Symbols and Units 2 3. Index of Reactions 4 4. Table of Chemical Kinetic Data for Combustion Chemistry 18 5. References to the Table 127 6. Conversion Factors for Rate Constants 133 7. Erratum to NSRDS-NBS 73, Part 1 134 IV Compilation of Chemical Kinetic Data for Combustion Chemistry. Part 2. Non-Aromatic C, H, O y N, and S Containing Compounds. (1983) Francis Westley, John T. Herron, and R. J. CvetanovIC Chemical Kinetics Division, Center for Chemical Physics, National Bureau of Standards, Gaithersburg, MD. 20899 Chemical kinetic data for reactions of importance in combustion chemistry are compiled. Experimental, theoretical, evaluated, or estimated rate constants are given for reactions of O, H, OH, H N, NO, NH, 03 , H2 , H02 , 20, N 3 , N02 , N 20, NH2 , SH, HzS, SO, S02 , and the aliphatic, alicyclic, and heterocyclic saturated and unsaturated Q to Cu hydrocarbons, alcohols, aldehydes, ketones, thiols, ethers, peroxides, amines, amides, and their free radicals. The data were taken from the literature published in 1983. Data omitted from Part 1 of this series, covering the period 1971 to 1982, are also included. The data are reported as rate constants or in terms of the parameters n and B of the extended Arrhenius expression k — A , , A(T /298)" x exp(— B IT), where B = E /R. Data are given for 434 reactions. Key words: Arrhenius parameters; carbon; chemical kinetics; combustion; compilation; free radicals; gas 1.1. phase; hydrocarbons; hydrogen; nitrogen;
Recommended publications
  • High-Resolution Infrared Spectroscopy: Jet-Cooled Halogenated Methyl Radicals and Reactive Scattering Dynamics in an Atom + Polyatom System
    HIGH-RESOLUTION INFRARED SPECTROSCOPY: JET-COOLED HALOGENATED METHYL RADICALS AND REACTIVE SCATTERING DYNAMICS IN AN ATOM + POLYATOM SYSTEM by ERIN SUE WHITNEY B.A., Williams College, 1996 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2006 UMI Number: 3207681 Copyright 2006 by Whitney, Erin Sue All rights reserved. UMI Microform 3207681 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 This thesis for the Doctor of Philosophy degree entitled: High resolution infrared spectroscopy: Jet cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatom system written by Erin Sue Whitney has been approved for the Department of Chemistry and Biochemistry by David J. Nesbitt Veronica M. Bierbaum Date ii Whitney, Erin S. (Ph.D., Chemistry) High-Resolution Infrared Spectroscopy: Jet-cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatomic system Thesis directed by Professor David J. Nesbitt. This thesis describes a series of projects whose common theme comprises the structure and internal energy distribution of gas-phase radicals. In the first two projects, shot noise-limited direct absorption spectroscopy is combined with long path-length slit supersonic discharges to obtain first high-resolution infrared spectra for jet-cooled CH2F and CH2Cl in the symmetric and antisymmetric CH2 stretching modes.
    [Show full text]
  • Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter
    EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter EPA 454/B-18-008 August 2018 EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter 9/1/2018 Informational Document This informational document describes the emerging technologies that can measure and/or identify pollutants using state of the science techniques Forward Optical Remote Sensing (ORS) technologies have been available since the late 1980s. In the early days of this technology, there were many who saw the potential of these new instruments for environmental measurements and how this technology could be integrated into emissions and ambient air monitoring for the measurement of flux. However, the monitoring community did not embrace ORS as quickly as anticipated. Several factors contributing to delayed ORS use were: • Cost: The cost of these instruments made it prohibitive to purchase, operate and maintain. • Utility: Since these instruments were perceived as “black boxes.” Many instrument specialists were wary of how they worked and how the instruments generated the values. • Ease of use: Many of the early instruments required a well-trained spectroscopist who would have to spend a large amount of time to setup, operate, collect, validate and verify the data. • Data Utilization: Results from path integrated units were different from point source data which presented challenges for data use and interpretation.
    [Show full text]
  • Bimolecular Reaction Dynamics in the Phenyl - Silane System
    Bimolecular Reaction Dynamics in the Phenyl - Silane System: Exploring the Prototype of a Radical Substitution Mechanism 1 1 1 1 2 Michael Lucas , Aaron M. Thomas , Tao Yang , Ralf I. Kaiser *, Alexander M. Mebel , Diptarka Hait3, Martin Head-Gordon3,4* 1 Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI 96822 2 Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 3 Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720 4 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 *Email: [email protected] *Email: [email protected] Abstract We present a combined experimental and theoretical investigation of the bimolecular gas phase reaction of the phenyl radical (C6H5) with silane (SiH4) under single collision conditions to investigate the chemical dynamics of forming phenylsilane (C6H5SiH3) via a bimolecular radical substitution mechanism at a tetra-coordinated silicon atom. Verified by electronic structure and quasiclassical trajectory calculations, the replacement of a single carbon atom in methane by silicon lowers the barrier to substitution thus defying conventional wisdom that tetra-coordinated hydrides undergo preferentially hydrogen abstraction. This reaction mechanism provides funda- mental insights into the hitherto unexplored gas phase chemical dynamics of radical substitution reactions of mononuclear main group hydrides under single collision conditions and highlights
    [Show full text]
  • Depa1'tment of Physical Chemistry Isl'ael
    .. ANNUAL PROGRESS REPORT C00-3221-67 (For the period September 79 - July 80) Under Contract No. DOE/EV/03221 on THE NATURE OF OXYGEN CONTAINING RADICALS IN RADIATION CHEMISTRY AND PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS Submitted by PROFESSOR GIDON CZAPSKI Depa1'tment of Physical Chemistry The Hebl'eW Univel'sity~ Jerusalem~ Isl'ael IJISTRIBUTIOJI OF THIS DOCUMENT IS UNUMITEJJ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ANNUAL PROGRESS REPORT C00-3221-67 (For the period September 79 - July 80) Und~r Contract No. DOE/EV/03221·· on THE NATURE OF OXYGEN CONTAINING RADICALS IN RADIATION CHEMISTRY AND PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS Submitted by PROFESSOR GIDON CZAPSKI lh~s book was ~repared as an account of work sponsored by an agency of the United States Government :!:~; the ~~•ted Stat~ ~nment nor any agency thereof, nor any of their employees, makes an~ v.
    [Show full text]
  • Preparation and Purification of Atmospherically Relevant Α
    Atmos. Chem. Phys., 20, 4241–4254, 2020 https://doi.org/10.5194/acp-20-4241-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Technical note: Preparation and purification of atmospherically relevant α-hydroxynitrate esters of monoterpenes Elena Ali McKnight, Nicole P. Kretekos, Demi Owusu, and Rebecca Lyn LaLonde Chemistry Department, Reed College, Portland, OR 97202, USA Correspondence: Rebecca Lyn LaLonde ([email protected]) Received: 31 July 2019 – Discussion started: 6 August 2019 Revised: 8 December 2019 – Accepted: 20 January 2020 – Published: 9 April 2020 Abstract. Organic nitrate esters are key products of terpene oxidation in the atmosphere. We report here the preparation and purification of nine nitrate esters derived from (C)-3- carene, limonene, α-pinene, β-pinene and perillic alcohol. The availability of these compounds will enable detailed investigations into the structure–reactivity relationships of aerosol formation and processing and will allow individual investigations into aqueous-phase reactions of organic nitrate esters. Figure 1. Two hydroxynitrate esters with available spectral data. Relative stereochemistry is undefined. 1 Introduction derived ON is difficult, particularly due to partitioning into the aerosol phase in which hydrolysis and other reactivity Biogenic volatile organic compound (BVOC) emissions ac- can occur (Bleier and Elrod, 2013; Rindelaub et al., 2014, count for ∼ 88 % of non-methane VOC emissions. Of the to- 2015; Romonosky et al., 2015; Thomas et al., 2016). Hydrol- tal BVOC estimated by the Model of Emission of Gases and ysis reactions of nitrate esters of isoprene have been stud- Aerosols from Nature version 2.1 (MEGAN2.1), isoprene is ied directly (Jacobs et al., 2014) and the hydrolysis of ON estimated to comprise half, and methanol, ethanol, acetalde- has been studied in bulk (Baker and Easty, 1950).
    [Show full text]
  • A Photoionization Reflectron Time‐Of‐Flight Mass Spectrometric
    Articles ChemPhysChem doi.org/10.1002/cphc.202100064 A Photoionization Reflectron Time-of-Flight Mass Spectrometric Study on the Detection of Ethynamine (HCCNH2) and 2H-Azirine (c-H2CCHN) Andrew M. Turner,[a, b] Sankhabrata Chandra,[a, b] Ryan C. Fortenberry,*[c] and Ralf I. Kaiser*[a, b] Ices of acetylene (C2H2) and ammonia (NH3) were irradiated with 9.80 eV, and 10.49 eV were utilized to discriminate isomers energetic electrons to simulate interstellar ices processed by based on their known ionization energies. Results indicate the galactic cosmic rays in order to investigate the formation of formation of ethynamine (HCCNH2) and 2H-azirine (c-H2CCHN) C2H3N isomers. Supported by quantum chemical calculations, in the irradiated C2H2:NH3 ices, and the energetics of their experiments detected product molecules as they sublime from formation mechanisms are discussed. These findings suggest the ices using photoionization reflectron time-of-flight mass that these two isomers can form in interstellar ices and, upon spectrometry (PI-ReTOF-MS). Isotopically-labeled ices confirmed sublimation during the hot core phase, could be detected using the C2H3N assignments while photon energies of 8.81 eV, radio astronomy. 1. Introduction acetonitrile (CH3CN; 1) and methyl isocyanide (CH3NC; 2) ‘isomer doublet’ (Figure 2) – the methyl-substituted counterparts of For the last decade, the elucidation of the fundamental reaction hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) – has pathways leading to structural isomers – molecules with the been detected toward the star-forming region SgrB2.[4,8–9] same molecular formula, but distinct connectivities of atoms – However, none of their higher energy isomers has ever been of complex organic molecules (COMs) in the interstellar identified in any astronomical environment: 2H-azirine (c- [10–14] [15–19] medium (ISM) has received considerable interest from the NCHCH2; 3), ethynamine (HCCNH2; 4), ketenimine [1–3] [20] [21] astrochemistry and physical chemistry communities.
    [Show full text]
  • A Study of Organosilicon Free Radicals Jay Stephen Curtice Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 A study of organosilicon free radicals Jay Stephen Curtice Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Curtice, Jay Stephen, "A study of organosilicon free radicals " (1954). Retrospective Theses and Dissertations. 13411. https://lib.dr.iastate.edu/rtd/13411 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A STUDY OF ORGANOSILICON FREE RADICALS by Jay Stephen Curtice A Dissertation Sul»nitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Organic Chemistry Approved; Signature was redacted for privacy. Signature was redacted for privacy. In CJiiarge of Major Work Signature was redacted for privacy. Head of Major DepartMnt Signature was redacted for privacy. Dean of Graduate College Iowa State College 195^ UMI Number: DP12662 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Volatile Organic Compound Production in Synechococcus WH8102
    Volatile Organic Compound Production in Synechococcus WH8102 by Duncan Ocel A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Chemistry and Botany (Honors Scholar) Presented May 21, 2018 Commencement June 2018 2 3 AN ABSTRACT OF THE THESIS OF Duncan Ocel for the degree of Honors Baccalaureate of Science in Chemistry and Botany presented on May 21, 2018. Title: Volatile Organic Compound Production in Synechococcus WH8102. Abstract approved:_____________________________________________________ Kimberly Halsey High-resolution mass spectrometry was used to measure a range of volatile organic compounds (VOCs) in real time as they were produced by the ubiquitous marine cyanobacterium Synechococcus WH8102 during a 24-hour light/dark cycle. Ethenone, acetaldehyde, ethanol, isoprene, acetic acid, dimethyl sulfide (DMS), acetone, phenol, and several as-yet unidentified compounds were measured in higher concentration in live cultures than in azide-killed cultures or sterile artificial seawater. Several compounds were found in higher concentration in the daylight part of the diel cycle than in the night, suggesting VOCs are produced during active photosynthesis. Key Words: phytoplankton, volatile organic compounds, Synechococcus, acetaldehyde, dimethyl sulfide Corresponding e-mail address: [email protected] 4 ©Copyright by Duncan Ocel May 21,2018 All Rights Reserved 5 Volatile Organic Compound Production in Synechococcus WH8102 by Duncan Ocel A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Chemistry and Botany (Honors Scholar) Presented May 21, 2018 Commencement June 2018 6 Honors Baccalaureate of Science in Chemistry and Botany project of Duncan Ocel presented on May 21, 2018.
    [Show full text]
  • Estimation Of'hetrazan'in Body Fluids
    No. 4183 December 31, 1949 NATURE II 35 strated by a coupled oxidation of alcohol in the blank value of about 1 (J.gm.fml. Further, trichlor­ presence of catalase6 • As an artificial ascorbic oxidase acetic acid precipitation removes about 20 per cent it had a Qo8 ((.Ll. oxygen per mgm. dry weight per hr.) of added 'Hetrazan'. Therefore, although it may at pH 7·2 and 39° C. of about 10,000. Hydrogen be more tedious, it is preferable to extract serum or cyanide inhibited this catalysed oxidation of ascorbic plasma. acid by combining with modified ferricytochrome c, Urines show a blank value of about 5 flgm.fml., thus preventing its reduction, while carbon monoxide, but occasionally, in concentrated urines, the blank by combining with modified ferrocytochrome c, may reach 20 vgm.jml. prevented its oxidation. The carbon monoxide The method is sufficiently sensitive to measure a inhibition was somewhat light-sensitive. This reaction blood concentration of 'Hetrazan' of 1 (J.gm.jml. Like was also inhibited by methyl isocyanide and nitroso­ most of these methods, it lacks specificity, but has benzene. Modified cytochrome c also catalysed the been found useful in following the concentration jn decomposition of hydrogen peroxide, being itself blood and urine after oral administration of the drug. destroyed in this reaction. Cyanide inhibited this A full account of the results of these experiments catalysed decomposition of hydrogen peroxide. will be published later. Typically, ingestion of The result of this experiment agrees with an 10 mgm.jkgm. body-weight of the hydrochloride observation of Keilin and Hartrees that when cyto­ results in a maximum plasma concentration of about chrome c is made autoxidizable it loses its catalytical 5-7 [lgm.jml., reached in three hours.
    [Show full text]
  • Interferometric Observations of Large Biologically Interesting Interstellar and Cometary Molecules
    SPECIAL FEATURE: PERSPECTIVE Interferometric observations of large biologically interesting interstellar and cometary molecules Lewis E. Snyder* Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 Edited by William Klemperer, Harvard University, Cambridge, MA, and approved May 26, 2006 (received for review March 3, 2006) Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have sub- stantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled ‘‘biomolecules.’’ Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated inter- stellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to under- standing hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from obser- vations with the next generation of sensitive, high-resolution arrays.
    [Show full text]
  • Synthesis of Phosphine-Functionalized Metal
    DISS. ETH NO. 23507 Understanding and improving gold-catalyzed formic acid decomposition for application in the SCR process A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MANASA SRIDHAR M. Sc. in Chemical Engineering, University of Cincinnati born on 12.12.1987 citizen of India accepted on the recommendation of Prof. Dr. Jeroen A. van Bokhoven, examiner Prof. Dr. Oliver Kröcher, co-examiner Prof. Dr. Christoph Müller, co-examiner 2016 “anything can happen, in spite of what you’re pretty sure should happen.” Richard Feynman Table of content Abstract .............................................................................................................................. II die Zusammenfassung ..................................................................................................... VI Chapter 1 Introduction .......................................................................................................... 1 Chapter 2 Methods ............................................................................................................ 15 Chapter 3 Unique selectivity of Au/TiO2 for ammonium formate decomposition under SCR- relevant conditions ............................................................................................................. 25 Chapter 4 Effect of ammonia on the decomposition of ammonium formate and formic acid on Au/TiO2 .............................................................................................................................
    [Show full text]