<<

v NBS PUBLICATIONS r A111D2 TBOmi

NAT'L INST OF STANDARDS & TECH R.I.C.

All 102730091 Westley, Francls/Compllatlon of chemical 2 QC100 .11573 NO. 73 V2;1987 C.2 NBS-PUB-C NSRDS-NBS 73, Part

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards 1 BB he National Bureau of Standards was established by an act of Congress on March 3, 1901. The Bureau’s overall M goal is to strengthen and advance the nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research to assure international competidveness and leadership of U.S. industry, science arid technology. NBS work involves development and transfer of measurements, standards and related science and technology, in support of continually improving U.S. productivity, product quality and reliability, innovation and underlying science and engineering. The Bureau’s technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; • Basic Standards 2 coordinates the system with measurement systems of other nations and • Radiation Research furnishes essential services leading to accurate and uniform physical and • Chemical Physics chemical measurement throughout the Nation’s scientific community, • Analytical Chemistry industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; provides calibration services; and manages the National Standard Reference Data System. The Laboratory consists of the following centers:

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors • Applied Mathematics to address national needs and to solve national problems; conducts research • Electronics and Electrical in engineering and applied science in support of these efforts; builds and Engineering 2 maintains competence in the necessary disciplines required to carry out this • Manufacturing Engineering research and technical service; develops engineering data and measurement • Building Technology capabilities; provides engineering measurement traceability services; • Fire Research develops test methods and proposes engineering standards and code • Chemical Engineering 3 changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid • Information Systems Engineering Federal agencies in the selection, acquisition, application, and use of • Systems and Software computer technology to improve effectiveness and economy in Government Technology operations in accordance with Public Law 89-306 (40 U.S.C. 759), • Computer Security relevant Executive Orders, and other directives; carries out this mission by • Systems and Network managing the Federal Information Processing Standards Program, Architecture developing Federal ADP standards guidelines, and managing Federal • Advanced Computer Systems participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions:

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference • Ceramics materials, quantitative understanding and other technical information • Fracture and Deformation 3 fundamental to the processing, structure, properties and performance of « materials; addresses the scientific basis for new advanced materials • Metallurgy technologies; plans research around cross-cutting scientific themes such as • Reactor Radiation nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Institute consists of the following Divisions:

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Gaithersburg, MD 20899. 2 Some divisions within the center are located at Boulder, CO 80303. ^Located at Boulder, CO, with some elements at Gaithersburg, MD Research Information Center National Bureau of Standards Gaithersburg, Maryland 20899 Compilation of Chemical Kinetic AiBst Data for Chemistry. DUoo - u

Containing Compounds. (1983) V-t - y 14?7 Geo- Francis Westley, John T. Herron, and R. J. Cvetanovid

chemical Kinetics Division Center for Chemical Physics National Bureau of Standards Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued December 1987 Library of Congress Cataloging-in-Publication Data (Revised for VoL 2)

Westley, Francis. Compilation of chemical kinetic data for combustion chemistry.

(NSRDS-NBS; 73, pt. 1- ) Includes bibliographies and index.

Contents: Pt. 1. Non-aromatic C, H, O, N, and S containing compounds (1971- 1982)— pt. 2. Non-aromatic C, H, O, N, and S containing compounds (1983).

1. Combustion — Tables. 2. . Rate of— Tables. L Herron, John Thomas, 1931-

EL CvetanoviC, Ratimir J. HI. Center for Chemical Physics (U.S.). Chemical Kinetics Division. IV. Title.

V. Series: NSRDS-NBS ; 73, pt 1, etc.

QC100.U573 no. 73 pL 1, etc. 602M8s 87-20244

[QD516] [541.3’6T0212]

NSRDS-NBS 73, Part 2

Natl. Stand. Ret Data Ser., Natl. Bur. Stand. (U.S.), 73, Part 2, 142 pages (Dec. 1987) CODEN: NSRDAP

© 1987 by the Secretary of Commerce on Behalf of the United States Government

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1987

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword

The National Standard Reference Data System was established in 1963 for the purpose of pro- moting the critical evaluation and dissemination of numerical data of the physical sciences. The program is coordinated by the Office of Standard Reference Data of the National Bureau of Stan- dards but involves the efforts of many groups in universities, government laboratories, and private industry. The primary aim of the program is to provide compilations of critically evaluated physi- cal and chemical property data. These tables are published in the Journal of Physical and Chemical Reference Data, in the NSRDS-NBS series of the National Bureau of Standards, and through other appropriate channels.

The task of critical evaluation is carried out in various data centers, each with a well-defined technical scope. A necessary preliminary step to the critical evaluation process is the retrieval from the world scientific literature of all papers falling within the scope of the center, followed by the extraction and organization of the numerical data contained in these papers. The present publication presents such a compilation of data prepared by the NBS Chemical Kinetics Data Center. Further information on NSRDS and the publications which form the primary output of the program may be obtained by writing to the Office of Standard Reference Data, National Bureau of Standards, Gaithersburg, MD 20899.

David R. Lide, Jr., Director Office of Standard Reference Data

III Contents

1. Introduction 1 1.1. Overview 1 1.2. Scope 1 1.3. Guide to the Table 2 1.3.1. General 2 1.3.2. Arrangement of the Table 2 1.3.3. Order of Reactions 2 L3.4. Chemical Formulas and Nomenclature 2 1.4. Acknowledgments 2 1.5. References to the Introduction 2 2. Summary of Symbols and Units 2 3. Index of Reactions 4 4. Table of Chemical Kinetic Data for Combustion Chemistry 18 5. References to the Table 127 6. Conversion Factors for Rate Constants 133 7. Erratum to NSRDS-NBS 73, Part 1 134

IV Compilation of Chemical Kinetic Data for Combustion Chemistry.

Part 2. Non-Aromatic C, H, O y N, and S Containing Compounds. (1983)

Francis Westley, John T. Herron, and R. J. CvetanovIC

Chemical Kinetics Division, Center for Chemical Physics, National Bureau of Standards, Gaithersburg, MD. 20899

Chemical kinetic data for reactions of importance in combustion chemistry are compiled. Experimental, theoretical, evaluated, or estimated rate constants are given for reactions of O, H, OH, H N, NO, NH, 03 , H2 , H02 , 20, N 3 , N02 , N 20,

NH2 , SH, HzS, SO, S02 , and the aliphatic, alicyclic, and heterocyclic saturated and unsaturated Q to Cu , alcohols, aldehydes, ketones, thiols, ethers, peroxides, , amides, and their free radicals. The data were taken from the literature published in 1983. Data omitted from Part 1 of this series, covering the period 1971 to 1982, are also included. The data are reported as rate constants or in terms of the parameters n and B of the extended Arrhenius expression k — A , , A(T /298)" x exp(— B IT), where B = E /R. Data are given for 434 reactions.

Key words: Arrhenius parameters; ; chemical kinetics; combustion; compilation; free radicals; gas 1.1. phase; hydrocarbons; ; ; ; rate of reaction; . 1.3.

1. Introduction sure, nature of the third body, and the type of data (i. e., experimental, theoretical, estimated, etc.) are also pro- OvarvSsw vided.

This report provides a compilation of chemical ki- Quid® to th® Tab!® netic data for use by modelers, experimentalists, and theo- 1.3.1. Genera! reticians interested in developing a detailed understanding 1.2. of gas phase combustion processes involving fossil fuels. It The compilation is divided into two parts — a table of is part of a larger effort to develop a comprehensive eval- rate constants and a bibliography, which contains the ref- uated chemical kinetic data base, and is a necessary pre- erences to the cited literature. The following describes the lude to that effort. The present compilation covers the arrangement of the table with respect to contents and the literature published in 1983. It supplements the recently order in which reactions are listed. issued compilation which covered the literature from 1971 1 to 1982 . 1.3.2. Arrangement of the Table

Scop® The table is arranged in eight columns. These list the chemical reaction, the data type, the temperature, the rate Data are given for the reactions of aliphatic, alicyclic, constant or the Arrhenius A factor, the n factor, the B and heterocyclic, saturated and unsaturated hydrocarbons factor where B - E /R, a term indicating the appropriate and their derivatives, and for the reactions with inorganic units for the rate constants, and an error factor. Other species containing hydrogen, oxygen, nitrogen, and sulfur necessary information such as the bibliographic citation, with themselves and with hydrocarbons and their pressure and nature of bath gas, and notes on methodol- derivatives. Not included are reactions involving aromatic ogy or other factors is given in the same column as the species, halogens, halogen derivatives, , and, with few chemical reaction. A detailed description follows: exceptions, excited states.

The data have been abstracted from the literature pub- (1) Column 1 gives the chemical reaction. The names of lished in 1983. Data omitted from Part 1 of this series the reactants given are the Chemical Abstracts Standard covering the period 1971 to 1982, are also included. Names. Synonyms, enclosed in parentheses, are in some Only publications containing numerical data have been cases also given. Product names are given only in those abstracted. The abstracted data are either rate constants at cases in which the product is a bridged compound. some given temperature or the parameters^, n, and B of The bibliographic citation is given in the form of a Ref- the extended Arrhenius expression k = A(T /298)" x erence Code, which consists of the last two digits of the exp{—B IT). Additional data on temperature range, pres- year of publication, followed by the first three letters

1 .

of the names of the first and second author (if present) Index of reactions given in Sec. 3 follows the same or- separated by a slash. An integer index is attached at the der of arrangement and can be used to find the page end when it is necessary to differentiate between other- where a particular reaction is located in the Table of wise identical Codes. Chemical Kinetic Data for Combustion Chemistry. The

This column may also include information on the exper- reaction of with oxygen atoms, for example, is imental method, analytical procedures, nature of the third located at its proper place in the “O ATOM Reactions” at body, pressure, identity of reference reaction in the case the beginning of the Index, since O atom (the O system) of relative rate measurements, or other comments. precedes ethylene (the C system).

(2) Column 2 indicates the type of data. Data type codes 1.3.4. Chemical Formulas and Nomenclature are described in Sec. 2.

(3) Column 3 gives the temperature or temperature Where possible, chemical formulas are written in semi- range. structural form. The following conventions are used:

(4) Column 4 lists the rate constant or the Arrhenius A (1) For Ci through Q saturated hydrocarbons and their factor, or the ratio of the rate constants. O, S, and N derivatives, semi-structural formulas are

used, e.g., (CH3)2CH2 CH2ONO. Beyond C5 the con-

(5) Col umn 5 gives the factor n for the extended Arrhe- densed forms are used, e.g., CH3(CH2) 8 CH2 CN. nius expression k — A(T /298)"exp(— B IT). (2) Unsaturated compounds are written to show the po- (6) Column 6 gives the parameter B for the extended sition of the double or triple bond, e.g.,

Arrhenius expression/: = A(r/298)"exp(— BIT), where ch2 =c=ch2 . B is the Arrhenius activation energy divided by the gas constant, i.e., B — E /R In the case of relative rate mea- (3) The structures of all alicyclic and heterocyclic com- surements the quantity reported is the difference pounds are specified with figures in the text. B —B (ref), where# (ref) is the value of B for the reference reaction. 1.4. Acknowledgments

(7) Column 7 indicates the units of the rate constant or the Arrhenius A factor. This work was supported by the Department of En- ergy, Division of Basic Energy Sciences and the Office of

(8) Column 8 gives the error factor as reported in the Standard Reference Data of the National Bureau of Stan- original work. dards. The authors are especially indebted to Mrs. Geraldine Zumwalt and Ms. Rhoda Levin for their atten- tion to many details in the keyboarding, editing and prepa- ration of the manuscript. 1.3.3. Order of Reactions

1.5. References to the Introduction The reactions are listed following the order of arrange-

! ment given in Table 1 of “The NBS Tables of Thermody- F. Westley, J. T. Herron, and R. J. CvetanoviC “Compilation of namic Properties”.2 In the present compilation the Chemical Kinetic Data for Combustion Chemistry. Part 1. Non-Aro- matic C, H, O, N, and S Containing Compounds. (1971-1982)”, reactants contain any of the elements O, H, S, N, and C, NSRDS-NBS 73, Part 1, U. S. Government Printing Office, Washing- and the order used is: system, H-O system, S-O-H sys- O ton, D.C. 20402, (1987). 2 tem, N-O-H-S system, and C-O-H-S-N system. Examples D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, of the ordering of reactant species are given below: S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).

(1) O system: O, O* 03 2. Summary of Symbols and Units

(2) H-O system: H, H* OH, H02 , H20, H202 Data Type Codes: S-O-H system: S, S SO, S0 S0 SH, H S EX (experimentally measured absolute value) (3) 2, 2, 3, 2 RL (experimentally measured relative value) N-O-H-S system: N, RN (RL normalized to absolute value) N0 N N , (4) N2, NOz, 3 , 20, 203 NH, etc. TH (theoretical value) DE (derived indirectly, e.g. using reverse rate and constant, or computer simulation of a (5) C-O-H-S-N system: C, CO, CO* CH, CH2, CH3, equilibrium CH4, etc. complex mechanism)

2 CO (computed numerically) Unit Codes for k, k Ik (ref), A, A IA (ref): 1 ES (estimated, by analogy etc) 1 (s" ) 3 1 1 SE (selected in the literature as probable “best” 2 (cm mol" s" ) 6 2 1 value) 3 (cm mol" s" ) 1/1, 2/2 etc. (dimensionless) 3 1 2/1 (cm mol" ), etc.

Type of excitation: (T /298) and n [the exponent of (T /298)] are dimension- f (vibrationally excited) less. * (electronically excited) Units for B, B— B (ref): kelvins (K). (Activation energy E =RxB). 11 Decadic exponent notation: 1.2(11) (stands for 1.2 x 10 ) k (ref), A (ref) and B (ref) are the values for the “reference reaction” in relative Temperature (T ): in kelvins (K). rate determinations.

k err. factor: Estimated overall Uncertainty Factor. It multiplies and divides k otA to indicate approximate error Arrhenius parameters are defined by limits. It does not imply that errors in k are necessarily k =A(T /298)"exp(— 5 IT). lognormally distributed.

3 3. Index of Reactions

0 ATOM Reactions:

0 + 0 3 18 0 + H 2 18 0 + OH 18

0 + H0 2 18 0 + H 2 0 2 19 0 + NO (+ M) 19 0 + NH 20

0 + NH 2 20 0 + HNO 20 0 + CHO 20 0 + HCHO 20

O + CH 3 0N0 2 21 O + CH=CH 21

O + CH 2 =CH 2 21 0 + CH 2 =C=0 22 0 + CH 3 CH 2 0N0 2 22 O + CH 3 C=CH 22 O + CH 3 CH=C=0 23 O + CH^COCH 23

0 + CH 2 =CHC^CH 23 0 + CH 3 CH 2 C=CH 23 0 + CH 3 CH 2 CH=C=0 24 0 + (CH 3 ) 2 C=C=0 24 0 + CH 3 CH 2 CH 2 CH 2 OH 24

0 + CH 3 CH 2 CH(OH)CH 3 25 0 + (CH 3 ) 2 CHCH 2 OH 25 0 + (CH 3 ) 3 COH 25

0 3 Reactions:

0 3 + SO 25 0 3 + OCHCHO 26 0 3 + CH 3 C(0)0N0 2 26 0 3 + CH 3 C(0)CH0 26 0 3 + cis-CH 3 CH=CHCH 3 26 0 3 + cy - CH=CHCH=CH0 (Furan) 26 0 3 + cy - CH=CHCH=CHS (Thiophene) 26

O 3 + cy-C 5 Hg (Cyclopentene) 27

0 3 + cy-CH=CHCH=CHCH 2 CH 2 (1 , 3-Cyclohexadiene) 27

0 3 + cy-CH=CHCH 2 CH=CHCH 2 ( 1 , 4- Cyclohexadiene) 27 0 3 + cy-CH=CH(CH 2 )4 (Cyclohexene) 27

4 2

V

5 O 3 + bicy-CyHg Bicyclo [ 2 . 2 . 1 ]hepta- 2 , -diene

(2 , 5-Norbornadiene) .... 27 2 O 3 + bicy-CyHpo Bicyclo [ 2 . 2 . 1 ]hept- -ene (2-Norbornene) .... 28 O 3 + cy-CyHp2 (Cycloheptene) 28

O bicy-CgH (Bicyclo 2 . 2 . oct- 2 -en) 28 3 + ^2 [ ]

H ATOM Reactions:

H + 0 2 (+ M) 28 H + H0 2 28 H + SH 29 H + HN3 29 H + CO (+ M) 29

H + CH 2 29 H + CHO 30 H + HCHO 30

H + CH 3 SH 30 H + CH 3 NH 2 30 H + C 2 0 30 H + CH 2 =CH 2 (+ M) 31 H + CH 3 CH 3 31 H + cy-CH 2 CH 2 0 (Oxirane) 31 H + 0=C=C=C=0 32

H + C 3 H 3 (1-Propynyl, or 2-Propynyl, or 1 , 2-Propadienyl) 32 H + CH=CC=CH 32

H + CH 3 CH 2 CH=CH 2 32 D + CH 3 CH 2 CH=CH 2 32 H + cis-CH 3 CH=CHCH 3 33 D + cis-CH 3 CH=CHCH 3 33

H + trans-CH 3 CH=CHCH 3 33 D + trans-CH 3 CH=CHCH 3 33

H + (CH 3 ) 2 C=CH 2 (+ M) 33 D + (CH 3 ) 2 C=CH 2 34 H + C 6 H 5 CH 2 34

H 2 Reactions:

H 2 + C 2 O 34

OH Reactions:

OH + H0 2 34 OH + H 2 0 2 34 OH + S0 2 (+ M) 35 OH + NO (+ M) 35

OH + N0 2 (+ M) 36 OH + CO 36 OH + CH4 36 OH + CHO 36

5 OH + HCHO 37

OH + CH 3 OH 37 OH + CH 3 OOH 37 OH + CS 2 38 OH + CH 3 SH 38

OH + CH 3 ONO . 38 OH + CH=CH 39

OH + CH 2 =CH 2 39 OH + CH 3 CH 3 39 OH + OCHCHO 39

SH + CH 3 CH 2 SH 40

OH + (CH 3 ) 2 S 40 OH + 0=C=C=C=0 40

OH + CH 2 =C=CH 2 40 OH + CH 3 CH=CH 2 40

OH + CH 3 CH 2 CH 3 41 OH + CH 2 =CHCHO 41

OH + CH 3 C(0)CH0 42

OH + (CH 3 ) 2 CO 42

OH + CH 2 =CHCH=CH 2 . 42 - OH + trans CH 3 CH=CHCH 3 42

OH + CH 3 CH 2 CH 2 CH 3 43 OH + cy-CH=CHCH=CHO (Furan) 43

OH + CH 3 CH=CHCHO 43 OH + CH 2 =C(CH 3 )CHO 43 OH + CH 3 C(0)CH=CH 2 44 OH + cy-CH=CHCH=CHS (Thiophene) 44

OH + CH 2 =C=CHCH 2 CH 3 45 OH + cis - CH 2 =CHCH=CHCH 3 45 OH + CH 2 =CHCH 2 CH=CH 2 45

OH + CH 2 =C=C(CH 3 ) 2 45 OH + CH 2 =C(CH 3 )CH=CH 2 46 OH + cy-CH=CHCH 2 CH 2 CH 2 (Cyclopentene) 46

OH + trans -CH 3 CH=CHCH 2 CH 3 46

OH + (CH 3 ) 2 C=CHCH 3 46 3 OH + cy-CH=CHCH=CHCH 2 CH 2 (1 , -Cyclohexadiene) 47

OH + cy- CH=CHCH 2 CH=CHCH 2 (1 , 4-Cyclohexadiene) 47 OH + trans -CH 2 =CHCH-CHCH 2 CH 3 47

OH + trans -CH 2 =CHCH 2 CH=CHCH 3 48 OH + CH 2 =CHCH 2 CH 2 CH=CH 2 4 8

OH + CH 3 =CHCHCH=CHCH 3 48 OH + CH 2 =CHC(CH 3 )=CHCH 3 48

OH + CH 2 =CHC=CH(CH 3 ) 2 49 OH + CH 2 =C(CH 3 )CH 2 CH=CH 2 49

OH + CH 2 =C(CH 3 )C(CH 3 )=CH 2 49 + OH cy- (CH 2 ) 4 CH=CH (Cyclohexene) 50

OH + (CH 3 ) 2 C=C(CH 3 ) 2 50 OH + cy-CgH ^ 2 (Cyclohexane) 50 5 OH + bicy-CyHs (2 , -Norbornadiene) 51

6 5 )

V

OH + bicy-CyH^o (2-Norbornene) 51

OH + CH 2 =C (CH 3 ) CH 2 CH 2 CH=CH 2 51 + OH cy-CH=CH(CH 2 ) (Cycloheptene) 52 OH + bicy-CyHp 2 (Norbornane) 52 OH + 1 3 -C H (CH (m-Xylene) 52 , 6 4 3) 2 2 OH + bicy-CgH ^ 2 (Bicyclo [ 2 . 2 . 2 ] oct- - ene ) 53 5 OH + CH =C(CH )CH CH C(CH )=CH , -Hexadiene 2,5-dimethyl-).. 53 2 3 2 2 3 2 ( 1 , 4 5 OH ( CH C=CHCH=C ( CH , -Hexadiene 2 , - dimehyl 53 + 3 ) 2 3 2 (2 , - )

OH + bicy-CgH ^4 (Bicyclo [ 2 . 2 . 2 ] ) 54

OH + bicy-CgH ]^4 (Pentalene, octahydro-) 54 OH + cis-bicy-CgH^g (lH-Indene, octahydro, cis-) 54 OH + trans-bicy-CgH^g (lH-Indene, octahydro, trans-) 55

OH + CgH 5 CH=C(CH 3) 2 (/3-Dimethylstyrene) 55 7 OH + exo- tricy-C^QH^g , -Methano- 1H- Indene octahydro-, (4 ,

3aa , , 7aa) - 56 ( , 4/3 7/3 )

OH + tricy-C^o^l 6 (Adamantane) 56 OH + cis-bicy-C^o^l 8 (, decahydro-, cis-) 56 OH + trans -bicy- C^QH^g (Naphthalene, decahydro-, trans-) 57

H0 2 RADICAL Reactions:

H0 2 + H0 2 (+ M) 57 H0 2 + NO (+ M) 57

H 2 0 Reactions:

0 + H 2 N 2 0 5 . 58 + H 2 0 CH 3 C( 0 ) 0N0 2 (Peroxide, acetyl nitro) 58

S0X - COMPOUND Reactions:

SO + 0 2 58 SO + SO (+ M) 58

S0 2 + N0 2 58

50 2 + CH 3 C( 0 ) 0N0 2 (Peroxide, acetyl nitro) 59 50 3 + N0 2 59

SHx -C0MP0UND Reactions:

SH + 0 2 59 SH + SH 59

SH + H 2 S 59 SH + NO 60

SH + CH 2 =CH 2 60

7 ^x" COMPOUND Reactions:

N + OH 60

N + H0 2 60 N + N 3 60 N + NH 2 61 N + CN(v=n) 61 N + NCC 61

N 3 + N 3 61

NxOy-COMPOUND Reactions:

NO + NH 2 61 NO + CH 3 C(0)0N0 2 (Peroxide, acetyl nitro) 62

N0 2 + CH 3 C(0)0N0 2 (Peroxide, acetyl nito) 62 N0 2 + (CH 3 ) 2 NNH 2 62 NQ 2 + (CH 3 ) 3 CN0 62 N 2 0 (+ M) 62

NxHy _ COMPOUND Reactions:

NH + NH 2 63 1 NH(a A) + HN 3 63 1 NH(a A) + CH 2 =CH 2 63 1 NH(a A) + CH 3 CH 3 63 NH 2 + 0 2 (+ M) 64 NH 2 + N0 2 64 NH 2 + NH2 (+ M) 64

C ATOM Reactions:

C + NCCN 64

C0X -C0MP0UND Reactions:

CO + 0 2 64 CO + N 2 0 65 CO + CH 3 C(0)0N0 2 (Peroxide, acetyl nitro) 65

CH RADICAL Reactions:

CH(v=n) + 0 2 65 CH(v=n) + N 2 65 CH + N 2 (+ M) 66

8 CH + NO 66

CH(v=n) + CH 3 OH 66 CH + CH=CH 66

CH + CH 2 =CH 2 67

CH 2 Reactions:

1 CH 2 (a A 1 ) + 0 2 67 1 CH 2 (a A 1 ) + H 2 67 1 CH 2 (a A 1 ) + N 2 67 CH 2 (a^-A^) + NO 67 1 CH 2 (a A 1 ) + CO 68 1 CH 2 (a A 1 ) + CH4 68 3 CH 2 (X B 1 ) + CH^CH 68 1 CH 2 (a A 1 ) + CH 2 =CH 2 68 1 CH 2 (a A 1 ) + CH 3 CH 3 69 1 CH 2 (a A 1 ) + CH 2 =C=0 () 69 1 CH 2 (a A 1 ) + CH 3 CH 2 CH 3 69 1 CH 2 (a A1 ) + (CH 3 ) 2 C=CH 2 69

CH 3 RADICAL Reactions:

CH 3 + 0 2 (+ M) 70 CH 3 + H 2 S 71 CH 3 + CH 3 (+ M) 71 CH 3 + CH4 71 CH 3 + HCHO () 72 CH 3 + CH 3 O (Methoxy) 72 CH 3 + CH 3 CH 2 72

CH 3 + CH 30 C( 0 ) (Methyl, methoxyoxo-) 72

CH 3 + (CH 3 ) 2 S (Dimethyl sulfide) 73

CH 3 + CH 3 N=NCH 3 (Azomethane) 73 CH 3 + CH 2 =C=CH 2 (Allene) 73

CH 3 + (CH 3 ) 2 CH (Isopropyl) 73

CH 3 + (CH 3 ) 2 CO (2-Propanone) 74

CH 3 + (CH 3 ) 3 C ( tert-Butyl) 74

CH 3 + (CH 3 ) 3 CH (i-) 74

CH 4 Reactions:

CH4 (+ M) 74

CHx0y- COMPOUND Reactions:

CHO (+ M) 75

CHO + 0 2 (+ M) 75 CHO + CHO 75 HCHO (+ M) 75 HC(0)00H (Performic acid) 75

9 CH 3 0 + CH 3 O 76

CH 3 O + CH 30C( 0 ) (Methyl, methoxyoxo-) 76 CH 3 0 2 (+ M) 76

CH 3 O 2 + CH 3 O 2 76

CSx -COMPOUND Reactions:

CS + 0 2 77 CS + O 3 77 CS + N0 2 (+ M) 77

CHxSy- COMPOUND Reactions:

CH 3 S + NO (+ M) 77

CN RADICAL Reactions:

CN(v=n) + 0 2 78

CN + H 2 78 CN + HCN 78

CH N - COMPOUND Reactions: x y

HCN (+ M) 78

C 2 HX - COMPOUND Reactions:

CH 2 =C : + CH4 78 CH 2 =CH (+ M) 78 CH 2 =CH + 0 2 79 CH 2 =CH + CH4 79 CH 2 =CH 2 (+ M) 79 CH 2 =CH 2 + CH 2 =CH 2 79 CH 2 =CH 2 + cy-C 5 H 0 (Cyclopentene) 80 CH 3 CH 2 + N0 2 80 CH 3 CH 2 + CH 2 =CH 2 80

CH 3 CH 2 + CH 3 CH 2 80

CH 3 CH 3 (+ M) 81

C 2 Hx0y- COMPOUND Reactions:

CH=C=0 + CH=CH 81

CH 2 =C=0 (+ M) 81

CH 2 =C=0 + CH 3 COOH 81

10 V

CH 2 =C=0 + CH 3 COSH 82 CH(0)CH 2 + 0 2 (+ M) 82 CH(0)CH 2 + NO (+ M) 82

CH 30 C( 0 ) + CH 30C( 0 ) (Methyl, methoxyoxo- ) 83

CH 3 CHO + CH 3 C(O)ON0 2 (Peroxide, acetyl nitro) 83

cy-CH 2 CH 2 0 (Oxirane) (+ M) 83 cy-CH 2 CH 2 0 + H 83 HC(0)0CH3 () 84

CH 3 C(0)00H (+ M) 84 CH 3 CH 2 0 2 + CH 3 CH 2 0 2 84

c 2 Hx s y- C0MP0UND Reactions:

CH 3 SCH 2 + CH4 84

C 2 HxOyS z - COMPOUND Reactions:

CH 3 SC(0)SH (Thioacetic acid) 85

C 2 NX - COMPOUND Reactions:

NCCN (+ M) 85

c H N - COMPOUND Reactions: 2 x y

CH 2 CN + N0 2 (Methyl, cyano- + N0 2 ) 85 t CH 2 =CHNH 2 (Ethenamine) = cy-CH 2 CH 2 NHt (Aziridine) 86 CH 3 N=NCH 3 (Azomethane; Diazene, dimethyl-) 86

C H 0 N - COMPOUND Reactions: 2 x y z

CH 3 C( 0 ) 00N0 2 + (CH 3 ) 2 C=CH 2 (Peroxide, acetyl nitro + Isobutene) 86

C 3 (Carbon trimer) Reactions:

C 3 + 0 2 87 C 3 + CH4 87 C 3 + CH=CH 87 C 3 + CH 2 =CH 2 87

C 3 + CH 3 C=CH 88 C 3 + CH 3 CH=CH 2 88 C 3 + CH 3 CH 2 CH=CH 2 88

C 3 + cis-CH 3 CH=CHCH 3 88

C 3 + (CH 3 ) 2 C=CH 2 89 C 3 + CH 3 CH 2 CH 2 CH 3 89

C 3 + (CH 3 ) 2 C=CHCH 3 89

C 3 + CH 3 CH 2 CH 2 C^CCH 3 (2-Hexyne) 89

11 C 3 + (CH 3 ) 2 C=C(CH 3 ) 2 90

C 3 Hx -COMPOUND Reactions:

CH 2 =CHCH 2 + NO (+ M) 90 CH 2 =CHCH 2 + CH 2 =CHCH 2 90 cy-C 3 Hg (Cyclopropane) 90

(CH 3 ) 2 CH (i-Propyl) 91

(CH 3 ) 2 CH + (CH 3 ) 2 CH 91 CH 3 CH 2 CH 3 (+ M) 92

C 3 Hx0y-C0MP0UND Reactions:

CH 2 =CHCH 2 0 2 ( 2 - Propenyldioxy ) 92 cy-CH 2 CH 2 CH 2 0 (Oxetane) 92 cy-CH 2 CH 2 CD 2 0 (Oxetane-2 , 2-d2 ) 93 cy-CH(CH 3 )CH 2 0 (Oxirane, methyl-) 93 CH 3 CH 2 C(0)00H (Propaneperoxoic acid) 93

(CH 3 ) 2 CH0 2 + CH 3 CH=CH 2 (Ethyldioxy, 1-methyl- + 1-) 94 (CH 3 ) 2 CH0 2 + (CH 3 ) 2 C=CH 2 94 (CH 3 ) 2 CH0 2 + CH 3 CH 2 C(CH 3 )=CH 2 94

(CH 3 ) 2 CH0 2 + (CH 3 ) 2 CH=CHCH 3 94

C 3 HxNy- COMPOUND Reactions:

CH 3 CH 2 CN (Propanenitrile) 95

C H 0 N - COMPOUND Reactions: 3 x y 2

CH 3 CH 2 N=C=0 (Ethyl ) 95 CH 3 CH 2 CH 2 00N0 2 (Propyl peroxynitrate) 95

C4HX -C0MP0UND Reactions: cy-CH=CHCH 2 CH 2 (v=5,6) (Cyclobutane) 96 1 CH 3 CH=CCH 3 + H 2 (1-Propenyl, -methyl- + Hydrogen ) 96 cis -CH 3 CH=CHCH 3 (+ M) 96 CH 3 CH 2 CHCH 3 + H 2 (Propyl, 1-methyl- + Hydrogen molecule) .... 96 CH 3 CH 2 CHCH 3 + cis-CH 3 CH=CHCH 3 97

(CH 3 ) 3 C + (CH 3 ) 3 C (t- Butyl) 97

C4Hx0y- COMPOUND Reactions: cy - C ( 0 ) CH=CHC (0)0 (Maleic anhydride) 97 cy-C(0)CH 2 CH 2 C(0)0 (Succinic anhydride) 97 CH 3 C(0)0CH=CH 2 (Vinyl acetate) 97

12 2

V

cy-CH(CH 3 )CH 2 C( 0)0 (/3-Butyrolactone) 98

CH 3 C( 0 ) 0C( 0 )CH 3 ( anhydride) 98

CH 3 CH 2 OCH=CH 2 (Ethene, ethoxy-) 98

CH 3 C( 0 ) 0CH 2 CH 3 (Ethyl acetate) 98

CH 30C( 0 ) 0CH 2 CH 3 ( ethyl methyl ester) 98

CH 3 CH 2 CH 2 C( 0 ) 00H (Butaneperoxoic acid) 98

(CH 3 ) 2 CHC( 0 ) 00H (Propaneperoxoic acid, 2-methyl-) 99

( 0113)300 (+ M) (t-Butoxy) 99

(CH 3 ) 3 COOH(v= 6 ) (t-Butyl hydroperoxide) 99

C H 0 S - COMPOUND Reactions: 4 x y z

CH 3 C( 0 ) SC( 0 )CH 3 (Ethanethioic acid anhydrosulf ide ) 99

C H N - COMPOUND Reactions: 4 x y

CH 2 =CHCH 2 NCt (1-Propene, 3-isocyano-) 100

C H O N -COMPOUND Reactions: 4 x y z

(CH 3 ) 2 CHNCO (Isopropyl isocyanate) 100

CH 3 C(0)NHC(0)CH 3 (, N-acetyl-) 100

C 5 Hx -C0MP0UND Reactions:

2 [ . . . bicy-CgHg (Bicyclo 2 1 0 ] pent- -ene ) 101 cy-C 5 Hg (Cyclopentene) 101 cy-C 5 Dg (Cyclopentene-dg) 101 (CH 2 ) 2 >C<(CH 2 ) (Spiropentane) 101 cy-CgHg (Cyclopentyl) 102

cy-C 5 H 9 + N0 2 (Cyclopentyl + Nitrogen oxide (N0 2 )) 102 cy-C 5 H 3 o (Cyclopentane) 102

CH 3 CH 2 CH 2 CH 2 CH 3 (n-) 103 (CH 3 ) 4 C (+ M) (Neopentane) 103

C H 0 - COMPOUND Reactions: 5 x y

cy-CH 2 CH 2 CH=CHCH 2 0 (2H-Pyran, 3,6-dihydro-) 103 (CH 3 ) 2 CH0CH=CH 2 (Ethyl isopropyl ether) 103

CH 3 CH 2 0 C( 0 ) 0CH 2 CH 3 (Carbonic acid diethyl ester) 103

CH 3 CH 2 0C( 0 ) 0CD 2 CD 3 (Carbonic acid ethyl ethyl-d 5 ester) 104 1 CH 30C( 0 ) 0 CH(CH 3) 2 (Carbonic acid methyl -methylethyl ester) 104

C H O N - COMPOUND Reactions: 5 x y z

CH C( 0 0CH(CH )CN (Propanenitrile 2- (acetyloxy) 104 3 ) 3 , - )

(CH 3 ) 3 CNCO (t-Butyl isocyanate) 104

(CH 3 ) 2 NC( 0 ) 0 CH 2 CH 3 (Carbamic acid, dimethyl-, ethyl ester) .. 104

13 2 , , , , ,

C 6 Hx -COMPOUND Reactions:

trans - CH =CHCH=CHCH=CH , , 5-Hexatriene (E)-) 105 2 2 (1 3 , 3 cy-CH 2 CH 2 CH=CHCH=CH ( 1 , - Cyclohexadiene) 105 3 cy-C(CH )=CHCH=CHCH , - Cyclopentadiene 1-methyl-) 105 3 2 ( 1 , cy-CH=C(CH )CH=CHCH , 3-Cyclopentadiene 2-methyl-) 105 3 2 (1 , bicy-CgHg (Bicyclo [ 2 . 2 . 0]hex-2-ene) 105 2 [ . . bicy-CgHg (Bicyclo 2 1 0 ] pent- -ene , 1-methyl-) 106 2 (Bicyclo [ 2 . 1 . -ene 2-methyl-) 106 bicy-CgHg 0 ] pent- , cy-CgH^Q (Cyclohexene) 106

(cy-CH 2 CH 2 CH 2 CH)CH=CH 2 (Cyclobutane, ethenyl-) 107 cy-CgH]_ 2 (+ M) (Cyclohexane) 107 n-CgH]^ (n-) 107

CgHx0y- COMPOUND Reactions:

cis-cy-0C(0)CH(CH 3 )CH(CH3)C(0) ( 2 , 5 - Furandione

dihydro- 3 ,4-dimethyl- , cis-) 107 trans , cy-OC(O) CH(CH 3 ) CH(CH 3 ) C(0) ( 2 , 5 - Furandione dihydro-3 ,4-dimethyl- trans-) 108 , cy-CH C(CH CH C(0) ( 3,3-dimethyl-) 108 2 3 ) 2 2 ,

CH 3 0(CHCH 2 CH 2 CH=CH0-cy) 2H-Pyran, 3 ,4-dihydro-2-methoxy- ) 108

CH 3 CH 2 C(0)0C(0)CH 2 CH 3 (Propanoic acid anhydride) 108 CH C(0)0CH(CH )C(0)CH (2-Butanone 3 (acetyloxy- 108 3 3 3 , - )

CH 3 C(0)0CH(CH 3 )C(0)0CH 3 (Propanoic acid, 2- (acetyloxy) - methyl ester) .... 109 3 CH 3 C(0)0CH 2 CH 2 C(0)0CH 3 (Propanoic acid, - (acetyloxy) - methyl ester) .... 109

CH 3 C(0)0CH 2 CH 2 0C(0)CH 3 (1,2 - Ethanediol diacetate) 109 CH 3 CH 2 CH 2 CH 2 OCH=CH 2 (n-Butyl vinyl ether) 109 (CH 3 ) 3 COCH=CH 2 (t-Butyl vinyl ether) 109

CH 3 C(0)0C(CH 3 ) 3 ( t-Butyl acetate) 109 CH 3 CH(0H)CH 2 C(0)0CH 2 CH 3 (Butanoic acid, 3-hydroxy-, ethyl ester) .... 110 3 3 (CH 3 ) 2 C(0H)CH 2 C(0)0CH 3 (Butanoic acid, -hydroxy- -methyl - methyl ester) .... 110

CH 3 0C(0)0C(CH 3 ) 3 (Carbonic acid 1,1-dimethyl methyl ester) ... 110

CgHxSy- COMPOUND Reactions:

CH 3 C(0)CH 2 SCH 2 CH=CH 2 (Acetonyl allyl sulfide) 110

CgHxNy-COMPOUND Reactions:

(CH 3 ) 2 CHN=NCH(CH 3 ) (Azoisopropane) 110

14 3 - , ,

-

C H O N - COMPOUND Reactions: 6 x y z

CH C( 0 0C(CH CN (Propanenitrile 2- (acetyloxy) -2-methyl- . 110 3 ) 3 ) 2 , )

(CH 3 ) 2 NC( 0 ) 0 CH(CH 3)2 (Carbamic acid, dimethyl-, 1 methylethyl ester) 110

C 7 Hx -C 0MP0UND Reactions:

cy- CH=CHCH=CHCH=CHCH 2 (1 , 3 , 5-Cycloheptatriene) Ill

(cy-CH 2 CH 2 CH 2 CH) C(CH 3 )=CH 2 (Cyclobutane, (1-methylethenyl) - ) . Ill (cy-CgH;Q)CH 3 (+ M) (Cyclohexane, methyl-) Ill

c 7 Hx°y" COMPOUND Reactions:

2 bicy-C 7 Hg0 (Bicyclo [ 3 . 2 . 0 ] hept- -en- 6 -one) 112 cis-cy-CH(CH 3 )CH 2 CH=CHCH(CH 3 )0 (2H-Pyran, 3,6-dihydro- 2- 2 6 -dimethyl- cis-) .... 112 , , c is , trans - cy - OCH ( CH ) CH ( CH=CH ) CH ( CH Oxe tane 3 2 3- 3 ) 3 4 -ethenyl 2 , -dimethyl - ) .... 112 2 cy-OCH(OCH 2 CH 3 )CH 2 CH 2 CH=CH (2H-Pyran, -ethoxy- 3 , 4-dihydro- ) . 112 c is - cy - OCH ( OCH 3 ) CH 2 CH ( CH 3 ) CH=CH (2H-Pyran, 3,4-dihydro- 2-methoxy-4-methyl cis-) .... 112 ,

trans - cy - OCH (OCH 3 ) CH 2 CH ( CH 3 ) CH=CH (2H-Pyran, 3,4-dihydro- 2-methoxy-4-methyl trans-) .... 113 ,

(CH 3 ) 2 CHCH 2 C( 0 ) 0 CH 2 CH 3 (Butanoic acid, 3-methyl-, ethyl ester) .... 113 CH C( 0 0CH CH CH CH CH (1-Butanol, 4-methoxy- acetate) .... 113 3 ) 2 2 2 20 3 , CH 3 CH(0H) CH(CH 3 ) C (0) OCH 2 CH 3 (Butanoic acid, 3-hydroxy- methyl- ethyl ester) .... 113 ,

(CH 3 ) 2 C( 0H)CH 2 C( 0 ) 0CH 2 CH 3 (Butanoic acid, 3-hydroxy- methyl-, ethyl ester) .... 113

C- H 0 - COMPOUND Reactions: 7 x yN z

CH 3 C( 0 ) 0 CH(CH 3 )CH 2 N(CH 3)2 (2-Propanol, 1- (dimethylamino) - acetate ester) .... 113

(CH 3 ) 2 NC( 0 ) 0C(CH 3) (Carbamic acid, dimethyl-, 1 1 , - dimethylethyl ester) .... 113

CsHx -C0MP0UND Reactions:

- , cy CH=CHCH=CHCH=CHCH=CH (1 3 , 5 , 7-Cyclooctatetraene) 114

[ cy - CH=CHCH=CHCH=CHCH=CH t = bicy-CgHgt] (+ M) 114 bicy-CgHg (1 , 5-Dihydropentalene) 115 5 [bicy-CgHgt (1 , -Dihydropentalene)^ tricy-CgHgt] (+ M) 115 tricy-CgHg (Semibullvalene) 115

15 . . , , , , , d, , ,

- syn- tricy-CgHg (Tricyclo . 2.0.02>5] oc ta-3,7 diene [4 ,

( la , 2a , 5a 6 a) - .... 115 7 anti- tr icy- CgHg (Tricyclo [4 . 2.0.o2.5] oc ta-3, -diene

(la, 2 3 5 6 116 / , /3 , a)- pentacy-CgHg (Cubane) 116 cy-CH=CHCH=CHCH 2 CH=CHCH 2 (1 , 3 6 -Cyclooctatriene) 116 cy - CH=CHCH=CHCH=CHCH ( CH 3 ) (+ M) (1 , 3 , 5-Cycloheptatriene

7 -methyl- ) .... 116 2 bicy-CgHgD (Bicyclo [ 2 . 2 . ] hept- -ene 5 - - - 116 2 1 , 2 )

(Bicyclo [ 3 . 2 . 0]hept-2-ene 6 -methylene-) bicy-CgHio , 117 2 bicy-CgHgD (Bicyclo [ 3 . 2 . ] hept- -ene 6 -methylene -d - 117 2 0 , 2 ) 7 bicy-CgHgD (Bicyclo [ 3 . 2 . ]hept-2 -ene-7 , -d 6 -methylene .. 117 2 0 2 , - ) bicy-CgH^o (Bicyclo [ 3 2 . 0 ] hept- 6 -ene 2 -methylene-) 117 , bicy-CgH^Q (Bicyclo [ 4 . 2 . 0 ] octa-2 , 4-diene) 118

^ > . . 3 tricy-CgH^o (Tricyclo [4 1 0 0 7 ] , -methylene - ) 118 cis - cy- CH ( CH 3 ) CH (CH 3 ) C (=CH 2 ) C (=CH 2 ) ( Cyclobutane

, 2-dimethyl-3 ,4-bis(methylene) cis-) .... 118 1 - , trans - cy - CH ( CH 3 ) CH ( CH 3 ) C (=CH 2 ) C (=CH 2 ) ( Cyclobutane

, 2-dimethyl-3 ,4-bis(methylene) trans-) 118 1 - , ....

( syn- cy - CH ( CH 3 ) C =CH 2 ) C (~CHCH 3 ) CH 2 ( Cyclobutane 3 1-ethylidene- -methyl - 2 -methylene (Z)- .... 119 , syn, syn-cy-C(=CHCH 3 )C(=CHCH 3 )CH 2 CH 2 (Cyclobutane 2 , -diethylidene (Z,Z)-) .... 119 1 , syn, anti-cy-C(=CHCH 3 )C(=CHCH 3 )CH 2 CH 2 (Cyclobutane 2 , -diethylidene (E,Z)-) 119 1 , ....

(cy-CgH^^)CH 2 CH 3 (+ M) (Cyclohexane, ethyl-) 119 cy-(CH 2 ) 4 CH(CH 3 )CH(CH 3 ) (+ M) (Cyclohexane, 1,2-dimethyl-) ... 119 3 cy- (CH 2 ) 3 CH(CH 3 ) CH 2 CH(CH 3 ) (+ M) (Cyclohexane, 1 , -dimethyl- ) 120 cy- (CH 2 ) 2 CH(CH 3 ) (CH 2 ) 2 CH(CH 3 ) (Cyclohexane, 1,4-dimethyl-) ... 120 n-CgH^g (n-Octane) 120

CgHx0y-C0MPQUND Reactions:

3 bicy-CgH QO (Bicyclo [ 3 . 2 . ]hept- -en- 6 -one 5-methyl-) 120 3 0 , 2 5 2 . 1 . pent- -ene - acid, exo-bicy-CgH;Lo 02 (Bicyclo [ 0 ] -carboxylic 5-methyl, methyl ester (la, 4a, 5a)-) .... 121 2 5 endo-bicy-CgH (Bicyclo [ 2 . 1 . pent- -ene - -carboxylic acid, 3 Q0 2 0 ] 5-methyl, methyl ester (la 4a - .... 121 , , 5/3) ) cy-C(CH 3 ) 2 CH 2 C(CH 3 ) 2 C(0) (Cyclobutanone

2 2 , 4- tetramethyl- .... 122 , ,4 )

(CH 3 ) 2 CHC(0)0C(0)CH(CH 3 ) 2 (Propanoic acid, 2-methyl-, anhydride) .... 122

CH C(0)0CH CH CH(CH )CH CH -Pentanol 3-methyl-, acetate) . 122 3 2 2 3 2 3 (1 , CH C(0)0CH CH CH CH(CH (1-Pentanol 4 -) ... 123 3 2 2 2 3 ) 2 , - , .. CH 3 C(0)0CH(CH 3 )C(CH 3 ) 3 (2-Butanol, 3,3-dimethyl-, acetate) 123

(CH 3 ) 3 CCH 2 C(0)0CH 2 CH 3 (Butanoic acid, 3,3-dimethyl-, ethyl ester) .... 123

(CH 3 ) 3 COOC(CH 3 ) 3 (Peroxide, bis (1 , 1-dimethylethyl) - ) 123

16 3 3 3 , , ,

CgHxSy- COMPOUND Reactions:

1 (CH 3 ) 3 CSSC(CH 3) (Disulfide, bis ( 1 , -dime thylethyl) - ) 123

C 9 -COMPOUND Reactions:

cy-CH=CHCH=CHCH=CHCH(CH 2 CH 3 ) (+ M) (1 , 3 , 5-Cycloheptatriene 7 -ethyl-) 124

(cy-CgH^^)CH 2 CH 2 CH 3 (Cyclohexane, propyl-) 124

CH 3 C( 0 ) 0CH 2 CH 2 (CHCH 2 CH 2 CH 2 CH 2 -cy) (Cyclopentaneethanol acetate) 124

CH C( 0 0C(CH C(CH (2-Butanol, , , 3- trimethyl- acetate) 124 3 ) 3 ) 2 3)3 2 3 ,

CH 3 C( 0 ) 0CH(CH 2 CH 3 )C(CH 3)3 (3-Pentanol, 2,2-dimethyl-, acetate) 124

(CH 3 ) 3 C 0 C( 0 ) 0 C (CH 3) (Carbonic acid bis (1 , 1- dime thylethyl) ester) .... 125

C^o to C 14 -COMPOUND Reactions:

(cy-CH=CHCH=CHCH=CHCH)CH(CH 3 ) 2 (+ M) 125 (Naphthalene, decahydro- Decalin) bicy-C^obig ; 125

(cy-C 6 H 11 )CH 2 CH 2 CH 2 CH 3 (Cyclohexane, butyl-) 125 CH 3 C( 0 ) 0CH 2 CH 2 (CHCH 2 CH 2 CH 2 CH 2 -cy) (Cyclohexaneethanol acetate) 125 3 CH C (0)0CHCHCH C(CH - Pentanol , , 4- trimethyl 3 3 ) 2 3 ) ( , 2 2 - acetate) .... 126

CH 3 C( 0 ) 0C(CH 3 ) (CH(CH3)2)2 (3-Pentanol, 2 , 3 ,4- trimethyl- acetate) .... 126

(cy-CgH^^)CH 2 (CH 2 ) 4CH 3 (Cyclohexane, hexyl-) 126 n-C]^2N26 (n-Dodecane) 126

(cy-CgH^]^)CH 2 (CH 2 ) 6 CH 3 (Cyclohexane, octyl-) 126

17 . . . . )

4. Table of Chemical Kinetic Data for Combustion Chemistry

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

* 0 1 o2 1 o2 Oxygen atom +

83 WIN/NIC EX 237-377 (3 . 37±1 . 26) ( 12) 0 1950±110 2 Reaction of 0 atoms with Ozone in

a flow system.

0 atoms generated by pulsed Laser

Photolysis of 0^ at 532 nm. Time-resolved Resonance-fluorescence

P = (15-150) torr. 1940-21700 [03 ]/[0] o =

+ H -» + 0 2 OH H Oxygen atom + Hydrogen molecule

78 CAM/HAN EX 350-490 (3 . 1±0 . 5) ( 13 ) 0 4950±300 2

a Reaction of 0 atom with H 2 in discharge- flow stirred reactor. 0 atoms generated by

reacting N with NO.

O + OH -* 02 + H Oxygen atom + Hydroxyl

83 BRU/SCH2 EX 298 ( 1 . 87±0 . 30 ) ( 13 2

Reaction of 0 atom with OH in a fast-flow reactor. Laser-magnetic resonance.

Resonance-fluorescence . Resonance-absorption

P = (1-5) torr. (He, or Ar)

83 TEM EX 296 (4 . 0±1 . 2) ( 13 ) 2 Reaction of 0 atoms with OH by Far-IR Laser- Magnetic-Resonance Spectrometry.

O + H02 -* OH + 02 Oxygen atom + Hydroperoxo

79 TEM EX 298 (2 . 0±0 . 6 ) ( 13 ) 2 Reaction of 0 atoms H0 with 2 in an iso- thermal flow-reactor. ESR-spectrometry

LMR-spectrometry . 0 atoms generated by disso-

ciation of 0 in a microwave discharge. 2 H02

generated by reacting F with H 0 . 2 2

83 BRU/SCH2 EX 298 (3 . 13±0 . 48) ( 13) 2 Reaction of 0 atom with H02 in a fast-flow reactor. Laser-Magnetic Resonance. Reso- nance-fluorescence. Resonance-absorption

P = (1-5) torr. (He, or Ar)

18 . . . . . )

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

83 KEY RL 299 1.7±0.2 2/2

HO in a fast Reaction of 0 atom with 2 discharge-flow system.

O HO2 generated by reacting H with 2 in excess

H atom generated by a microwave discharge

of H in He. 2 Resonance-fluorescence

: + - kref 0 OH 02 + H. P(Total) = 2 torr.

83 RAV/WIN EX 298 ( 3 . 73±0 . 66) ( 13 ) 2 Pulsed- Reaction of 0 atoms with HO2 by Laser-Photolysis /Resonance- fluor esc enc e 0 atoms and of HO2 generated by Photolysis O and H O in N at 248.5 nm. by using 3 2 2 2 , , a KrF excimer laser.

3 = (10-500) torr. [H0 ] > P] P(N 2 ) £ [0 16 -3 [H 0 = (0.30-1.71)xl0 molec.cm . 2 2 ] k isindependent of N pressure. 2

0 + H2O2 "+ OH + HO2 (a) -* o (b) 2 + e2o Oxygen atom +

83 WIN/NIC EX 298-386 ( 6 . 81+3 . 25 ) (11 ) 0 2000±160 2

of 0 atoms H a flow- Reaction with 2O2 in system equipped with a Pyrex reactor and

a Brass reactor. 0 atoms generated by pulsed Laser Photolysis

of O at 3 532 nm. Time-resolved Resonance-fluorescence 13 -3 [0] Q = (0.4-57)xl0 molec.cm . P = (15-150) torr.

0 + NO (+ M) -* 02 + N (+ M) (a)

-* N02 (+ M) (b) Oxygen atom + Nitrogen oxide (NO) = 83 SCH/KOH (k . 200-370 ( . . ( 0 -290±17 3 b M He) EX 8 27±0 58 ) 15) = . EX 300 3 (kb M He) 2.25(16) = . . -355±11 . EX 200-370 ( 1 36±0 ) ( 0 3 (k b M NO) 05 16 = (kb . M NO) EX 300 4.57(16) 0 0 3 = (k . EX 200-370 ( 8 . 85±0 . ) ( 15) 0 -380+25 3 b M n2 ) 83 = (k . M n ) EX 300 3.19(16) 3 b 2 = (k . M ch ) EX 200-370 ( 1 . 02±0 . 18 ) ( 16) 0 -414+40 3 b 4 = (k . M ch ) EX 300 4.17(16) 3 b 4

19 4. Table o f Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Reaction of 0 atoms with NO in a reactive

chamber with a VUV-Laser emitting light

at about 160 nm. Small amounts of 0 atoms

generated in the H2 ~Laser photolysis of NO. Chemiluminesxcence emission.

P(He or N or CH^) = (10-55) torr. , 2 , P(NO) = (0.04-1.11) torr.

O + NH -» NO + H (a) (main channel)

- OH + N (b) Oxygen atom +

83 TEM EX 296 ( 5 . 0±2 . 0 ) ( 13 ) 2

k a + kjj. Far-IR Magnetic-Resonance Spectro- metry.

O + RH2 - OB + NH (a) - HNO + H (b) Oxygen atom + Amidogen

83 TEM (k EX 296 (7,,0±3. a ) .0X12) (k ,6±1. b ) EX 296 (4. .2X13)

Reaction of 0 atoms with NH2 by Far-IR Laser-Magnetic-Resonance Spectrometry.

O + HNO -» OH + NO Oxygen atom + Nitrosyl

83 TEM EX 296 5.0(12) 2 Reaction of 0 atoms with HNO by Far-IR Laser-Magnetic -Resonance Spectrometry.

0 + CHO -» OH + CO (a)

-* H + C02 (b) Oxygen atom + Methyl, oxo- (Formyl)

78 CAM/HAN RL 425 (4 . 0±2 . 0 ) (-1) 2/2

k a /kb- Estimated rate ratio. Reaction of 0 CHO in a discharge-flow stirred reactor.

0 atoms generated by reacting N with NO.

CHO generated by reacting H with CO.

0 + HCHO -» OH + CHO Oxygen atom + Formaldehyde

83 GUE/VAN EX -1400 4.0(13) 0 1807 2 Reaction of 0 atoms with HCHO in premixed flames. Molecular-beam sampling. Mass-spectrometry. Unspecified T-range. P = (22.5-40) torr.

• 20 . '•’•' ) ) ) )

Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ -» + ono o ch3ono2 oh ch2 2 Oxygen atom + methyl ester

77 SAL/THR EX 294-473 1.5(13) 0 2646±120 2

Reaction of 0 atoms with Methyl nitrate

in a fast-flow system. 0 atoms generated by dissociation of 0 2 (1% in Ar) through a microwave-discharge.

P(Total) = (0.75-15) torr.

+ -* O CH=CH CO + CH2 (a) + -» + -* 0 CH^H H CH=C=0 CH2=C=0 (b)

-* C=00 + H2 (c) -* OH + CH^C (d) Oxygen atom + Ethyne

83 HOM/WEL1 EX 295-1330 ( 1 . 6±0 . 5 ) ( 13 ) 0 1550 2

kjj + k(j. Reaction of 0 atoms with Ethyne in

a discharge-flow reactor. 0 atoms generated

by the reaction: N + NO -* N 2 + 0, or of 0 a by decomposition 2 in microwave discharge. Mass-spectrometry. Channel (b) occurs at lower temperatures, while channel

(d) occurs at high temperatures.

P(Total) = 2 torr.

83 H0M/WEL2 EX 1000 2(12) 2

kjj. Reaction of 0 atoms with CH^CH, studied

in a flow-reactor, with or without added

H atoms P(Total) = 2 Torr.

O + == CH2 CH£ HCHO + CH2 (a) + CHO CH3 (b) -¥ ch =c=o + 2 h2 (c)

O -* ZA (d) -* H + CH 2CHO (e) Oxygen atom + Ethene = 83 FON/MAE < k + k P(He) 0 . 5 . . ( b e- torr. EX 298 (4 10±0 48 ) 11 2 = < k + k P(He 2 torr . ( . . ( b e ) EX 298 4 04±0 60 ) 11 2 = + . < k k P(He) 5 torr . EX ( . ( b e ) 298 3 79±0 18 ) 11 2 = (k + k P(He) 0.5 torr. . . ( b e ) EX 552 ( 1 57±0 06) 12) 2 + = < k k 2 . . ( b e P(He) torr . ) EX 552 ( 1 45±0 08 ) 12) 2 = k + k P(He) 5 torr . . ( < b e . EX 552 ( 1 45±0 04 ) 12) 2 = + . < k k P(He 0 5 . . b e torr . ) EX 736 (2 95±0 20 ) ( 12 2 = < k + k . . ( P(He) 2 . b e torr ) EX 736 (2 77±0 22 ) 12 2 (k + k P(He) = 5 b e torr . ) EX 736 (2. 77+0. 24) (12) 2

21 4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Reaction in He diluent, by discharge-flow. Molecular-beam sampling. Mass-spectrometry.

83 SRI/KAU EX 298 ( 4 . 76±0 . 60 ) ( 11 ) 0 0 2

. (e) is Discharge-flow k 0 Channel major path. reactor. 0 atoms generated by dissociation of

C>2 in a microwave-discharge, in He diluent.

Resonance-fluorescence. P-independent k. 3 [Ethene] = (0 . 5-6. 0 )xl0^ molec . cm . n 3 [0] o = (0.2-1.2)xl0 atom.cnf .

P(Total) = (0 . 42-6) torr.

83 TEM RL 296 0.44±0.15 0 0 2/2

^b^overall" Laser-Magnetic-Resonance Spectrometry.

O + C02=C=O -» products Oxygen atom + (Ketene)

83 WAS/HAT EX 230-449 ( 1 . 76±0 . 47 ) ( 12) 0 679±78 2 Fast-flow. Pulse-Radiolysis. Resonance- absorption. Photoionization Mass-spectro- metry. 0 atoms generated by dissociation of

CO2 in Ar. Measurements at 298 made by using

an 0 atoms source generated by dissociation

of either a 02/He mixture, or a NO/N2 /He mixture in a microwave-discharge. P(Ketene) = (18-62) mtorr. P(C0 = (2.37-3.39) 2 ) torr.

P(Ar ) = (417-526) torr.

O + CH3CH2OHO2 * OB + CH3CHNO2

Oxygen atom + Nitric acid ethyl ester

77 SAL/THR EX 294-473 2.6(13) 0 2598±313 2

Low-pressure fast-flow system, with a Pyrex reactor. 0 atoms generated by dissociation of

O2 (12 in Ar) through a microwave-discharge.

P(Total) = (0.75-15) torr.

O + CH3OCH -» CO + CH3CH (a)

- H + [C3H3O] (b) Oxygen atom + 1-

83 HOM/WEL1 EX 295-1330 ( 1 . 5±0 . 4 ) (13) 0 1060 2

^overall- Discharge-flow. 0 atoms generated by the reaction: N + NO * N2 or by decom-

position of O2 in a microwave-discharge.

Mass-spectrometry. P(Total) = 2 torr.

22 )

4. Tabla of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n E, k,A k err. type A,A/A(ref) B-B(ref) units factor

O + CHgCH=C=0 -» products Oxygen atom + 1-Propen-l-one (Methylketene

83 WAS/HAT EX 230-449 (2 . 89±0 . 79) ( 12) 0 249±82 2 Fast-flow reactor. Pulse-Radiolysis.

Resonance-absorption . Photoionization Mass-spectrometry. 0 atoms generated

of CO in Ar. by dissociation 2 Measurements at 298 K made by using an 0 atom source generated by dissociation

or a 0 /N /He of either a 02 /He mixture, N 2 mixture in a microwave-discharge.

P(Methylketene) = (2. 0-8. 8) mtorr. = 5-3. torr. P(C02 ) (2. 9) P(Ar) = (450-540) torr.

O + CH^CCsCH -» products

Oxygen atom + 1 , 3-Butadiyne

83 HOM/WEL1 EX 300-1000 (2, 8±0 .6) (13) 0 870 2 Discharge-flow reactor. 0 atoms generated by the reaction:

+ - N NO N 2 + 0, or by decomposition of O in a microwave- 2 discharge. Mass-spectrometry.

P(Total) = 2 torr.

0 + CH^XH=CH2 products Oxygen atom + l-Buten-3-yne

83 HOM/WEL1 EX 295-500 (3 . 0±1 . 1 ) ( 13 ) 0 910 2 Discharge-flow reactor. 0 atoms generated by the reaction:

N + NO - N2 + 0, or by decomposition of O2 in a microwave- discharge. Mass-spectrometry.

P(Xotal) = 2 torr.

O + CH CH C=CH -* CO + 3 2 CH3CH=CH2 (a) -* any other products (b) Oxygen atom + 1-Butyne

83 H0M/WEL1 EX 290-1000 (2 . 3±0 . 7 ) ( 13 ) 0 870 2

^overall' Low-pressure discharge-flow reac- tor. 0 atoms generated by the reaction:

N + NO - N 2 + 0, or by decompositioq of 03 in a microwave-dis- charge. Mass-spectrometry. P(Total) = 2 torr.

23' . ) )

-- 4 . Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

0 + CH3CH2CEMX) -* products Oxygen atom + 1-Buten- 1-one (Ethylketene

83 WAS/HAT EX 230-449 ( 3 . 23±0 . 50 ) ( 12 ) 0 224±47 2 Fast-flow reactor. Pulse-Radiolysis.

Resonance-absorption . Photoionization Mass-spectrometry. 0 atoms generated by

dissociation of CO2 in Ar. Measurements at 298 K made by using an 0 atoms source generated by dissociation

of a /He mixture, or a /He either 02 NO/N2 mixture in a microwave-discharge.

P(Ethylketene) = (1. 8-7.2) mtorr.

= 5-3. P(C02 ) (2. 5) torr. P(Ar) = (450-550) torr.

O + (033)2000 -* products Oxygen atom + 1-Propen-l-one, 2-methyl- (Dimethylketene

83 WAS/HAT EX 230-449 ( 3 . 57±0 . 57 ) ( 12 ) 0 569±43 2 Fast-flow reactor. Pulse-Radiolysis.

Resonance-absorption . Photoionization Mass-spectrometry. 0 atoms generated by

dissociation . of C02 in Ar For experiments at 298 K the measurements were made by using an 0 atoms source generated by dissociation

of either a 0 a 2 /He mixture, or NO/N2 /He mixture in a microwave-discharge.

P(Dimethylketene ) = (2. 3-8. 5) mtorr. = 6-3. P(C02 ) (2. 5) torr.

P(Ar ) = (450-540) torr.

t t O CH3CH2CH2CH20H OH CH3CH2CH2CHOH ( a ) - OH] OH + [CA H8 (b) Oxygen atom + 1-Butanol

1 83 ROS ) (k ) EX 298-606 ( 1 . 35±0 . ( ) 0 1756+505 2 a 39) 13 The 0 atom abstracts an H atom only from

a CH bond in position a to OH.

(k ~ 606 0 1780±190 2 1.17 OVerall ) EX 298 2.99(13) The 0 atom abstracts an H atom from any CH bond

*) Flow-system. 0 atoms generated by reacting N with NO. N atoms generated by dissociation of

N 2 in a microwave-discharge. Gas-chromatography.

24 . ..

Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

0 + CH(OH)CH -* OH + CH CH C(OH)CH (a) CH3CH2 3 3 2 3 - OH + [C^HgOH] (b) Oxygen atom + 2-Butanol

x 298-606 . . ( 0 1083±289 2 83 ROS ) (k a ) EX (3 06±0 49 ) 12 ) The 0 atom abstracts an H atom only from

a CH bond in position a to OH.

298-606 0 1190±190 2 1.17 ^overall ^ EX 4.47(12) The 0 atom abstracts an H atom from any CH bond.

* ) Flow-system. 0 atoms generated by reacting N

with NO. N atoms generated by dissociation

N2 in a microwave-discharge. Gas-chromatography

O + (CH CHCH OH - OH + (CH CHCHOH (a) 3 ) 2 2 3 ) 2 -» [C OH] (b) OH + 4 H8 Oxygen atom + 1-Propanol, 2-methyl-

(k ) 298-606 ( . . ( 0 1010±289 2 a EX 1 39±0 18) 12) The 0 atom abstracts an H atom only from

the CH bond in position a to OH.

^overall^ EX 298-606 3.66(12) 0 1100±150 2 1.14 The 0 atom abstracts an H atom from any CH bond.

1 ) Flow-system. 0 atoms generated by reacting N

with NO. N atoms generated by dissociation

of N in a 2 microwave-discharge. Gas-chromatography

O (CH -* OH] + 3 ) 3COH OH + [CAH8 Oxygen atom + 2-Propanol, 2-methyl-

83 ROS EX 298-606 4.99(12) 0 2190±270 2 1.22 Flow-system. 0 atoms generated by reacting N with NO. N atoms generated by dissocia-

tion of N in a 2 microwave-discharge Gas- chromatography. The 0 atom abstracts an H

atom from any CH bond.

o so -» 3 + o2 + so2 Ozone +

83 BLA/SHA EX 230-420 2.89(12) 0 1170+120 2 1.33 SO generated by ArF Laser- of S0 2 at 193 nm. P(S0 = 30 2 ) mtorr < P(02 ) 0.4 torr.

25 .

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

O-j + OCHCHO -* products Ozone + Ethanedial (Glyoxal, or Diformyl)

83 PLU/SAN EX 298 <1.81(3) 0 0 2

Reaction in a Teflon bag. 15 3 [OCHCHO] ~3.0xl0 molec.cm' .

O3 + CHgC(0)0N02 -» products

Ozone + Peroxide, acetyl nitro

76 PAT/ATK2 EX 296 3.24(4) 2

Reaction in a Teflon-lined aluminum tank. Gas-chromatography. Mass-spectrometry.

IR-Absorption spectrometry.

[Peroxide] = (2. 9-9. 6) ppm.

[O3] = (13-660) ppm.

O3 + CH-jC( 0 )CH0 -» products Ozone + Propanal, 2-oxo- (Methylglyoxal)

83 PLU/SAN EX 298 <3.61(3) 2

Reaction in a Teflon bag.

[CH 15 3 3C(0)CH0] ] ~3.0xl0 molec.cm' .

O3 + cis-CH CH=cacu -» products 3 3 Ozone + 2-Butene, (Z)-

83 ATK/ASC4 EX 297 (8 . 31±0 . 96) ( 7 ) 2

Irradiation in a Teflon reaction bag. Gas-chromatography

[Ozone] 3 3 Q = (0. 12-1.2)xl0^ molec.cm'

+ -* °3

Ozone + Furan

83 ATK/ASC2 EX 298 ( 1 . 46±0 . 17 ) (6) 2

Irradiation in a Teflon reaction bag. Gas-chromatography

P(Total) = 735 torr.

3 3 [Ozone] Q = 2.38xl0'*’ molec.cm .

°3 + -* products ^ 1)

Ozone + Thiophene

83 ATK/ASC2 EX 298 <3.61(4) 2

Irradiation in a Teflon reaction bag.

Gas-chromatography. P(Total) = 735 torr.

[Ozone] B.SSxlO''-3 3 Q = molec.cm' .

26 ] ... ))

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ -» products 03

Ozone + Cyclopentene

83 ATK/ASC4 EX 297 ( 1 . 66±0 . 20 ) (8) 2

Irradiation in a Teflon bag. Gas-chromatography

12- 3 [Ozone] Q = (0 . 1 . 2 )xl0^ molec.cm

+ -* 03 products

02one + 1 , 3-Cyclohexadiene

83 ATK/ASC4 EX 297 ( 1 . 19+0 . 17 ) ( 9) 2

Irradiation in a Teflon bag.

Gas - chromatography 3 . 12-1 [Ozone] Q = (0 . 2)xl0* molec.cm

03 + -* products

Ozone + 1 , 4-Cyclohexadiene

83 ATK/ASC4 EX 297 ( 3 . 85±0 . 45) ( 7 2

Irradiation in a Teflon bag. Gas-chromatography 3 [Ozone] «=* Q (0. 12-1.2)xl0^ molec.cm

» products

Ozone + Cyclohexene

83 ATK/ASC4 EX 297 (6 . 26±0 . 84 ) (7 2

Irradiation in a Teflon bag. Gas-chromatography 13 [Ozone] 12-1 . Q = (0. 2)xl0 molec.cm'

Ozone + Bicyclo [2 . 2 . l]hepta-2 , 5-diene

(2, 5-Norbornadiene)

83 ATK/ASC4 EX 297 (2 . 81±0 . 78) (9 ) 2

Irradiation in a Teflon bag. Gas-chromatography 13 3 [Ozone . Q = (0.12-1.2)xl0 molec.cm"

27 ) . 51

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Ozone + Bicyclo [2 . 2 . l]hept-2-ene (2-Norbornene

83 ATK/ASC4 EX 297 ( 1 . 29±0 . 21 ) ( 9 ) 2

Irradiation in a Teflon bag. Gas-chromato-

- -3 [Ozone] 1 . 0 ^ . graphy. Q = (0. 12 2 )xl molec.cm

O3 + -» products

Ozone + Cycloheptene

83 ATK/ASC4 EX 297 ( 1 . 92±0 . 22) (8) 2

Irradiation in a Teflon bag. Gas-chromatogra- -3 :'- 3 phy. [Ozone] . 12-1 . . Q = (0 2)xl0 molec.cm

Ozone + Bicyclo [2 . 2 . 2] oct-2-ene

83 ATK/ASC4 EX 297 (4 . 38±0 . 54 ) (7 ) 2

Irradiation in a Teflon bag. Gas-chromatogra- 13 -3 phy. [Ozone] (0 . 12-1 . 2)xl0 . Q = molec.cm

H + 02 (+ M) - OH + 0 (+ M) (a)

-* H02 (+ H) (b) Hydrogen atom + Oxygen molecule

83 PRA/WOO EX 231-512 (2 . 85±1 . 27 ) ( 14 ) 0 -796±159 3

kb . Fast-flow discharge. P = (2-10) torr.

Mass-spectrometry . Gas-chromatography. -3 M = Ar. [H] = (2 . 6-6 . 0 )xl0^ molec.cm . 15 -3 [0 = . 2 ] (0-6.0)xl0 molec.cm

H + H02 -» H2 + 02 (a) -+ OH + OH (b) - + H20 0 (c) Hydrogen atom + Hydroperoxo

83 PRA/WOO (k /k 231-464 0 320+120 2.45 b Q ) RL 2.75 2/2 (k /k 298 2. 3+0. 2/2 b a ) RL

(k 231-464 0 2 2.29 b ) SE 2.82(13) *T20±120 Fast-flow discharge. P = (2-10) torr. M = Ar

H02 generated by the reaction: H + 0 -* 2 + M H02 + M.

28 . . ) )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ -» H SH H2 + S Hydrogen atom + Mercapto

81 TIE/WAM EX 298 <1.02(13) 2

Laser-induced Fluorescence in the

(320-330) nm. region. SH generated by H2S photodissociation

in Ar through an ArF excimer Laser,

at 193 nm. P(H = (30-100) 2S] mtorr

P(Ar ) = (5-10) torr.

+ H HN3 - NH2 + N2 (a) - H N (b) 2 + 3 Hydrogen atom +

83 K0D1 RL 303 1.15 2/2

kg/kfa. Photolysis of Hydrazoic acid in Xe, at 313 nm.

Rate constant ratio estimated on the

basis of a proposed mechanism. Gas-chromatography. IR-spectrometry

P(Xe) = (0-600) torr.

P(HN = 50 3 ) torr.

H + CO (+ M) -* CHO (+ M) Hydrogen atom +

78 = CAM/ HAN (M n . . ( 2 > EX 425 (1. 44±0 12 ) 14 = (M Ar) EX 425 (9.. 7±0 . 9) ( 13

Discharge-flow stirred reactor. H atoms

generated by . dissociation of H2

+ -» H CH2 H2 + CH Hydrogen atom + Methylene

83 H0M/WEL2 ES 295 5.0(13) 2

ES 500 5.5(13) 2

ES 1000 6.0(13) 2

Estimations based on a suggested mechanism for the reaction of Ethyne with 0 atoms,

studied in a high-temperature flow-reactor,

with or without added H atoms.

P = 2 torr.

29 ) . ) .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

H + CHO -* H2 + CO (a) -» ECHO (b)

- 0 + CH2 (c) Hydrogen atom + Methyl, oxo-

78 CAM/HAN RL 425 2.1±0.3 2/2

k /k Discharge-flow stirred reactor. a re f.

H atoms generated by dissociation of H . 2 CHO generated by reacting H with CO.

+ -* k ref : 0 CHO products

+ -» H HCHC H2 + CHO (a)

-» CH2OH (b) Hydrogen atom + Formaldehyde

83 GUE/VAN EX -1400 2.0(14) 0 2607 2

k . Premixed flames. g Molecular-beam sampling. Unspecified T-range. P = (22.5-40) torr

H + CH-jSH -* H S + CH (a) 2 3 -» H CH S (b) 2 + 3 Hydrogen atom + (Methyl mercaptan) 312-454 83 AMA/YAM (k a ) DE 6.9(12) 0 841 2

(kb ) DE 312-454 2.9(13) 0 1311 2 Discharge-flow reactor. P = (2. 7-2. 9) torr.

1 t ( H CH3NH2 H2 CH2NH2 a - H CH NH (b) 2 + 3 Hydrogen atom + Methanamine (

73 BLU/WAG EX 473-683 ( 1 . 8±0 . 3 ) ( 13 ) 0 2667±151 2

k 0 + k^. Fast-flow reactor. H atoms generated, by decomposition a of H 2 in microwave dis-

charge. ESR- , and Mass-spectrometry. 17 3 [CH NH ] 6 . OxlO . 3 2 q = molec.cm' P = 5.4 torr.

H + -» C20 CH + CO Hydrogen + atom Carbon oxide (C20)

83 HOR/BAU EX 298 (2.23±0 . 60) (13) 2 = Flow-reactor. M Ar . C generated in the 20 C3O2 photolysis by KrF excimer Laser pulses

at 248 nm. and detected by Laser-induced

fluorescence. H atoms generated in a micro-

wave discharge mixture. [C 0 ] = 0.4 mtorr. 3 2 [H] = (0.8-6. mtorr. [H = (1.5-70) mtorr. 5) 2 ] P(Total) =1.1 torr. (Ar)

30 . . .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

83 SCH/MEU EX 298 ( 1 . 93+0 . 72) ( 13 ) 2 Flow-reactor. C^O generated by the photolysis

of 0=C=C=C=0 with a KrF excimer laser pulse

at 248 nm. H atoms generated by dissociation

H in a microwave-discharge. Laser- of 2 Ar by induced Fluorescence. [H] = (0. 8-8.0) mtorr

[CgC^] = 0.4 torr.

-* H + CH2=CH2 (+ M) H2 + CH2=CH (+ M) (a) + CH CH M) (b) 3 2 (+ Hydrogen atom + Ethene

83 SRI/KAU (P(Total) = 0.42 torr.) EX 298 7.47(10) 2

(P(Total) = 6.0 torr.) EX 298 2.02(11) 2

k Q + k^. Discharge-flow reactor. H atoms generated by dissociation in a micro- of H 2

wave-discharge . Resonance-fluorescence

M = He. P(Total) = (0.42-6) torr.

[Ethene] = ( 0 . 5-6 . 0 )xl0^ molec.cm

[H] q ~ 8xl0*°atom. cm'^ Other rate constants tabulated for various pressures within the given P-range. The rate constant increases with the pressure.

H + CHgCH-j + C03 + CH^ Hydrogen atom +

83 BAC ES 823 <4.4(1) 2

ES 983 <1.4(2) 2 Thermolysis of Ethane.

P = 300 torr.

H - [CH CH -* CH =CH OH (a) + ^ 2 2OH]f 2 2 + •+ + CH2=CH H20 (b)

- h2 + A. < c > Hydrogen atom + Oxirane ()

83 LIF/BEN (k ) 830-1200 a ES 9.5(10) 0 2516 2 830-1200 (k b ) ES 5.0(9) 0 2516 2

(k ) ES 830-1200 0 4177 c 2.0(13) 2 of Ethylene oxide diluted in Ar,

behind reflected shock-waves, in a single- pulse shock-tube. Gas-chromatography.

P = (1.5-10) atm. Rate constants estimated

on the basis of a suggested mechanism.

31 .

-- A. Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

H + 0=C=C=C=0 -» products

Hydrogen atom + 1 , 2-Propadiene-l , 3-dione

76 HAC/PIL EX 296-481 ( 1 . 7±0 . 6 ) ( 13 ) 0 1480±180 2 Isothermal discharge-flow. ESR-spectrometry

P = (2-4) torr.

H i C^Hg CH (a)

-* CHgC^CH (b)

Hydrogen atom + 1-Propynyl, or 2 Propynyl,

or 1 , 2-Propadienyl

83 H0M/WEL2 (k + k ) ES 295 2.7(13) 2 fl b (k a + kb ) ES 500 4.3(13) 2 + <*a kb ) ES 1000 6.3(13) 2 Estimations based on a suggested mechanism

for the reaction of Ethyne with 0 atoms in

a high-temperature flow-reactor, with or

without added H atoms. P = 2 torr.

H + CH^CCaCH -* products

Hydrogen atom + 1 , 3-Butadyine

83 H0M/WEL2 ES 295 1.3(12) 2

ES 500 3.5(12) 2

ES 1000 7.5(12) 2

Estimations based on a suggested mechanism

for the reaction of Ethyne with 0 atoms in

in a high-temperature flow-reactor, with or

without added H atoms. P = 2 torr.

H + CH CH CH=CH -* 3 2 2 CH3CH2CB2CH2 (b) Hydrogen atom + 1-Butene

83 KYO/WAT EX 200-500 ( 1 . 49±0 . 26 ) ( 13 ) 0 751±47 2

kb . Pulse-Radiolysis. Resonance-Absorption. H atoms generated by pulse-irradiation of H 2

with high-energy electrons. ) = 600 torr. P(H2 P(l-Butene) = (0.01-0.1) torr.

D + CH CH CH=€H -* 3 2 2 CH3CB2CHDCH2 (a) -* CH CH CHCH D (b) 3 2 2 atom + 1-Butene

83 KYO/WAT EX 200-500 ( 1 . 46±0 . 43 ) ( 13 ) 0 826±85 2

k Q . Pulse-Radiolysis. Resonance-absorption. D atoms generated by D pulse-irradiation of 2 with high-energy electrons. P(D = 600 torr. 2 ) P(l-Butene) = (0.01-0.1) torr. 4. Table of Chemical Kinetic Data for CombuEtion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ -» CH=CHCH (a) H cis-CH-jCH=CHCHg H2 + CH3 2 -* H CH CHCH=CH (b) z + 3 2 -» CH CH CHCH (c) 3 2 3 Hydrogen atom + 2-Butene, (Z)-

83 KYO/WAT EX 200-500 ( 1 . 61±0 . 23 ) ( 13 ) 0 965±42 2

k . Pulse -Radiolysis . Resonance-Absorption. c H atoms generated by pulse-irradiation of H 2 with high-energy electrons.

P(l-Butene) = (0.01-0.1) torr.

P(H = 600 torr. 2 )

s D t c i -CH CH=CHCH -* CHDCHCH 3 3 CH3 3 Deuterium atom + 2-Butene, (Z)-

83 KYO/WAT EX 200-500 ( 1 . 36±0 . 11 ) ( 13 ) 0 1048±24 2

Pulse-Radiolysis. Resonance-Absorption. D

atoms generated by pulse-irradiation D of 2 with high-energy electrons. = 600 torr. P(D 2 ) P(l-Butene) = (0.01-0.1) torr.

H + trans-CH CH=CHCH -» H CH CH=CHCH (a) 3 3 2 + 3 2 -* t H2 CH3CHCH=CH2 (b) -* CH CH (c) 3 2CHCH3 Hydrogen atom + 2-Butene, (E)-

83 KYO/WAT EX 200-500 (2 . 39±0 . 16 ) ( 13 ) 0 1055±19 2

k . c Pulse-Radiolysis. Resonance-Absorption. H atoms generated by pulse-irradiation of H 2

with high-energy electrons. P(H ) = 600 2 torr. P(l-Butene) = (0.01-0.1) torr.

D + trans-CH CH=CHCH -» 3 3 CH3CHDCHCH3 Deuterium atom + 2-Butene, (E)-

83 KYO/WAT EX 200-500 ( 1 . 40±0 . 14 ) ( 13 ) 0 1025±27 2

Pulse-Radiolysis . Resonance-Absorption.

D atoms generated by pulse-irradiation of D 2

with high-energy electrons. P(D ) = 600 torr. 2 P( 1-Butene) = (0.01-0.1) torr.

H + (CH ) C=CH M) - (CH C (+ M) (a) 3 2 2 (+ 3 ) 3 Hydrogen atom + 1-Propene, 2-methyl- (Isobutene)

83 KYO/WAT EX 200-500 ( 1 . 25±0 . 10 ) ( 13 ) 0 433±25 2

k Q . Pulse-Radiolysis Resonance-Absorption. H atoms generated by pulse-irradiation of u 2 with high-energy electrons. P(H = 600 2 ) torr. P(l-Butene) = (0.01-0.1) torr.

33 . . . ) , ) ,

4 -- Continued , Table of Chemical Kinetic Data for Combustion Chemistry

Reaction, Reference Code, Notes Data T/K k ,k/k (ref ) n B k,A k err.

type A, A/A(ref B-B(ref) units factor

D (CH C=CH -* (CH CDCH (a) + 3 ) 2 2 3 ) 2 2

-* cch3 ) 2CCH2D (b) Deuterium atom + 1-Propene, 2-methyl- (Isobutene)

83 KYO/WAT EX 200-500 ( 9 . 28±0 . 11 ) ( 12 ) 0 442±41 2

k^. Pulse-Radiolysis. Resonance-Absorption.

D atoms generated by pulse-irradiation of D 2 with high-energy electrons. P(l-Butene) = (0.01-0.1) torr

P(D = 600 torr. 2 )

Hydrogen atom + Methyl, phenyl- (Benzyl) * , methyl- ()

75 LUU/GLA ES 298 ( 5 . 95±4 . 05 ) ( 13 ) 2 Benzyl generated by Flash-photolysis of ~0.06

torr. 1,3,5-Cycloheptatriene, . in Ar or N2

H2 + C20 -» products Hydrogen momecule + Carbon oxide (C20)

83 HOR/BAU EX 298 ( 4 . 22±1 . 81 ) ( 11 ) 2 = Flow-reactor. M Ar. C 20 generated in the C 0 photolysis by KrF excimer Laser pulses 3 2 at 248 nm. and detected by laser- induced

Fluorescence. P(Total) = 1.6 torr. (Ar).

[H = 2 ] (1.5-70) mtorr. [0] =2.1 mtorr [C3O2) = 7 mtorr.

+ -* OH HQ2 H20 + 02 Hydroxyl + Hydroperoxo

83 SCH EX 298 ( 4 . 46±0 . 12 ) ( 13 ) 2

Reaction of OH with H0 in a fast-flow 2 reactor. Laser-magnetic resonance. Resonance- fluorescence. Resonance-absorption.

P = (1-5) torr. (He, or Ar)

83 TEM EX 296 (4.0±1.2(13) 2

Reaction of OH with H0 2 by Far-Infrared Laser-Magnetic-Resonance Spectrometry

OH + H 0 + 2 2 H02 + H2Q Hydroxyl + Hydrogen peroxide

83 LAM/MOL EX 241-413 (6 . 47+1 . 84 ) (10) 2.5 -838±86 2

EX 294 ( 1 . 08+0 . 18 ) ( 12 2 . . . ) .

Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

The preexponential factor expressed as:

(T/298)^'^. Reaction in a Pyrex cell. Resonance-fluorescence. OH generated by

Flash-photolysis of H O or HONO . 2 2 , 2 = (5-10) = 760 P(H0N02 ) torr. P(He) torr

P(H 0 ) = (0.7-1. torr. 2 2 2) 83 TEM EX 296 (1.0±0.2(12) 2 Reaction by Far-IR Laser-Magnetic-Resonance Spectrometry

OH + M) - M) S02 (+ HS03 (+ Hydroxyl +

83 PAR/SIN (M = N . P = 55 torr. 297 ( . 4±0 . ( 2 ) EX 1 4 ) 11) 2

(M = N • P 760 torr.) EX 297 ( . . ( 2 5 7±0 8) 11) 2 = (M SFg. P = 100 torr. EX 297 (3 . 0±0 . A ) ( 11) 2

(Limiting low-pressure k.) ES 297 5.7(16) 3 Extrapolation of experimental

data to low P's.

(Limiting high-pressure k.) ES 297 (7 . 4±0 . A ) ( 11) 2

Fit of experimental data to Lindeman mechanism.

Reaction of OH with S0 in excess N 2 2 by Flash-photolysis /Resonance- absorption.

OH generated by Flash-Photolysis of N 20/H2 mixtures, or by Photolysis of H 20.

P(N ) = (55-760) torr. P(H ) = 50 torr. 2 2 = (OH] ( 1 . 81-3 . ODxlO^ molec.cm"^.

[S0 ^ 2 ] ~2.1xl0^ molec.cm Pressure-dependent reaction. Other k’s at

different pressures in the (55-760) torr. range are given. The pressure dependence

is given by the expression: k = (7.4xlO U )/(l+237/P) - where P is in torr. and k is in cm^mol’^s *.

OH + NO (+ M) - HONO (+ M)

Hydroxyl + Nitrogen oxide (NO)

83 BUR/WAL EX 295 (3 . 99±0 . 36) ( 17 ) 3 = M N . M-efficiencies relative to N are: 2 2

1.00(N 0 . 55(He) 0.67(Ar). 2 ), , Discharge-flow system. OH generated by reacting H with N0 . 2 Resonance- f luorescence

P(Total) = (1-5) torr.

35 . ) . )

4 . Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + N02 (+ M) -* H02 + NO (+ M) (a)

-» H0N02 (+ M) (b) + oxide (N0 Hydroxyl Nitrogen 2 )

83 BUR/WAL EX 295 ( 9 . 79±0 . 73 ) ( 17 ) 3 = M N2 . M-ef f iciencies relative to N2 are:

1.00(N 0 . 59 ( Ar 0.59(He), O.96(0 2 ), ) , 2 ), Discharge-flow system. 1.67(C02 ).

OH generated by reacting H with N02 . Resonance-fluorescence

P(Total) = (1-5) torr.

- OH + CO H + C02 (a) -+ any other products (b) Hydroxyl + Carbon monoxide

83 RAV/THO EX 250-350 ( 1 . 33±0 . ( 11 0 145±100 2 a 55)

(k ( . . ( 2 a ) EX 298 8 67±0 72 ) 10

Resonance-fluorescence . Flash-photolysis

OH generated by pulse-radiolysis of H 20, -3 at 165 nm. [OH] = (l-lO)xlO^ molec.cm . 15 -3 [CO] = (0. l-6.0)xl0 molec.cm .

Experimental rate constants at various temperatures within the (251-1040) K range

are tabulated, giving a strongly curved

Arrhenius plot. A non-linear least-squares fit gives the expression: 23 -3 k = 6 . 02xl0 exp( -30 . 03±1 . 22x10 T 3 - -3 cm mol ^s .

-» OH + CH^ H20 + CHg Hydroxyl +

83 BAU/CRA RN 403-696 2.87(11) 2.13 1233 2/2

(Alternate eqn. ) RN 403-696 1.65(11) 2.4 1060 2/2

The preexponential factors expresed as: n (T/298) . Reaction in a conventional

"mercury free” vacuum line. OH generated

by photolysis of H 0 at 184.9 nm. 2 Gas-chromatography. [CO] = (5.7-75) torr.

[H = 20] (12.3-28.1) torr. P(Total) < 97.5 torr.

-> k : OH + CO H + C0 ref 2

OH + CHO -* H20 + CO Hydroxyl + Methyl, oxo-

83 TEM EX 296 ( 1 . 1±0 . 3 ) ( 14 ) 2 Far-IR Laser-Magnetic-Resonance Spectrometry.

36 . . . . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ -* + OH HCHO H20 CHO (a) - H20 + CHOf (b) - HCOOH + H (c) Hydroxyl + Formaldehyde

83 GUE/VAN EX -1400 4.1(13) 0 710 2

k . Premixed flames. 0 Molecular-beam sampling. Mass-spectrometry Unspecified T-range.

P = (22.5-40) torr.

83 TEM EX 296 ( 5 . Oil . 0 ) ( 12) 2

k a . Far-IR Laser-Magnetic-Resonance Spectrometry.

+ -» OH CH3OH 020 + CH20H (a) -* H + (b) 20 CH3O Hydroxyl +

83 HAG/LOR (k k ) 295-420 . . ( 0 a + b EX ( 7 23±1 81 ) 12) 810±50 2

( k k + k ( . . < a /< a b>> RL 298 1 1±0 3 ) -1 2/2

( < k k + k RL 393 (2 . 2±0 . - a'< a b» 7 ) 1 2/2 Laser-photolysis/Resonance- fluorescence OH generated by Laser-photolysis of H0N02 at 248 nm. <75 P(H0N02 ) mtorr - [OH] = 4.0x10^ molec.cm ^.

83 TUA/CAR1 RL 300 0.314±0.024 2/2

k a + kjj. Teflon rectangular vessel. FTIR-Spectrometry OH generated by reacting O with NH =NH . 3 2 2

+ (CH 0 -* ^ref' 3 ) 2 products. P = 735 torr.

OH + CH OOH -» H 0 + CH OOH 3 2 2 (a) - H 0 + CH 0 (b) 2 3 2 Hydroxyl + Hydroperoxide, methyl-

83 NIK/MAK (k /k a b ) RL 298 0.77±0.15 2/2 (k k a + b ) RN 298 6.02(12) 2

FTIR-technique . OH generated by photolysis

of CH 0N0, or CH CH 0N0. 3 3 2 kg + kb derived from the ratios

< k + k )/k and (k k )/k a b refl a + b ref2

where k : OH + CH =CH and ref 1 2 2 ,

k ' OH + CH ref 2 3CHO.

37 . . .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(re£) B-B(ref) units factor

OH + CS2 -» SH + COS (a) -* SOH + CS (b)

-* any other products (c)

Hydroxyl +

83 BAR/BEC EX 293 ( 1 . 63±0 . 36) ( 12) 2 v overall. FTIR- using photolytic and nonphotolytic competitive techniques.

The effective k is dependent on T,P, and 0 2 concentrations. P(Total) = 760 torr.

OH + CHgSH -* products Hydroxyl + Methanethiol (Methyl mercaptan)

83 LEE/TAN EX 296 ( 1 . 54±0 . 27 ) ( 13 ) 2 Discharge-flow. OH generated by the reaction:

+ -* + H N02 OH NO. H atoms generated by decomposition of H 2 in He, by a microwave-discharge.

Resonance- f luorescence = 10 3 [OH] 7xl0 molec.cm' .

^ 3 -3 [CH^SH] = ( 1 . 3-9 . 7 )xl0 molec.cm .

83 MAC/POU EX 293 ( 1 . 26±0 . 60 ) ( 12) 2 Discharge-flow. EPR-spectrometry

OH + CH-jONO -» products Hydroxyl + methyl ester

1 83 TUA/CAR1 ) RL 300 0 . 038±0 . 007 2/2

k : 0H + CH (CH ),CH products ref 3 2 3 - 1 83 TUA/CAR1 ) RN 300 ( 1 . 33±0 .24(11) 2 Put on absolute basis by using the literature value of the rate constant for the reaction:

OH + CHgCCH^^CHg -* products.

1 83 TUA/CAR1 ) RL 300 0 . 04 1±0 . 009 2/2

-+ k ; OH + (CH ) 0 products. re f 3 2 1 83 TUA/CAR1 ) RN 300 (8.43±2. 40(10) 2 Put on absolute basis by using the literature value of the rate constant for the reaction:

OH + (CH ) -» products. 3 20 83 TUA/CAR1 *) SE 300 1.08(11) 2 Average of the two normalized rate constants given above

1 ) Teflon vessel. FTIR-Spectrometry . OH

generated by reacting with . O 3 NH2=NH 2 P = 735 torr.

38 ) . .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + CH^CH -* H + CH2=C=0 (a) - ce=c=o (b) h2 + + (c) CO CH3 -» H + CH^COE (d)

-» [HO.CH^CH]* (e) Hydroxyl + Ethyne

83 TEM EX 296 (9 . 4±2 . 0) ( 10) 2

^overall - R0ac tion of OH with CH=CH by Far- IR Laser-Magnetic-Resonance Spectrometry.

OH + CH2=CH2 -» CH2CH2OH -» products (a)

-* H20 + CH2+CH (b) Hydroxyl + Ethene

83 TUL EX 291-591 ( 1 . 05±0 . 32) ( 12) 0 -462±108 2

k . a a Reaction in flow-reactor, in He diluent. OH generated by the 193 nm. photo- lysis of N 0 to O(^D) 2 and N2 and subsequent reaction of 0(^D) with H 0. dye 2 Tunable Laser Fluorescence. P(He) = (50-600) torr.

OH + CH3CH3 -• + H20 CH3CH2 Hydroxyl + Ethane

X 83 BAU/CRA ) RN 300-2000 1.11(12) 1.9 570 2/2 OH generated by the photolysis of H 0 at 2 184.9 nm. Gas - chromatography

P(Total) < 97.5 torr. [CO] = (5.7-75) torr. = [H20] (12.3-28.1) torr.

k : OH + CO - H + C0 ref 2 x 83 TUL/RAV ) EX 297-800 3.41(12) 1.05 911 2

Flash-photolysis . Resonance-fluorescence

OH generated by Flash-photolysis 0. of H 2 *) The preexponential factors expressed as: n (T/298 .

OH + OCHCHO -» products

Hydroxyl + Ethanedial (Glyoxal, or Diformyl)

83 PLU/SAN RN 298 (6 . 93±0 . 24 ) ( 12) 2

Reaction of OH with Glyoxal by a competitive technique, in an environmental chamber.

OH generated by photolysis of a CH ONO/Air 3 mixture.

k re £: OH + -* products.

39 . . . . 5 ( )

4. Table of Chemical Kinetic Data for Combustion Chemistry - Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + CH3CH2SH -* products

Hydroxyl + Ethanethiol (Ethyl mercaptan)

83 LEE/TAN EX 296 ( 2 21± 0 . 11 ) 13 2 , ) Discharge-flow. OH generated by the reaction: + H +,N02 - OH NO. H atoms generated decomposition of H by 2 in a microwave-discharge. Resonance-fluorescence 3 3 [OH] = 7xl0^ molec . cm . 12 -3 [CH3SH] = ( 1 . 3-9 . 7 )xl0 molec. cm .

83 MAC/POU EX 293 ( 1 . 63±0 . 12 ) ( 13 2

Discharge- flow. EPR-spectrometry

OH + (CHg) 2S -* products Hydroxyl + Methane, thiobis- (Dimethyl sulfide)

83 MAC/POU EX 373 ( . 54+0 . 36 ) 12 ) 2

EX 573 ( A . 70±0 . 60 ) ( 12 2 Discharge-flow. EPR-Spectrometry.

+ -» OH 0=C=C=OO C02 + CH=

Hydroxyl + 1 , 2-Propadiene-l , 3-dione

76 HAC/PIL • EX 296-481 ( 5 . 0±2 . 0 ) ( 12) 0 1560±130 2

^overall ' Discharge-flow. ESR-Spectrometry

P = (2-4) torr.

+ OH CH2=C=CH2 - products Hydroxyl + 1,2-Propadiene (Aliens)

83 OHT RN 297 ( 6 . 20±0 . 66) ( 12 ) 2

Reaction in 0 /N gas, in a quartz 2 2 reaction cell. H 0 OH generated by 2 2 photolysis. = = P(H 1 - 202 ) torr. P(02 ) 10 torr ~ 760 P(Total) torr. (mostly N 2 ).

P(Allene) ~ 1 mtorr.

k determined relative to the reaction:

OH + CH -* 2 =CHCH=CH2 products

OH + CE^CE=CB2 products Hydroxyl + 1-Propene

X 83 ATK/ASC2 ) RL 298 4.74±0.17 2/2

+ -* k re ^: OH CH3 (CH2 )^CH3 products. 1 83 ATK/ASC2 ) RN 298 ( 1 . 63±0 . 07) ( 13 ) 2

Placed on an absolute basis by using the k

for the reaction of OH with Hexane.

40 . . ) )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

1 ) Irradiation in a Teflon bag. OH generated by Photolysis of CHgONO in Air. Gas-chromatography. P(Total) = 735 torr.

[Methyl ] = 2.38x10^ molec.cm ^

83 OHT RN 297 ( 1 . 76±0 . 06) ( 13 ) 2

OH with 1-Propene in O /N gas, Reaction of 2 2 in a quartz reaction cell. OH generated by

photolysis of H2O2 . = = P(H202) 1 torr. P(02 ) torr. ~ P(Total) 760 torr. (mostly N2 ).

P( 1-Propene) ~ 1 mtorr. k determined relative

+ -* to the reaction: OH CH2=CHCH=CH 2 products. 83 SMI EX 255-A58 9.58(10) 0 -1A70±130 2 1.18

EX 298 ( 1 . 14±0 . 18 ) ( 13 2 Discharge-flow. Resonance-fluorescence. OH

H + -* + generated by the reaction: NO2 OH NO 2

[1-Propene] = (0 . 07-8 . 51)xl0^ molec.cm .

OB + CH CH CB -» H 0 + (CB CB (a) 3 2 3 2 3 ) 2 - + CB (b) H20 CH 3CH2 2 Hydroxyl +

1 83 BAU/CRA ) ( k ) RN 300-2000 3. A 590 2/2 a +k b 1.03(11) "Mercury free” vacuum system. OH generated

by Photolysis of H 20 at 18A.9 run. Gas-chromatography. [CO] = (5.7-75) torr.

-» k : OH + H + . P(Total) < . 5 tor . ref CO C02 97 = [H20] (12.3-28.1) torr. 1 83 TUL/RAV ) (k + k ) EX 297-800 2.79(12) 1.A0 A28 2 a fa

Flash-photolysis . Resonance-fluorescence

OH generated by Flash-photolysis of H 0. 2 1 ) The preexponential factors expressed as: n (T/298) .

OH + CH =CHCHO -» + 2 H20 CH2=CHCO (a) -* any other products (b) Hydroxyl + 2-Propenal () (Acrylaldehyde

83 ATK/ASC3 k ( overall /k ref > RL 299 0.727±0.050 2/2 k OH + CH CH=CH * products. re f: 3 2

(k RN 299 ( 1. 10±0 . (13) 2 overall ) 08) Irradiation of Acrolein/Methyl nitrite/Air

mixtures in a Teflon reaction bag.

OH generated by photolysis of CH ONO in Air. 3 Gas-chromatography. P = 735 torr. - [Methyl nitrite] ^. Q = 2.38x10'^ molec.cm . . . . ))

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

^overall pl- ac8c* on an absolute basis by using the k for OH + 1-Propene.

+ -* OH CH3C(0)CH0 products Hydroxyl + Propanal, 2-oxo- (Methylglyoxal)

83 PLU/SAN RN 298 ( 1 . 04±0 . 08) ( 13 2 Competitive technique, in an environmental

chamber. OH generated by photolysis of a CH mixture. The 3 ONO/Air rate constant put on an absolute basis by using k for the reaction: OH * 0 products 3 [Methylglyoxal] ~2.4xl0^ molec.cm . 13 3 [CH3ONO] ~(3-20)xl0 molec.cm' .

(CH -» + (a) OH + 3 ) 2CO H20 CH2C(0)CH3 -» any other products (b) Hydroxyl + 2-Propanone ()

83 CHI/BIG

generated by HONO vapors in synthetic air.

Gas-chromatography . IR-spectrometry

k determined relative to the reaction:

OH + CH-^CH^^CHj -» products.

+ OH CH2=CHCH=CH2 -* products Hydroxyl + 1,3-Butadiene

83 OHT RN 297 ( 1 . 62±0 . 13 ) ( 13 2

Reaction in 02 /N2 S a s. in a quartz cell. OH generated of H by photolysis 202 = P(H 0 ) = 1 torr. 10 torr 2 2 P(02 ) P(Total) ~ 760 torr. (mostly N2).

P( 1 , 3-Butadiene ) ~ 1 mtorr

OH + trans-CH CH=CHCHg -* 3 products Hydroxyl + 2-Butene, (E)-

83 OHT RN 297 (3 . 67±0 . 19) ( 13 2

Reaction in 0 /N gas, in cell. 2 2 a quartz

OH generated by photolysis of H 0 . 2 2

P(H = 1 torr. = 202) P(02 ) 10 torr. P(Total) ~ 760 torr. (mostly N2).

P(trans-2-Butene) ~ 1 mtorr. k determined relative to the reaction:

OH + cis-CH =CHCH=CHCH products. 2 3 -

42 3 . . ) . . .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

oh i cii^ci^cn cn + + ch^ch^ch^ch^ ^ a ^

-+ H2® CH3CH2CHCH3 (b)

Hydroxyl + Butane

83 TUA/CAR1 (k k ) RL 300 0.347±0.005 2/2 g + b Reaction in a Teflon vessel. FTIR-Spectrometry OH generated by reacting O3 with NH2=NH2 P(Total) = 735 torr

k : OH + + products. re f

OH + -* products jJ

Hydroxyl + Furan

83 ATK/ASC2 *) RL 298 7.04+0.50 2/2 + k re £: OH CH3(CH2)^CH3 + products.

83 ATK/ASC2 *) RN 298 (2 . 4 1±0 . 18 ) ( 13 ) 2 Placed on an absolute basis by using the

k for the reaction of OH with Hexane.

* ) Irradiation of C^ONO/Furan/Air mixtures in a Teflon reaction bag. OH generated by Photolysis of CH3ONO in Air. Gas-chromatography.

P(Total) = 735 torr. = 4 [Methyl nitrite] 2.38xl0* molec . cm

OH + CH3CH=CHCHO products Hydroxyl + 2-Butenal (

83 ATK/ASC3 *) RL 299 1.39±0.16 2/2

k : OH + CH3CH=CH2 + re f products. *) 83 ATK/ASC3 RN 299 (2 . 19±0 . 24 ) ( 13 ) 2 Placed on an absolute basis by using the k for the reaction of OH with CH3CH=CH2

1 ) Irradiation of Crotonaldehyde/CHjONO/Air

mixtures in a Teflon bag. OH generated by

photolysis of CH3ONO in Air. Gas-chromatography

P(Total) = 735 torr. - [Methyl nitrite] "*. Q = 2.38x10*3 molec. cm

OH + CH2=C ( CH3 ) CHO -* products Hydroxyl + 2-Propenal, 2-methyl- (Methacrolein)

1 83 ATK/ASC3 ) RL 299 1.13±0.09 2/2

k re £: OH + CH3CH=CH2 -+ products. 1 83 ATK/ASC3 ) RN 299 ( 1 . 72±0 . 14 ) ( 13 ) 2 Placed on an absolute basis by using the

k for OH + CH CH=CH . 3 2

43 . .

-- 4 . Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

* ) Irradiation of Methacrolein/CH-jONO/Air

mixtures in a Teflon bag. OH generated

by photolysis of CHgONO in Air. Gas-chromatography.

P(Total) = 735 torr. - '1 [Methyl . nitrite] Q = 2.38x10^ molec.cm

OH + CH-jC( 0)CH=CH2 -» products Hydroxyl + 3-Buten-2-one (Methyl vinyl ketone)

X 83 ATK/ASC3 ) RL 299 0.747±0.055 2/2

k : OH + CH CH=CH products. re f 3 2 * X 83 ATK/ASC3 ) RN 299 (1. 13±0 . 08) ( 13) 2

Placed on an absolute basis by using the

k for OH + CH CH=CH . 3 2

* ) Irradiation of Methyl vinyl ketone/CH^ONO/Air

mixtures in a Teflon bag. OH generated

by photolysis of CHgONO in air. Gas-chromatography.

P(Total) = 735 torr.

^ [Methyl nitrite] Q = 2.38x10^ molec.cm .

OH + -* products

Hydroxyl + Thiophene

1 83 ATK/ASC2 ) RL 298 1.68±0.06 2/2

k : OH + CH (CH2)^CH -* products. re f 3 3 X 83 ATK/ASC2 ) RN 298 (5 . 77±0 . 23 ) < 12) 2 Placed on an absolute basis by using the

k for OH + Hexane.

1 ) Irradiation of Methyl nitrite/Thiophene/Air

mixtures in a Teflon bag. OH generated

by photolysis of CH3ONO in Air. Gas-chromatography. P(Total) 735 torr. - [Methyl nitrite] = 2.38x10'''*' molec.cm ^.

83 MAC/JOU EX 293-473 (7 . 83±4 . 82) ( 10 ) 0 -1750±200 2 Discharge-flow reactor. OH generated by the

reaction: H + NO -* OH + N. OH atoms gene- rated of by dissociation H2 traces in He by a microwave-discharge. EPR- spectrometry

11 ^ . 5-1 [OH] q = (0 . 9)xl0 atoms . cm 23-4 -1 [Thiophene] . . . Q = (0 87 )xl0'*'^ molec.cm P = (0.47-0.60) torr.

44 4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ =C=CHCH CH -» products OH CH2 2 3 Hydroxyl + 1,2-Pentadiene

83 OHT RN 297 (2 . 19±0 . 08 ) ( 13 ) 2

0 gas, in a cell. Reaction in 2 /N 2 quartz

of H 0 . OH generated by photolysis 2 2

P(H 0 = 1 torr. P(0 torr. 2 2 ) 2 )

P(Total) ~. 760 torr. (mostly N2 ).

P( 1 , 2-Pentadiene ) ~ 1 mtorr. k determined relative to the reaction:

-*• OH + CH =CHCH=CH products . 2 2

+ -* OH cis-CH2=CHCH=CHCH3 products

Hydroxyl + , 3-Pentadiene (Z)- 1 ,

83 OHT RN 297 (6 . 20±0 . 18 ) ( 13 ) 2

Reaction in 02 /N 2 gas, in a quartz cell.

OH generated 0 _ by photolysis of H 2 2

P(H 0 = 1 torr. P(0 torr. 2 2 ) 2 ) P(Total) ~ 760 torr. (mostly N 2 ).

P( cis-1 , 3-Pentadiene ) ~ 1 mtorr.

k determined relative to the reaction: OH + CH =CHCH=CH products. 2 2 -

+ -* OH CH2=CHCH2CH=CH2 products

Hydroxyl + 1, 4-Pentadiene

83 OHT RN 297 ( 3 . 05±0 . 08 ) ( 13 ) 2

Reaction in 0 /N gas, in a quartz 2 2 cell.

OH generated of H 0 . by photolysis 2 2

P(H 0 ) = 1 torr. P(0 = 10 2 2 2 ) torr. P(Total) ~ 760 torr. (mostly N 2 ).

P( 1 , 4-Pentadiene) ~ 1 mtorr.

k determined relative to the reaction:

OH + CH CH=CH -* products. 3 2

OH + CH =C=C(CH -* products 2 3 ) 2 Hydroxyl + 1,2-Butadiene, 3-methyl-

83 OHT RN 297 ( 3 . 49±0 . 11 ) ( 13 ) 2

Reaction in 0 /N gas, in a quartz 2 2 cell.

OH generated by photolysis of H 0 . 2 2

P(3-Methyl-1 , 2-Butadiene ) ~ 1 mtorr. P(Total) ~ 760 torr. (mostly N2 ).

P(0 ) = 10 torr. P(H 0 ) 1 torr. 2 2 2 k determined relative to the reaction: OH + CH2=CHCH=CH2 - products.

45 ) )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + CH2=C(CHg )CH=CB2 “* products Hydroxyl + 1,3-Butadiene, 2-methyl-

83 OHT RN 297 (6 . 08±0 . 18 ) ( 13

Reaction in O2/N2 gas, in a quartz cell.

OH generated by photolysis of H2O2.

P(H202) = 1 torr. P(02> = ^ torr.

P(2-Methyl-1, 3-Butadiene) ~ 1 mtorr.

P(Total) ~ 760 torr. (mostly N2).

k determined relative to the reaction:

+ -* products. OH CH2=CHCH=CH 2

OH + o -* products Hydroxyl + Cyclopentene

1 83 ATK/ASC5 ) RL 298 0 . 666±0 . 024 2/2

k : OH + CH =C(CH )CH=CH products. ref 2 3 2 - 1 83 ATK/ASC5 ) RN 298 (3 . 85±0 . 14 ) ( 13

Placed on an absolute basis by using the

k for OH + 2-Methyl- 1,3-Butadiene (Isoprene).

* ) Irradiation of Cyclopentene/CH^ONO/Air

mixtures in a Teflon bag.

Gas-chromatography. P(Total) = 735 torr. (Methyl nitrite] Q = 2.38x10^ molec.cm”^

00 + traas-CH^CTbCBCE^CH-j -* products

Hydroxyl + 2-, (E)-

83 OHT RN 297 ( A . 13±0 . 13 ) ( 13 ) 2

Reaction in O2/N2 gas, in a quartz cell.

OH generated by photolysis of H2O2.

PCH202) = 1 torr. P(02> torr.

P(Total) ~ 760 torr. (mostly N2). P(trans-2-Pentene) ~1 mtorr.

k determined relative to the reaction:

OH + CH2=CHCH=CH2 -* products.

OH + ( CHg C=CHCH -* products ) 2 3 Hydroxyl + 2-Butene, 2-methyl-

83 OHT RN 297 ( 5 . 25±0 . 16 ) ( 13 ) 2

Reaction in O2/N2 gas, in a quartz cell.

OH generated by photolysis of H2O2.

P(H202) = 1 torr. P(02) = torr.

P(Total) - 760 torr. (mostly N2). P(2-Methyl-2-Butene) ~1 mtorr.

k determined relative to the reaction: OH + CH products. 2 =CHCH=CH 2 -

46 . . )))

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + -» products

Hydroxyl + 1 , 3-Cyclohexadiene

1 83 ATK/ASC5 ) RL 298 1.62+0.05 2/2

k : OH + CH =C(CH )CH=CH products ref 2 3 2 1 83 ATK/ASC5 ) RN 298 ( 9 . 40±0 . 33 ) ( 13 2 Placed on an absolute basis by using the

k for OH + 2-Methyl-l , 3-Butadiene (Isoprene). *) Irradiation of 1,3-Cyclohexadiene/CH ONO/Air 3 mixtures in a Teflon bag.

Gas-chromatography. P(Total) = 735 torr. 3 3 [Methyl nitrite] D = 2.38xl0* molec.cnT .

OH + -* products

Hydroxyl + 1 , 4-Cyclohexadiene

1 83 ATK/ASC5 ) RL 298 0 . 988±0 .040 2/2

k : OH + CH =C(CH )CH=CH -* products. ref 2 3 2 1 83 ATK/ASC5 ) RN 298 ( 5 . 70±0 . 23 ) ( 13 2 Placed on an absolute basis by using the k for OH + 2-Methyl-l, 3-Butadiene (Isoprene).

1 ) Irradiation of 1 , 4-Cyclohexadiene/CH-jONO/Air

mixtures in a Teflon bag.

Gas-chromatography. P(Total) = 735 torr.

3 -3 [Methyl . nitrite] Q = 2.38xl0~ molec.cm

83 OHT RN 297 ( 5 . 94±0 . 19 ) ( 13 2

Reaction in 0 /N gas, 2 2 in a quartz cell.

P(H 0 ) = 1 torr. = 2 2 P(02 ) 10 torr.

OH generated by . photolysis of H 202

P(l,4-Cyclohexadiene) ~ 1 mtorr.

P(Total) -760 torr. (mostly N2 ). k determined relative to the reaction: OH + CH 2 =CHCH2CH2CH=CH 2 - products.

s OH + tr an -CH =CHCH=CHCH CH -+ products 2 2 3

Hydroxyl + , 3-Hexadiene 1 , (E)-

83 OHT RN 297 (6 . 92+0 . 18) ( 13 2

Reaction in 0 /N 2 2 gas, in a quartz cell.

OH generated by H 0 . photolysis of 2 2 = = P(H 0 ) 1 torr. 1° - 2 2 P(02 ) torr

P(trans-1 , 3-Hexadiene ) - 1 mtorr.

P(Total) - 760 torr. (mostly N 2 ). k determined relative to the reaction: OH + CH 2=CHCH=CH 2 + products

47 . . .. ) )

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + trans-CH2=€HCH2CH=CHCHg -* products

Hydroxyl + , 4-Hexadiene (E)- 1 ,

X 83 OHT ) RN 297 ( 5 . 19±0 . 24 ) ( 13 ) 2

k determined relative to the reaction: OH + CH CH=CH products. 3 2 - 1 83 OHT ) RN 297 ( 5 . 57±0 . 33 ) ( 13 ) 2

k determined relative to the reaction:

+ CH -* OH 2=CHCH=CH 2 products ^) Reaction in 02 /N2 gas, in a quartz cell.

OH generated by photolysis of H 0 . 2 2 = = P(H 202 ) 1 torr. P(02 ) 10 torr.

P(trans-1 , 4-Hexadiene ) ~ 1 mtorr.

P(Total) ~ 760 torr. (mostly N ). 2

OH + CH2=CHCH2CH2CH=CH2 -* products

Hydroxyl + 1 , 5-Hexadiene

83 OHT *) RN 297 (3 . 52±0 . 20 ) ( 13 ) 2

k determined relative to the reaction:

+ OH CH 3CH=CH 2 -» products 1 83 OHT ) RN 297 (3 . 82±0 . 08) ( 13 ) 2

k determined relative to the reaction:

OH + =CHCH=CH -* products. CH 2 2 *) Reaction in 02 /N2 gas, in a quartz cell.

OH generated by photolysis of H202

P(H 0 ) = 1 torr. P(0 = 10 torr. 2 2 2 )

P(Total) ~ 760 torr. (mostly N ) 2

P( 1 , 5-Hexadiene) ~ 1 mtorr.

OH + CH CH=CHCH=CHCH -* 3 3 products

Hydroxyl + 2 , 4-Hexadiene (mixture of cis.cis- and

trans , trans- forms

83 OHT RN 297 (8 . 31±0 . 30 ) ( 13 ) 2

Reaction in 0 /N gas, in a quartz cell. 2 2

OH generated by of H 0 . photolysis 2 2 = = P(H202 ) 1 torr. P(02 ) 10 torr. P(Total) ~ 760 torr. (mostly N2 ).

P(2, 4-Hexadiene) ~ 1 mtorr. k determined relative to the reaction:

OH + CH2=CHCH=CH2 -* products

OH + CH =CHC (CHg )=CHCH products 2 3 Hydroxyl + 1,3-Pentadiene, 3 -methyl-

83 OHT RN 297 ( 8 . 37±0 . 48) ( 13 2 .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Reaction in O2/N2 gas, in a quartz cell. OH generated by photolysis of H2O2.

P(3-Methyl-1,3-Pentadiene) ~ 1 mtorr.

P(Total) ~760 torr. (mostly N2).

P(H202) = 1 torr.

P(0 = 10 torr. 2 ) k determined relative to the reaction:

OH + cis-CH2=CHCH=CHCH2 -* products.

OH =CHC=CH(CH -* products + CH2 3 )2

Hydroxyl + , 3-Pentadiene 4-methyl- 1 ,

83 OHT RN 297 (8 . 07*0 . 24 ) ( 13 ) 2

Reaction in O2/N2 gas, in a quartz cell. OH generated by photolysis of H2O2

P(4-Methyl-1, 3-Pentadiene) ~ 1 mtorr. = = P(02 ) 10 torr. P(H202) 1 torr. P(Total) ~760 torr. (mostly N2). k determined relative to the reaction:

OH + cis-CH -> 2=CHCH=CHCH 3 products.

OH + CH2=C(CH 3 )CH2CH=CH2 products

Hydroxyl + , 4-Pentadiene 2-methyl- 1 ,

83 OHT RN 297 (4 . 81±0 . 49) ( 13) 2

Reaction in O2/N2 gas, in a quartz cell.

OH generated by photolysis of H 202.

P(2-Methyl-1 , 4-Pentadiene) ~ 1 mtorr.

P(0 = 10 = 2 ) torr. P(H202 ) 1 torr.

P(Total) ~760 torr. (mostly N ). 3 k determined relative to the reaction:

OH + cis-CH -* 2=CHCH=CHCH3 products.

OH + CH2=€(CH )C(CH )=€H2 -* 3 3 products

Hydroxyl + 1,3-Butadiene, 2 , 3-dimethyl-

83 OHT RN 297 (4 . 81±0 . 49) ( 13) 2

Reaction in 02 /N2 gas, in aquartz cell. OH generated by photolysis of H 302.

P(2, 3-Dimethyl-l, 3-butadiene) ~ 1 mtorr.

P(0 ) = 10 torr. = 1 2 P(H 202) torr. P(Total) ~760 torr. (mostly N3 ). k determined relative to the reaction: OH + CH 2=CHCH=CH2 - products.

49 4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + products

Hydroxyl + Cyclohexene

X ( 83 ATK/ASC5 ) RL 298 (6 . 7±0 . 17 ) -1 ) 2/2

k : 0H + CH =C(CH )CH=CH products. ref 2 3 2 - X 83 ATK/ASC5 ) RN 298 (3 . 87+0 . 10) ( 13 ) 2

Placed on an absolute basis by using the

k for OH + 2-Methyl-l , 3-Butadiene (Isoprene).

1 ) Irradiation of Cyclohexene/CH ONO/Air 3 mixtures in a Teflon bag.

Gas-chromatography. P(Total) = 735 torr. [Methyl nitrite] X:X Q = 2.38xlO molec.crrT^.

83 OHT RN 297 (3 . 86±0 . 15) ( 13 ) 2

Reaction in /N gas, in a quartz cell. 02 2

OH _ generated by photolysis of H202

P(H 0 = 1 torr. = • 2 2 ) P(02 ) torr P(Total) ~760 torr. (mostly N 2 ).

P(Cyclohexene) ~ 1 mtorr.

k determined relative to the reaction: OH + CH =CHCH CH products 2 2 2CH=CH2 -

OH (CH •+ + 3 ) 2C=C(CH3 ) 2 products Hydroxyl + 2-Butene, 2, 3-dimethyl-

X 83 ATK/ASC5 ) RL 298 1.14±0.04 2/2

k : OH + CH =C(CH )CH=CH -+ products. ref 2 3 2 X 83 ATK/ASC5 ) RN 298 ( 6 . 57±0 . 24 ) ( 13 ) 2 Placed on an absolute basis by using the

k for OH + 2-Methyl-l , 3-Butadiene (Isoprene).

X ) Irradiation of , 3-Dimethyl-2-Butene/CH ONO/ 2 3 Air mixtures in a Teflon bag.

Gas-chromatography. P(Total) = 735 torr. - [Methyl nitrite] X ^ ®. Q = 2.38xlO molec.cm

OH + -» products

Hydroxyl + Cyclohexane

X 83 ATK/ASC3 ) RL 299 0.270±0.016 2/2

k : ^H + CH CH=CH -+ ref 3 2 products. X 83 ATK/ASC3 ) RN 299 (4 . 10+0 . 25) ( 12) 2 Placed on an absolute basis by using the

k for OH + CH CH=CH . 3 2

50 ) . )

- - 4. Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

* ) Irradiation of Cyclohexane /CHgONO/Air mix-

tures in a Teflon bag. OH generated by photolysis of CHgONO in Air.

Gas-chromatography. P = 735 torr.

^ [Methyl nitrite] Q = 2.38x10^ molec.cm

Hydroxyl + Bicyclo [2 . 2 . 1 ]hepta-2 , 5-diene

(2, 5-Norbornadiene

1 83 ATK/ASC5 ) Rl 298 1 . 19±0 . 10 2/2

k : OH + CH =C(CH )CH=CH -» products. ref 2 3 2 X 83 ATK/ASC5 ) RN 298 ( 6 . 87±0 . 60 ) ( 13 ) 2

Placed on an absolute basis by using the

k for OH + 2-Methyl-l , 3-Butadiene (Isoprene).

X ) Irradiation of 2 , 5-Norbornadiene/CHgONO/Air

mixtures in a Teflon bag.

Gas-chromatography. P(Total) = 735 torr. [Methyl nitrite] = 2.38xlO X ^ molec.cm ^

Hydroxyl + Bicyclo [2 . 2 . l]hept-2-ene (2-Norbornene)

1 83 ATK/ASC5 ) RL 298 0 . 488±0 . 040 2/2

k : OH + CH =C(CH )CH=CH products. ref 2 3 2 - 1 83 ATK/ASC5 ) RN 298 (2 . 81±0 . 23 ) ( 13 2 Placed on an absolute basis by using the

k for OH + 2-Methyl-l , 3-Butadiene (Isoprene).

1 ) Irradiation of 2-Norbornene/CHgONO/Air mix-

tures in a Teflon cylindrical bag.

Gas-chromatography. P(Total) = 735 torr. - [Methyl X ^ ^. nitrite] Q = 2.38xlO molec.cm

OH + CH =C(CHg )CH -» 2 2CH2CH=CH2 products

Hydroxyl + , 1 5-Hexadiene , 2-methyl-

83 OHT RN 297 ( 5 . 75±0 . 26 ) ( 13 ) 2

Reaction in 0 /N gas, in a quartz 2 2 cylindri-

cal cell. OH generated by photolysis of H 0 . 2 2

P(2-Methyl-1 , 5-Hexadiene ) ~ 1 mtorr.

P(H 0 = 1 = 2 2 ) torr. P(02 ) 10 torr. P(Total) ~760 torr. (mostly N 2 ). k determined relative to the reaction: OH + CH 2 =CHCH 2CH2CH=CH 2 - products.

51 ' .. . )))

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err, type A,A/A(ref) B-B(ref) units factor

OH + -» products

Hydroxyl + Cycloheptene

X 83 ATK/ASC5 ) RL 298 0.737±0.023 2/2

k : OH + CH =C(CH )CH=CH products. ref 2 3 2 - X 83 ATK/ASC5 ) RN 298 ( A . 26±0 . 13 ) ( 13 2

Placed on an absolute basis by using the

k for OH + 2-Methy 1-1, 3 -Butadiene (Isoprene).

1 ) Irradiation of Cycloheptene/CHjONO/Air

mixtures in a Teflon bag. Gas-chromatography

[Methyl . nitrite] Q = 2.38x10^ molec cm P(Total) = 735 torr.

OH + -* products

Hydroxyl + Bicyclo [2 . 2 . 1] heptane (Norbornane)

1 83 ATK/ASC1 ) RL 299 0 . 731±0 . 018 2/2

+ -* kref OH products

1 83 ATK/ASC1 ) RN 299 ( 3 . 33±0 . 09 ) ( 12 2

Placed on an absolute basis by using the k for OH + Cyclohexane.

1 ) Irradiation of Norbornane/CHjONO/Air mixtures

in a Teflon bag. H generated by photolysis of

CH-jONO/Air mixtures at 290 nm. and 735 torr. Gas-chromatography

CHj

Hydroxyl + Benzene, 1,3-dimethyl- (m-Xylene)

1 83 ATK/ASC1 ) RL 299 2 . 85±0 . 18 2/2

+ -* k ref : OH products.

1 83 ATK/ASC1 ) RN 299 ( 1 . 30±0 . 08 ) ( 13 2 Placed on an absolute basis by using the

k for OH + Cyclohexane.

52 .. .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

1 ONO/Air mixtures ) Irradiation of m~Xylene/CH 3 in a Teflon bag. OH generated by photolysis of

CH ONO/Air mixtures at 290 nm. and 235 torr 3 Gas-chromatography

OH + -» products

Hydroxyl + Bicyclo [ 2 . 2 . 2] oct-2-ene

X 83 ATK/ASC5 ) RL 298 0.404±0.019 2/2

k : OH + CH =C(CH )CH=CH products. ref 2 3 2 - 1 83 ATK/ASC5 ) RN 298 (2.34+0.11X13) 2 Placed on an absolute basis by using the

k for OH + 2-Methy 1-1 , 3-Butadiene (Isoprene).

*) Irradiation of Bicyclo [2 . 2 . 2] oct-2-ene/

CHgONO/Air mixtures in a Teflon bag.

Gas-chroir.atography

P(Total) = 735 torr. [Methyl nitrite] Q = 2.38x10^ molec.cm

OH + CH =C ( CHg ) CH CH C ( CH ) =CH -* products 2 2 2 3 2

Hydroxyl + 1 , 5-Hexadiene, 2 , 5-dimethyl-

83 OHT RN 297 (7 . 23±0 . 11) ( 13 ) 2

Reaction in 02 /N2 gas, in a quartz cell.

OH generated by photolysis of H 0 . 2 2

P( 2 , 5-Dimethyl-l , 5-Hexadiene ) ~ 1 mtorr.

P(Total) ~760 torr. (mostly N 2 ). = P(H 202 ) 1 torr. P(0 = 10 torr. 2 ) k determined relative to the reaction: OH + CH 2=CHCH 2CH2CH=CH 2 - products.

OH + ( CH^ C=CHCH=C ( CH ) -» products ) 2 3 2

Hydroxyl + , , 2 4-Hexadiene , 2 5-dimethyl-

83 OHT RN 297 (1.26+0.06X14) 2

Reaction in 0 /N gas, a 2 2 in quartz cell.

OH generated by photolysis of H 0 . 2 2

P(2, 5-Dimethyl-2, 4-Hexadiene) ~ 1 mtorr.

P(H 0 = 1 = 2 2 ) torr. P(02 ) 10 torr. P(Total) ~760 torr. (mostly N 2 ). k determined relative to the reaction:

OH + CH =C(CH )CH 2 3 2CH2CH=CH2 + products.

53 .. ) . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

OH + -» products

Hydroxyl + Bicyclo [2 . 2 . 2] octane

1 83 ATK/ASC1 ) RL 299 1 . 96±0 . 13 2/2

+ -* k ref : OH products.

1 83 ATK/ASC1 ) RN 299 ( 8 . 91±0 . 60 ) ( 12) 2

Placed on an absolute basis by using the

k for OH + Cyclohexane.

1 ) Irradiation of Bicyclo [2 . 2 . 2] octane/CHjONO/

Air mixtures in a Teflon bag. OH generated

by photolysis of CHgONO/Air mixtures at

290 nm. and 735 torr. Gas-chromatography

OH + -» products

Hydroxyl + Pentalene, octahydro- (Bicyclo[3.3.0] octane

1 83 ATK/ASC1 ) RL 299 1 . 47±0 . 07 2/2

k ref : °H + products.

1 83 ATK/ASC1 ) RN 299 ( 6 . 69±0 . 36 ) ( 12 2

Placed on an absolute basis by using the

k for OH + Cyclohexane.

1 ) Irradiation of Bicyclo [ 3 . 3 . 0 ] octane/CH^ONO/

Air mixtures in a Teflon bag. OH generated

by photolysis of CH^ONO/Air mixtures at

290 nm. and 735 torr. Gas-chromatography

OH + Pr °ducts

Hydroxyl + lH-Indene, octahydro-, cis-

(cis-Bicyclo[4. 3 . 0] )

1 83 ATK/ASK1 ) RL 299 2 . 29±0 . 16 2/2

• + ‘ref OH products . . . ) )

— Continued 4. Table of Chemical Kinetic Data for Combustion Chemistry

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(re£) B-B(ref) units factor

83 ATK/ASC1 *) RN 299 ( 1 . 04+0 . 08) ( 13 ) 2 Placed on an absolute basis by using the

k for OH + Cyclohexane.

1 ) Irradiation of cis-Bicyclo [ 4 . 3 . Olnonane/

CHgONO/Air mixtures in a Teflon bag. OH generated by photolysis of CHgONO/Air

mixtures at 290 nm. and 735 torr.

Gas -chromatography.

OH + -» products

Hydroxyl + lH-Indene, octahydro-, trans-

(trans-Bicyclo [ 4 . 3 . 0]nonane)

1 83 ATK/ASC1 ) RL 299 2.35+0.17 2/2

+ -+ k ref : OH products.

1 83 ATK/ASC1 ) RN 299 ( 1 . 07±0 . 08) ( 13 2 Placed on an absolute basis by using the

k for OH + Cyclohexane.

1 ) Irradiation of trans-Bicyclo [4 . 3 . 0 Jnonane/

CHgONO/Air mixtures in a Teflon bag. OH generated by photolysis of CHgONO/Air

mixtures at 290 nm. and 735 torr. Gas -chromatography

OH + products

Hydroxyl + Benzene, (2-methyl- ) -propenyl-

(/3-Dimethylstyrene)

83 CHI/BIG RN 298 ( 1 . 99±0 . 30 ) ( 13) 2 Photooxidation of /3-Dimethylstyrene

in a Polymethylmetacrylate smog-chamber

OH generated by HONO vapors in

synthetic air. Gas-chromatography

k determined relative to the reaction:

OH + ( CHg gCCHgCH ( CHg + products. ) 2

55 . ) ) )

-- 4. Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Hydroxyl + A , 7-Methano-lH-Indene, octahydro-,

(3aa,4/?,7/3,7aa:)- 0^ (Tricyclo[5.2. 1 . ®] (exo-Tetrahydrodicyclopentadiene

X 83 ATK/ASC1 ) RL 299 1.51±0.05 2/2

-* k : OH + products. re f

X 83 ATK/ASC1 ) RN 299 (6 . 87±0 . 24 ) ( 12) 2 Placed on an absolute basis by using the k for OH + Cyclohexane.

1 ) Irradiation of exo-Tetrahydrodicyclopenta-

diene/CHjONO/Air mixtures in a Teflon bag. OH generated by photolysis of CHgONO/Air

mixtures at 290 nm. and 735 torr. Gas-chromatography

OH + -» products

1^ ’ Hydroxyl + Tricyclo [3 . 3 . 1 . ^] decane (Adamantane)

1 83 ATK/ASC1 ) RL 299 3 . 07±0 . 27 2/2

+ -* k ref • OH products.

1 83 ATK/ASC1 ) RN 299 ( 1 . 39±0 . 13 ) ( 13 2

Placed on an absolute basis by using the

k for OH + Cyclohexane.

* ) Irradiation of Adamantane/CHgONO/Air

mixtures in a Teflon bag. OH generated by photolysis of CHgONO/Air

mixtures at 290 nm. and 735 torr. Gas -chromatography

OH + products

Hydroxyl + Naphthalene, decahydro-, cis-

(cis-Decalin) ( cis-Bicyclo [4 .4 .0] decane)

X 83 ATK/ASC1 ) RL 299 2.65±0.18 2/2

56 .. . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-* : + products. ‘ref OH

1 83 ATK/ASC1 ) RN 299 ( 1 . 21±0 . 08 ) ( 13 2

Placed on an absolute basis by using

the k for OH + Cyclohexane.

* ) Irradiation of cis-Decalin/CH^ONO/Air

mixtures in a Teflon bag. OH generated by photolysis of CHjONO/Air

mixtures at 290 ran. and 735 torr. Gas-chromatography

OH + -» products

Hydroxyl + Naphthalene, decahydro-, trans-

(trans-Bicyclo [4.4.0] decane ) (trans-Decalin)

1 83 ATK/ASK1 ) RL 299 2 . 72±0 . 16 2/2

+ -* ‘ref OH products.

1 83 ATK/ASC1 ) RN 299 ( 1 . 24±0 . 07 ) ( 13 2 Placed on an absolute basis by using the k for OH + Cyclohexane.

1 ) Irradiation of trans-Decalin/CHjONO/Air

mixtures in a Teflon bag. OH generated by photolysis of CHgONO/Air

mixtures at 290 nm. and 735 torr. Gas-chromatography

H0 HO M) -* H 2 + z (+ 202 + 02 (+ M) Hydroperoxo

79 TSU/NAK EX 298 (2 . 8±0 . 3 ) ( 12) 2 Disproportionation of H02 in a quartz flow- reactor. H0 generated by reacting H 0 . 2 with 2 H atoms generated by Hg-photosensitized

decomposition . = of H2 P 760 torr.

H0 NO (+ M) -» 2 + 02 + HNO (+ M) (a) - + OH N02 (+ H) (b) - H0N02 (+ M) (c) Hydroperoxo + Nitrogen oxide (NO) 78 HAC/KAU EX 296 ( 3 . 5±1 . 0 ) ( 12) 2 k^. Discharge-flow. LMR-Spectrometry

P = 5.25 torr.

57 . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(rer), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

79 TEM EX 298 (4 . 4±1 . 0 ) ( 12) 2

kjj. Flow-system. ESR-Spectrometry . LMR-

. H0 the reaction: spectrometry 2 generated by

+ -* H 02 + M H02 + M.

+ h2o n2o5 - hono2 + hono2 + (N Nitrogen oxide 20^)

83 TUA/ATK EX 298 ( 7 . 83±1 . 20 ) (2 2

Reaction in Teflon environmental chambers.

This value should be considered an upper

limit to the homogeneous k.

H20 + CHgC(0)0N02 -» products Water + Peroxide, acetyl nitro

76 PAT/ATK2 EX 296 ( 1 . 34±0 . 20 ) ( 1 ) 2

Reaction in a Teflon-lined aluminum tank.

Gas-chromatography . Mass-spectrometry IR-Absorption spectrometry.

[Peroxide] = (7. 6-8. 3) ppm. = [H 20] (5900-12000) ppm.

+ SO 02 - S02 + o Sulfur monoxide + Oxygen molecule

83 BLA/SHA EX 230-420 1.45(11) 0 2370±250 2 2.0 SO generated by ArF Laser-photodissociation

of S0 at 193 nm. P(S0 = 30 mtorr. 2 2 ) P(0 < 550 torr. 2 ) 83 GOE/SCH EX 262-363 6.02(10) 0 2180±117 2 1.46 Static conditions. P(Total) = (1-200) mtorr.

+ -» SO SO (+ M) S02 + S (+ M) Sulfur monoxide

83 MAR/HER EX 298 =2.10(9) 2 4.0 Discharge-flow reactor. SO generated by

the reaction: 0 + CS -* SO + CS. 2 0 atoms a generated by passing dilute N 20/Ar mixture through a microwave-discharge.

SQ fJ0 + 2 + 2 SOg NO Sulfur + dioxide Nitrogen oxide (N02 )

83 PEN/CAN EX 298 ( 1 . 4±0 . 1 ) (-2) 2 Static reactor. Second derivative UV-spectro- -3 metry. [ S0 = ( 8 . 07-8 . 73 )xl0-*-® molec.cm . 2 ] 3 [N0 = . 78-4 . 2 ] (0 40 )xl0 ^ molec.cm

58 . ) ,

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k ,k/k ( ref) n B, k,A k err.

type A, A/A(ref B-B(ref) units factor

SC>2 + -» products CH3C(0)0N02 Sulfur dioxide + Peroxide, acetyl nitro

76 PAT/ATK2 EX 296 < 8.10 2

Reaction in a Teflon-lined aluminum tank.

Gas-chromatography . Mass-spectrometry IR-Absorption spectrometry.

[50 = ( 1260-3540 ppm. 2 ] ) [Peroxide] = 0.042 ppm.

S N0 "* products 03 + 2 + oxide (N0 Sulfur trioxide Nitrogen 2 ) 83 PEN/CAN EX 298 (8.8±0.8)(4) 2 Static reactor. Second derivative UV- spectrometry technique. 16 3 [50 ] = ( 5 . 72-0 . 64 )xl0 molec.cm' . 3 16 3 = . [N0 2 . 2 ] 53xl0 molec.cm'

SB + O2 -* products Mercapto + Oxygen molecule

81 TIE/WAM EX 298 <1.93(9) 2

Laser-induced fluorescence technique in the

(320-330) nm. region. SH by H S generated 2 photodissociation in Ar through an ArF

excimer Laser, at 193 nm. Upper-limit k.

= = P(H2 S] (30-100) mtorr. P(Ar) (5-10) torr. SH + SH -» S + H2 S Mercapto

81 TIE/WAM EX 298 <1.02(13) 2

Laser-induced fluorescence technique in the

(320-330) nm. region. SH generated by H S 2 photodissociation in Ar through an ArF

excimer Laser, at 193 nm. Upper-limit k. = P(H 2S) (30-100) mtorr. P(Ar) = (5-10) torr.

SH + H2S -* products Mercapto +

81 TIE/WAM EX 298 <1.02(13) 2

Laser-induced fluorescence technique in the

(320-330) nm. region. SH generated by H2S photodissociation in Ar through an ArF

excimer Laser, at 193 nm.

P(H S) = 2 (30-100) mtorr.

P(Ar ) = (5-10) torr.

59 ......

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

SH + NO -* products

Mercapto + Nitrogen oxide (NO) -* products

81 TIE/WAM EX 298 3.37(11) 2

Laser-induced fluorescence technique in the

(320-330) nm. region. SH generated by H2S

photodissociation in Ar through an ArF

excimer Laser, at 193 nm. P(H = (30-100) 2 S) mtorr [NO] = (0.5-40) torr.

P(Ar ) = (5-10) torr.

SH + CH2=CH2 -» products Mercapto + Ethene

81 TIE/WAM EX 298 <1.39(9) 2

Laser-induced fluorescence technique in the

.(320-330) nm. region. SH generated by H2 S photodissociation in Ar through an ArF

excimer Laser, at 193 nm. Upper-limit k.

P(H S) = (30-100) mtorr. 2

P(Ar ) = (5-10) torr.

H + OH -* NO + H Nitrogen atom + Hydroxyl

83 BRU/SCH2 EX 298 (2 . 53±0 . 48 ) ( 13 ) 2 Fast-flow reactor. Laser-magnetic Resonance. Resonance-fluorescence Resonance-absorption

P = (1-5) torr. (He, or Ar)

N + HC>2 -* products Nitrogen atom + Hydroperoxo

83 BRU/SCH2 EX 298 ( 1 . 33±0 . 30 ) ( 13 ) 2 Fast-flow reactor. Laser-magnetic resonance.

Resonance- f luorescence Resonance-absorption

P = (1-5) torr. (He, or Ar)

3 1 + N + N - N (B H ) + N (X 2 3 2 6 2 g ) Nitrogen atom +

83 YAM/FUE EX 298 (9 . 64±6 . 63 ) ( 12) 2

Discharge-flow reactor. N atoms generated by

dissociation of N a 2 in microwave-discharge, through a N 2 /Ar mixture. N3 generated by

the reaction: Cl + HN3 -* HC1 + N3

60 . )))

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

N + NH2 - NH + NH (a)

-* N2 + H (b) Nitrogen atom + Amidogen

83 WHY/PHI3 (k ) EX 296 ( 7 . 29±0 . 84 ) ( 13 2 a + kb

Fast-flow system. NH2 generated by photolysis of NH at 193 nm. 3 N atoms generated by microwave discharge. Laser-induced Fluorescence. U 3 [NH ~ 3.0xl0 molec.cnf . 3 ]

N + -* N C CN(v=n) 2 + Nitrogen atom +

83 WHY/PHI2 EX 300 (6 . 02±0 . 78) ( 13 2 Fast-flow reactor. CN generated by the ArF

Flash-photolysis of NCCN at 193 nm.

N atom generated by microwave-discharge. Laser induced Fluorescence.

N + NCC - CN + CN

Nitrogen atom + Methylidyne, cyano-

83 WHY /PHI 2 (n = 0,1) ES 300 6.02(13) 2 Fast-flow reactor. N atom generated by microwave-discharge

NCC generated by reaction of C atom with NCCN.

C atom generated by reacting CN with N atom. Laser induced fluorescence.

3 1 + 1 + + N - N (B n ) + N X Z + N (X X *3 3 2 g 2 g ) 2 g ) Azide

83 YAM/FUE EX 298 8.43(11) 2 Discharge-flow reactor.

N 3 generated by the reaction: Cl + HN HC1 + N 3 - 3

NO + -» -» NH2 [NH2NO] N2 + H2Of Nitrogen oxide (NO) + Amidogen

83 WHY/ PHI 3 EX 297 ( 1 . 09±0 . 07 ) ( 13 2 Fast-flow system.

NH generated by the 2 NH3 photolysis at 193 nm. Laser-induced Fluorescence. -3 [NH ~ 3 ^ 3 J 3.0xl0 molec.cm .

61 . . )

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

NO + CH3C(0)0N02 * products Nitrogen oxide (NO) + Peroxide, acetyl nitro

( 76 PAT/ATK2 EX 296 (2 . 83±0 . 83 ) -4 ) 1

Reaction in a Teflon-lined aluminum tank.

Gas -chromatography . Mass -spectrometry. IR-Absorption spectrometry.

[Peroxide] = (A. 1-17. 6) ppm.

[NO] = (26-211) ppm.

NO CH C(0)0N0 -* 2 + 3 2 products Nitrogen oxide (N0£) + Peroxide, acetyl nitro

76 PAT/ATK2 EX 296 ( 1 . 05±0 . 49 ) (3 ) 2

Reaction in a Teflon-lined aluminum tank.

Gas-chromatography . Mass-spectrometry IR-Absorption spectrometry.

[Peroxide] = (3. 0-9. 3) ppm.

[N0 ] = (26-52) 2 ppm.

N0 (CH ) NNH -* BONO (CH 2 + 3 2 2 + 3 ) 2NNH

Nitrogen oxide (N0 + , 2 ) , 1 1-dimethyl- -* Nitrous acid + Hydrazyl, 2, 2-dimethyl-

83 TUA/CAR2 EX 300 ( 1 . 39±0 . 12) (7 2 Postulated first step in the overall reaction:

2N0 (CH NNH 2 + 3 ) 2 2

- 2H0N0 + 0.5[CH ) NN=NN(CH 3 2 3 ) 2 ] Reaction in a Teflon vessel.

FTIR-Spectrometry . P = 735 torr. - [N0 = (0-4 . ^. 2 ] 66)xl0^ molec.cm 1 ^ [1, 1-Dimethylhydrazine] = ( 1 . 21-4 . 35)xl0 molec.cm ^

N0 (CH ) CNO + - (CH 2 + 3 3 NO + 3 ) 3CN02 Nitrogen oxide (NO) + Propane, 2-methyl-2-nitroso-

83 JOH/MEC EX 291-318 6.76(8) 0 23905±755 2 2.1 Static reactor. Mass-spectrometry.

P = (1-3) torr.

N (+ M) -* 20 N2 + 0 (+ M) (a) -* any other products (b) Nitrogen oxide (N 20) (k overall) EX 1600-2000 2.43(12) 0 18470 1 Thermolysis of N 20 in a shock-tube. Time-of- flight Mass- spectrometry.

62 . .

Chemistry -- Continued 4. Table of Chemical Kinetic Data for Combustion

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n E, k,A k err. type A,A/A(ref) B-B(ref) units factor

NH + NH2 -* NH2NH (a) -* any other products (b) Imidogen + Amidogen

83 TEM (k overall) EX 296 (8 . 0±3 . 0 ) ( 13 ) 2 Far-IR Laser-Magnetic-Resonance Spectrometry.

1 A) + -* N3 (a) NH(a HN3 RH2 + - N2 + NH=NB* (b) Imidogen + Hydrazoic acid

83 KOD1 RL 303 0.746 2/2 83 K0D1 (k b ) RL 303 1.23 2/2 Photolysis of in Xe at 313 nm. HN , 3

Gas-chromatogr aphy . IR-Spectrometry

Rate constant ratios estimated on the

basis of a proposed mechanism.

1 k : NH(a A) + HN -» 2H + 2N ref 3 2 P(Xe) = (0-600) torr.

P(HN ) = 50 torr. 3

1 H NHCa^A) + CH =CH -* [CH =€HNH ^jt 2 2 2 2 = ]

Imidogen + Etliene

-* [Ethenamine (Vinylamine) = Aziridine]

83 KOD3 RL 303 1.64 2/2 Photolysis of HN vapor in 3 presence of Ethene, at 313 nm.

Rate constant ratio estimated on the

basis of a proposed mechanism. Gas-chromatography. IR-Spectrometry.

k : NHCa^A) + HN -* ref 3 products P(Ethene) = (0-188) torr.

P(HN ) = (0-105) 3 torr.

* NH/a^A) + CB CH -» CH CB 3 3 3 2NH2 Imidogen + Ethane

83 KOD2 RL 303 3.34(-l) 2/2 Photolysis of HN vapor 3 in presence of Ethane, at 313 nm. Gas-chromatography. IR-Spectrometry

Rate constant ratio estimated on the

basis of a proposed mechenism.

P(Ethane) = (0-450) torr. P(HN = 3 ) 50 torr.

k NH(a^A) + HN -* products. ref" 3

63 ) . (

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

NH2 + C>2 (+ M) -* products Amidogen + Oxygen molecule

83 HAC/KUR EX 295 (A. 8+1.0) 8 ) 2

Discharge-flow reactor. M = He.

NH2 generated by reacting F atoms

with NHg . P(Total) = 3 torr.

NH2 + NO2 ^2® + H2O (major channel) + (NO Amidogen Nitrogen oxide 2 )

83 WHY /PHI 3 EX 297 ( 1 . 27±0 . 11) ( 13 ) 2 system. NH Fast-flow 2 generated by the of NH at 193 nm. photolysis 3 Laser-induced Fluorescence. 14 -3 [NH ] ~ 3.0xl0 molec.cm . 3

NH NH + M) + + 2 + 2 ( NH NH 3 (+ M ) (a) + NH2NH2 (+ M ) (b) -+ any other products (b) Amidogen

83 TEM (ka/koverall 5 111 296 <2.0(-3) 2/2 Far-IR-Laser-Magnetic-Resonance Spectroscopy

C + NCCN + CN + NCC

Ethanedinitrile (Cyanogen, or Oxalonitrile + Carbon atom

83 WHY/PHI2 ES 300 -1.81(13) 2 Fast-flow reactor. C atom generated by

reacting CN with N atom. CN generated by ArF Laser Flash-Photolysis of NCCN at 193 nm. N atom generated by microwave- discharge. Laser induced Fluorescence.

CO + o2 -* co2 + o Carbon monoxide + Oxygen molecule

71 GAR/MCF DE 1400-2500 3.1(11) 0 19124 2 * Incident shock-waves in H waves 2 /02 /C0/Ar mixtures. Data-fit to induction time by computer simulation.

83 THI/ROT EX 1700-3500 5.06(13) 0 31800 2 Reaction behind reflected shock-waves. Atomic -Resonance absorption Spectro-

photometry. P(Total) = 1350 torr. -3 '*' 2 [0 ] = ( 0 . 02-4 . 2 92 JxlO molec.cm . 17 -3 = . [CO] (0 12-2. 46)xl0 molec.cm .

64 . . ))

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CO + n2o -» co2 + n2 + (N Carbon monoxide Nitrogen oxide 20) 83 LOI/CAR EX 1060-1220 5.01(13 0 22144±1510 2

Reaction in a static cell,

k determined by applying the thermal

theory of explosion to the measurements of the critical ignition pressure.

CO + CHgC(0)0N02 -» products Carbon monoxide + Peroxide, acetyl nitro

76 PAT/ATK2 EX 296 <8.10(1) 2

Reaction in a Teflon-lined aluminum tank.

Gas-chromatography . Mass-spectrometry IR-Absorption spectrometry.

[Peroxide] = 11 ppm.

[CO] = 232 ppm.

+ -* + CH(v=n) 02 CO OB* Methylidyne + Oxygen molecule = 83 DUN/GUI (v 0) EX 298 ( 1 . 26±0 . 12 ) ( 12 2 = (v 1) EX 298 (2 . 59±0 . 24 ) ( 12 2

Reaction in a cylindrical stainless cell,

by using a crossed-beam C0 Laser 2 pump and a tunable dye Laser. CH generated by IR multiphoton dissociation of CHgOH. Laser-induced fluorescence.

P(Methanol) = 30 mtorr.

83 LIC/BER EX 298 ( 4 . 82±1 . 81 ) ( 13 2 Reaction in Ar buffer, by chemiluminescence monitoring

P(Ar) = 20 torr.

CH(v=n) + N2 - HCN + N Methylidyne + Nitrogen molecule 83 DUN/GUI = (v 0) EX 298 ( 4 . 28±0 . 36 ) ( 10 ) 2

(v = 1) EX 298 ( 1 . 81±0 . 30 ) ( 12) 2 Reaction in a cylindrical stainless-steel

cell, by using a crossed-beam C0 2 Laser pump and a tunable dye Laser. CH generated by IR multiphoton dissociation of CH^OH. Laser-induced Fluorescence.

P(Methanol) = 12 mtorr.

65 . ))

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ M) -* M) CH N2 (+ HCN2 (+ Methylidyne + Nitrogen molecule

A 83 BER/LIN ) CO 297 (1.20±0. 60X13) 2 Limiting high-pressure k. (RRKM calculation).

1 83 BER/LIN ) ES 297 ( 1 . 02±0 . 18 ) ( 17 3

Extrapolated limiting low-pressure k.

X 83 BER/LIN ) EX 297-675 (1.02±0. 18X10) -981±65 2 This weighted linear least-squares fit

fails to adequately describe the data

at the lowest and highest temperatures

studied and is valid only over a limited

T-range (probably 297-450 K. ) At higher temperatures, the activation complex de- composes to give other products, probably

HCN + N, which dominate above 1000 K.

*) Reaction in Ar diluent. Laser-photolysis. Laser-induced fluorescence. CH generated

by multiphoton dissociation of CHBr-j

P(Total) = (25-787) torr.

CH + NO -* CO + NH*

Methylidyne + Nitrogen oxide (NO)

83 LIC/BER EX 298 ( 1 . 51±3 . 01) ( 14 2

Reaction in Ar buffer by chemilumninescence

monitoring. P(Ar) = 20 torr.

CH(v=n) + CH-jOH -» products Methylidyne + Methanol

83 DUN/GUI (v = 0) ES 298 (6 . 38±0 . 36) ( 13 ) 2

(v = 1) ES 298 ( 2 . 02±0 . 15 ) ( 14 ) 2

Reaction in a cylindrical stainless steel

cell, a by using crossed-beam C02 Laser pump and a tunable dye laser. CH gene- rated by IR multiple photon dissociation of CH3OH. Laser-induced Fluorescence.

CH + CH'^CH -* ,/\ * products Methylidyne + Etnyne

83 BER/FLE EX 171-657 (2 . 10±0 . 25) ( 14 ) 0 -61±36 2 Reaction in a Laser-photolysis/Laser-induced Fluorescence apparatus. CH generated by multiphoton dissociation of CHBr^

at 266 nm. P(Total) = 100 torr.

66 .

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-» -* CH=CH (a) CH + CH2=CH2 A CH2 2 -» any other products (b) Methylidyne + Ethene

83 (k 160-652 ( 1 . 3A±0 . ( 1A ) 0 -173±35 2 BER/FLE a ) EX 16) Laser-photolysis/Laser-induced Fluorescence CH generated by multiphoton dissociation

of CHBrg at 266 nm. P(Total) = 100 torr.

+ -* CH2 (a*Aj) 02 products Methylene + Oxygen molecule

83 LAN/PET EX 295 ( A . A6±0 . 30 ) ( 13 ) 2 Cw Laser resonance-absorption technique.

: CH2 (a *'A^) generated by the photolysis of Ketene at 308 nm. with a XCl-excimer. ,

P(Ketene) = (0. 1-0.2) torr.

P(He) = (A-6) torr.

+ Cfl^Ai) H2 -* products Methylene + Hydrogen molecule

83 LAN/PET EX 295 (6 . 32±0 , 30 ) ( 13 ) 2 Cw Laser Resonance-Absorption technique.

CH (a^A ) generated by the photolysis of 2 1 Ketene at 308 nm. with a XCl-excimer.

P(Ketene) = (0. 1-0.2) torr. P(He) = (A-6) torr.

(a^A^) -» CH2 + H2 products Methylene + Nitrogen molecule

83 LAN/PET EX 295 (6 . 63±0 . 60 ) ( 12) 2 Cw Laser Resonance-absorption technique.

1 CH (a A ) generated the 2 1 by photolysis of Ketene at 308 run., with a XCl-excimer.

P(Ketene) = (0. 1-0.2) torr.

P(He) = (A-6) torr.

CH2 (a^Aj) + NO -» products Methylene + Nitrogen oxide (NO)

83 LAN/PET EX 295 (9. 6A±0 . 90 ) ( 13 ) 2 Cw Laser Resonance-absorption technique.

1 CH2 (a A^) generated by the photolysis of Ketene at 308 nm. , with a XCl-excimer.

P(Ketene) = (0.1-0. 2) torr. P(He) = (A-6) torr.

67 4 . Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CH2 (a*A^) + CO -» products Methylene + Carbon monoxide

83 LAN/PET EX 295 ( 2 . 95±0 . 24 ) ( 13 ) 2 CW Laser Resonance-absorption technique. CH^a^A^) generated by the photolysis of

Ketene at 308 nm. , with a XCl-excimer.

P(Ketene) = (0. 1-0.2) torr.

P(He ) - (4-6) torr.

CH^a^A^) + CH^ -* products Methylene + Methane

83 LAN/PET EX 295 ( 4 . 22±0 . 24 ) ( 13 ) 2 Cw Laser Resonance-absorption technique.

CH^a^A^) generated by the photolysis of

Ketene at 308 nm. , with a XCl-excimer.

PCKetene) = (0. 1-0.2) torr.

P(Be ) = (4-6) torr.

3 - CH2 (X B 1 ) + CB=CH CH2=C=CH2 (a) -» CBgOCH (b)

-* CgH2 + H2 (c) -* C3H3 + H (d) Methylene + Ethyne

83 HOM/WEL2 (k ) ES 295 2 c 8.5(10)

(k ) ES 500 2 Q 2.0(11) (k 2 c ) ES 1000 5.0(11) (k 2 d ) ES 295 1.8(12) (k 2 d ) ES 500 2.7(12) ES 1000 3.6(12) Estimations based on a suggested mechanism. High-temperature flow-reactor, with or without added H atoms.

P = 2 torr.

(a*A^) -» CH2 + CH2=CH2 products Methylene + Ethene

83 LAN/PET EX 295 (9 . 03±0 . 36) ( 13) 2 Cw Laser Resonance-absorption technique.

CH2 (a^A^) generated by the photolysis of

Ketene at 308 nm. , with a XCl-excimer.

P(Ketene) = (0. 1-0.2) torr.

P(He) = (4-6) torr.

68 4 . Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ -» CH2 (a-*Aj) CHgCHg products Methylene + Ethane

83 LAN/PET EX 295 ( 1 . 14±0 . 12) ( 14 ) 2 Cw Laser Resonance-absorption technique.

’CH of 2 (a^\A^) generated by photolysis

Ketene at 308 ran. with a XCl-excimer. ,

P(Ketene) = (0. 1-0.2) torr.

(He) = (4-6) torr.

( 1 —* = CH2 a^Aj ) CH2=C=0 CH2 CH2 1 CO Methylene + Ethenone (Ketene)

83 LAN/PET EX 295 ( 1 . 63±0 . 12) ( 14 ) 2 Cw Laser Resonance-absorption technique. CH^a^A^) generated by the photolysis of

Ketene at 308 run., with a XCl-excimer.

P(Ketene) = (0. 1-0.2) torr.

P(He) = (4-6) torr.

CH2 (a^Aj) + CH-jCH2CHg -» products Methylene + Propane

83 LAN/PET EX 295 ( 1. 45±0 . 12) (14 ) 2 Cw Laser Resonance-absorption technique.

CH2 (a'*'A^) generated by the photolysis of

Ketene at 308 ran. , with a XCl-excimer.

P(Ketene) = (0. 1-0.2) torr.

P(He) = (4-6) torr.

CH (a^A^) (CH -* 2 + 2 ) 2C=CH2 products Methylene + 1-Propene, 2-methyl- (Isobutene)

83 LAN/PET EX 295 ( 1 . 45±0 . 12) ( 14 ) 2 Reaction of CH2 (a^A^) with Isobutene by using a Cw Laser Resonance-absorption technique.

CH 2 (a^A^) generated by the photolysis of Ketene at 308 ran. , with a HCl-excimer.

P(Ketene) = (0. 1-0.2) torr.

P(He) = (4-6) torr.

69 - • ) )

^ Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

M) HCHO + 0 + H (+ M) (a) CH3 + 02 (+ -* CH 0 + (+ M) (b) 3 0 - + CO OH + B2 (+ M) (c) - HCHO + OH (+ M) (d)

-* M) (e) CH302 (+ Methyl + Oxygen molecule

X 83 (k DE 1150-1560 0 15500±1100 2 HSU/SHA ) b ) 1.0(14) Rate constant determined by fitting the concen-

tration time profiles data to a computer kinetic modeling mechanism. RRKM calculation.

83 X 1150-1560 -5.94 HSU/SHA ) (k b ) RE 4.42(19) 21300 2 Three-parameter curve-fitting of three sets of rate constant expressions from literature. The - preexponential factor expressed as: (T/298) ^

1 ) Reaction of CH3 with 0 in shock- 2 incident waves. CH3 generated by decomposition of

CH3N=NCH3 in excess 02 . Concentration time profile measured by using CO-Laser Resonance- Absorption.

[CH N=NCH = 0.021% and 0.04% in 0 . 3 3 ] 2 = 83 (k . ( . . ( SEL/BAY 0 M Ar) EX 298 4 82±0 36 ) 9 2 P(Total) = 0.639 torr. = Pmax (02> °' 2426 torr - = (k . . . ( e M Ar) EX 298 ( 3 68 ± 0 40 ) 10 ) 2 P(Total) = 5.921 torr.

P = 0-0730 max (02 ) torr.

(k . M = N ( . . 2 0 2 ) EX 298 6 81±0 36) (9 P(Total) = 0.931 torr.

* ° = °- 3552 torr - W 2 > = (k . M N ) EX 298 ( , 50±0 . 17 ) ( 10 ) 2 e 2 3 P(Total) = 5.420 torr. - pmax (02> °- 0 ™ 3 torr - = (k . He) . . ( e M EX 298 ( 5 54±0 48 ) 9) 2 P(Total) = 1.078 torr. = P (0 ) °- 3 • max 2 «! torr = (k . He) . . ( 2 e M EX 298 (2 40±0 17 ) 10 P(Total) = 6.747 torr. = P ) 0.1234 torr. max (02 Photoionization Mass-spectrometry. CH3 gene- rated by Flash-photolysis of Methyl nitrite

at 193 nm. P(Total) = (0. 5-6.0) torr.

Other rate constants given at various pressures within the indicated P-range. The rate constant increases with the pressure.

70 . )

-- 4 . Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

“* CHg + H2S CH^ + SH Methyl + Hydrogen sulfide

83 ARI/ART2 EX 334-432 1 . 0 ( 11 ) 0 1054±10 2 1.02

SE 334-432 1.38(11) 0 1105±30 2 1.23 Best value by combining the present rate expression with the data found

in the literature.

Photolysis of Azomethane/H2S mixtures in a cylindrical silica reaction vessel. Gas-chro-

matography. P(Azomethane ) = 70 torr.

P(H S) =0.5 torr. 2

+ - CH3 CH3 (+ M) CH3CH2 + H (+ M) (a) -» CH =CH M) (b) 2 2 + H2 (+ - CH3CH3 (+ M) (c) Methyl

81 SKI/ROG (k . high-pressure 2 c Limiting k.) DE 298 2.75(13) Calculated on the basis of k = k_jK.

83 ART/ANA (k DE 308 1.90(13) c ) 2 Molecular modulation spectrometry. CH 3 generated by photolysis of Azomethane

at 350 nm.

Rate constant extracted from the data by computer-non-linear parameter estimation and numerical integration procedures.

83 HAS/RIE (k c ) DE 298 2.70(13) 2 Flash-photolysis of Dimethyl oxalate.

Gas-chromatography, k calculated by using a computer integration interaction program.

83 MAC/PIL (k . = Ar) 296-577 . . ( -154±2 c M EX ( 1 67±0 11 ) 13 0 2 Limiting high-pressure k. = (k . Ar) . . ( c M EX 296-577 (2 18±1 20 ) 19) 0 -1680±300 3 Limiting low-pressure k. Flash-photolysis. Absorption spectroscopy. CH 3 produced by laser-photolysis of Azomethane at 193 nm. P = (5-500) torr.

CH3 + CH^ -» CH3CH3 + H (a)

-* CH CH 3 2 + H2 (b) Methyl + Methane

83 BAC ES 802 <6.3(1) 2

k . 0 Thermolysis of CH^ P -1000 torr. Upper-limit k.

71 .. .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-» CHO CH3 + HCHO CH4 + Methyl + Formaldehyde

83 ANA2 EX 500-603 ( 8 . 43±0 . 60 ) ( 11) 0 3500±48 2 CHg generated by photolysis of Acetone. 17 -3 [Acetone] = 1.0x10 molec.cm .

1 ® -3 [Formaldehyde] = 3.6X10 molec.cm . 3 Total cone. = 5.4x10^® molec.cm . Gas-chromatography

CHg + CBgO -+ CH^ + HCHO (a)

CBgOCHg (b) Methyl + Methoxy

83 (k 2 HAS/RIE a ) DE 298 1.68(13) Flash-photolysis of Dimethyl oxalate. Gas-chromatography

k calculated by using a computer integration interaction program.

CHg 1 CO -j CD CH^CH^CH^ 2^ Methyl + Ethyl

83 ART/ANA DE 308 2.72(13) 2 Molecular modulation spectrometry. CHg and CH CH generated photolysis 3 2 by of Azomethane and Azoethane at 350 nm. k extracted from the data by computer- based non-linear parameter estimation and numerical integration procedures.

83 KAN/PURI DE 773-793 8.91(12) 0 -856 2 CHg and CHgCH The 2 recombination. radicals generated by the pyrolysis of Propane in a

static reactor, in presence of Ethene.

Determined from the reverse reaction and

thermochemical data.

P(Ethene) = ( 1 . 5-6 . 0 )torr

P(Propane) = 200 torr.

CHg + CHgOC(O) -* C0 C(O)OCB 3 3 Methyl + Methyl, methoxyoxo-

83 HAS/RIE DE 298 1.64(13) 2 Flash-photolysis of Dimethyl oxalate. Gas-chromatography

k calculated by using a computer integration interaction program.

72 . ... )

Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

“* 1 CH-j 1 (CHg ) 2S CH^ CH3SCH2 Methyl + Methane, thiobis- (Dimethyl sulfide)

76 ART/LEE EX 393-488 4.17(11) 0 4613±82 2 1.20

Photolysis of (CH ) S in a silica 3 2 reaction vessel.

Gas-chrortiatography

-» CDj + CH3H--NCH3 CH^ + COgN^NCf^ Methyl + Diazene, dimethyl- (Azoraethane)

83 ARI/ART1 EX 334-463 1.07(11) 0 3960±22 2 1.05

Photolysis of Azomethane in a silica reaction vessel. Gas-chromatography

P = (18-73) torr.

CH + CH2=C=CH2 -» CH C(CH 3 2 3 )C=CH2 (a) * (b) CH 3CH2C=CH2

Methyl + 1 , 2-Propadiene (Allene)

x ( 83 SCH/CLA

k : ch ch n=nch ch CH N=NCH ref 3 + 3 3 - 4 + 2 3 83 SCH/CLA x (k ) b ) RN 573-595 5.75(10) 0 3440±120 2 1.58 Put on an absolute basis using the k of the reference reaction.

1 ) Addition of CH to 3 CH2=C=CH2 in a static system. CHg generated by decomposition of Azomethane Gas-chromatography

Allene/Azomethane mixture = 1.5.

P (Azomethane = 29 Q ) torr.

CH3 + (CH ) CH -» CH CH CH=CH (a) 3 2 4 + 3 2 - (CH 3 ) 3CH (b) Methyl + Ethyl, 1-methyl- (Isopropyl)

83 ART/ANA DE 308 2.20(13) 2 Molecular modulation spectrometry.

CH and (CH ) CH generated by photolysis 3 3 2 of Azomethane and Azoisopropane at 350 nm. k extracted from the data by computer- based non-linear parameter estimation and numerical Integration procedures.

73 . . . ) , )

4. Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reference Code, Notes Data T/K k ,k/k(ref n B, k A k err. Reaction, ) ,

type A, A/A(ref B-B(ref units factor

(CH -» C(0)CH (a) CH3 + 3 ) 2CO CH4 + CH2 3 (CH CO (b) 3 ) 3 * CH CH CH(CH (c) 3 2 3 )0 Methyl + 2-Propanone

76 ART/LEE (k ) EX 393-488 4.07(11) 0 4869±55 2 1.12 fl Photolysis in a silica reaction nvessel. Gas-chromatography

83 ARI/ART1 (k ) EX 398-522 3.47(11) 0 4811±26 2 1.05 fl Photolysis in a silica reaction vessel.

Gas-chromatography. P = (20-66) torr.

CH-g "1 (CHgJgC (CHg )^C Methyl + Ethyl, 1,1-dimethyl- (tert-Butyl)

83 ART/ANA DE 308 1.25(13) 2 Molecular modulation spectrometry.

CHg and (0113)30 generated by photolysis

of Azomethane and Azo-t-butane at 350 nm.

k extracted from the data by computer- based non-linear parameter estimation and numerical integration procedures.

CHg 1 (CU3 3CH CH^ "1 (CU3 gCHCHg (a) ) ) - CH (CH C (b) 4 + 3 ) 3 Methyl + Propane, 2-methyl- (i-Butane)

83 ANA1 (k k 478-560 ( . . ( a + b ) EX 3 73±0 66 ) 11 ) 0 4402±84 2 Molecular modulation spectrometry.

CH3 generated by photolysis of Acetone. 17 -o [Acetone] = 1.1x10 molec . cm . 17 — Q [Isopropane] = 6.9x10 molec. cm . - Total cone. = 2.8x10®® molec. cm ®. Gas-chromatography

83 MAR/SHA (k a ) ES 504-640 1.58(13) 0 6616 2 Pyrolysis of Isobutane sensitized by

Azomethane in a static reactor.

Gas-chromatography. P = (40-300) torr

CH M) -* 4 (+ CH3 + B (+ M) (a) -* any other products (b) Methane

83 KLO/DRO (k 1 overall ) EX 1600-2500 1.0(15) 0 50520 Shock-tube. Pyrolysis of in Ar, CH 4 behind reflected shock-waves

[CH = 1-9% 4 ] in Ar. P = (0.6-1.0)xl0 6 Pa.

74 4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CHO (+ H) CO + B (+ M)

Methyl, oxo-, (Formyl)

(M = Ar) EX -1400 1.0(15) 0 7700 2

Decomposition of CHO in premixed flames. Molecular-beam sampling. Mass-spectrometry. Unspecified T-range.

P = (22.5-40) torr.

- CHO + 02 (+ M) CO + HOz (+ M) (a) -* (+ M) (b) COz + OH -* HCOg (+ M) (c)

Methyl, oxo- , (Formyl) + Oxygen molecule

83 GUE/VAN (k ) EX -1400 8.8(12) 2 fl Reaction of 0 in flames CHO with 2 premixed Molecular-beam sampling. Mass-spectrometry Unspecified T-range.

P = (22.5-40) torr.

83 TEM (k . . a ) EX 296 ( 3 2±0 7 ) ( 12 ) 2 Reaction of with CHO 02 by Far-IR Laser- Magnetic-Resonance Spectrometry.

+ -* CHO CHO CO + CO + H2 (a) -* HCHO + CO (b)

- OHCCHO (c) Methyl, oxo- (Formyl)

83 TEM (k . k . 0 + b ) EX 296 (2 5±0 8) ( 13 ) 2 Far-IR Laser-Magnetic-Resonance Spectrometry.

HCHO (+ M) - H + CHO (+ M) (a)

-» H2 + CO (+ M) (b) Formaldehyde

= 83 GUE/VAN (kb . M Ar) EX -1400 7.85(13) 0 12380 2 Premixed flames. Molecular-beam sampling. Mass-spectrometry. Unspecified T-range.

P = (22.5-40) torr.

HC(0)OOH -» H 0 + 2 C02 Methaneperoxoic acid (Performic acid)

83 LEV/PRI EX 403-513 2.14(11) 0 14266±1624 1 29.5

Thermolysis of Peracetic acid diluted in

He or Ar, in a flow-type Teflon reactor.

[Peracid] = 0.03-l.lvol% (in He, or Ar).

P = 760 torr.

75 . .

4 . Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ -» + (a) CHgO CH30 HCBO CHgOH -* CHgOOCHg (b) Methoxy

83 (k HAS/RIE a ) DE 298 1.82(13) 2 Flash-photolysis of Dimethyl oxalate. Gas-chromatography,

k calculated by using a computer integration interaction program.

+ -» CH30 CH30C(0) HC(0)OCB3 + HCBO (a)

-» CH3OC(0)OCB3 (b) Methoxy + Methyl, methoxyoxo-

83 HAS/RIE

< kb> DE 298 8.80(12) 2 Flash-photolysis of Dimethyl oxalate. Gas-chromatography,

k calculated by using a computer integration interaction program.

CH 0 M) - CB 0 M) 3 2 (+ 3 + 2 (+ Methyldioxy

83 = ANA/BLA (M N 2 ) RL 550 <2.86(-ll) 1/2 Molecular Modulation Spectrometry. CH 0 generated by photolysis 3 2 of Acetone.

-* k : CH 0 (+ M) (+ . ref 3 + 2 CH 302 M)

CB 0 CB 0 -» HCBO + CH + 3 2 + 3 2 3OH 02 (a) -» CH 0 + + (b) 3 CH30 02 -» CB OOCH 0 3 3 + 2 (c) Methyldioxy

83 ANA/BLA (k /k b a ) RL 550 2.3 2/2 (k a ) ES 550 4.46(11) 2

(kb ) ES 550 1.03(11) 2 Molecular Modulation Spectrometry.

CH 3O2 generated by photolysis of Acetone k b /k Q ratio based on extrapolation of data at lower temperature. Data-fit

76 . . .

Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n 3, k,A k err. type A,A/A(ref) B-B(ref) units factor

CS + 02 -» COS + 0 (a) - CO + SO (b) + Oxygen molecule

290-500 0 1862±453 2 (k a ) EX 1.58(8)

EX 293 . 7±1 . 2 (k a ) (2 0 ) (5) Fast flow-reactor. CS generated by

CS an dissociation of 2 in electric discharge. ESR-, and Mass-spectrometry. 8 3 [Ar] = ( 1 . 0-5 . 0 )xl0 molec.cm . 8 8 = molec.cm” . [02 3 (0.5-3.2)xl0 8 3 [CS] = (0.3-1.5)xl0 molec.cm' .

P = (0.39=8-1. 58)torr. = 83 (k k . He) ( . . BLA/JUS a + b M EX 298 1 75±0 24 ) (5) 2 Laser-induced Fluorescence. CS generated by Photodissociation

of CS 2 at 193 nm. = (99.6-99.99)% [02 ] in He. P(CS 2 ) ~5mtorr

+ -* CS o3 cos + o2 Carbon monosulfide + Ozone = 83 BLA/JUS (M He) EX 298 ( 1 . 81±0 . 24 ) (8 ) 2 Laser-induced Fluorescence. CS generated by Photodissociation

of CS at 193 nm. ~ 2 P(CS2 ) 5 mtorr.

P(He ) = (50-300) torr.

CS + NOz (+ M) -* COS + NO (+ M) %* Carbon monosulfide + Nitrogen oxide (N02 ) 83 = BLA/JUS (M He) EX 298 (4 . 58±0 . 66) (7 ) 2 Laser-induced Fluorescence. CS generated by Photodissociation of = CS 2 at 193 nm. P(He) 24 torr. P(CS ~5 2 ) mtorr. CH S + NO (+ M) -* CH 3 3SNO (+ M) Methyl, mercapto- + Nitrogen oxide (NO)

83 HAT/AKI RL 303 2.0(3) 3/3

Photooxidation of CH SH, CHgSCHg, 3 or CH SSCH with OH air, 3 3 in in a quartz vessel.

FTIR-Spectroscopy . Gas-chromatography OH generated by photolysis of CHgONO, or CH CH ONO. Estimated 3 2 ratio.

-* k : ch s + O M) CH S0 ref 3 z (+ 3 2 (+ M)

77 2 . . .

Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CN(v=n) +02"* products Cyanogen + Oxygen molecule = 83 WHY/ PHI (n 0) EX 300 (8.,13±1.. 20 ) ( 12) = (n 1) EX 300 (7.. 53±1 , 93 ) ( 12) Fast-flow reactor. CN generated by Flash-photolysis

of NCCN at 193 ran. Dye-laser induced Fluorescence.

CN + H2 -» HCN + H Cyanogen + Hydrogen molecule

83 SZE/HAN1 ES 2700-3500 7.5(13) 2 1.36

Reaction in Ar, behind incident shock-waves. CN generated by NCCN dissociation.

P = ( 230-420 ) torr. Best data-fit.

CN + HCN - NCCN + H Cyanogen + Hydrocyanic acid

83 SZE/HAN2 ES 2720-3070 1.0(13) 2 2.0 Reaction in Ar, behind incident shock-waves. CN generated by NCCN disociation.

P = (323-518) torr.

T-independent k.

HCN (+ M) -» H + CN (+ M) Hydrogen

77 TAB/FUE EX 2600-3600 ( 1 . 26±0 . 28 ) ( 16) 0 50171±700 2

Thermolysis in Ar, behind incident

shock-waves . Absorption-spectroscopy.

[HCN] = (0.2-1. 0) X in Ar.

CH2=C ' i CH^ CH2=CH 1 CH-j Ethenylidene (Vinylidene) + Methane

83 LAU/YUN DE 298 =3.01(7) 2

Calculated using the BSBL (Bond strength- Bond length) method of Berces and Dombi

-» CB2=CH (+ M) CH=CH + e (+ M) Ethenyl

83 KIE/KAP DE 2300-3200 7.59(11) 0 2516 2 Pyrolysis of 3Z Ethene in Kr behind incident shock -waves

Data fit to a proposed mechanism.

78 . .. . .

4 . Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

+ C>2 -* + CH2=CH CH=CH HO2 Ethenyl (Vinyl) + Oxygen molecule

83 TEM EX 296 ( 1 . 5±0 . 7 ) ( 12 ) 2 Reaction by Far-Infrared Laser -Magnetic -Resonance Spectrometry

CH2CH + CH^ -» CH2=CH2 + CH3 Ethenyl (Vinyl) + Methane

83 LAU/YUN DE 298 =1.20(5) 2 Calculated using the BSBL (Bond Strength- Bond length) method of Berces and Dombi

CH =CH + M) - C0 =CB + H (+ M) (a) 2 2 < Z -» CffsCH + M) H2 (+ (b) Ethene

83 (k . . ( KIE/KAP a ) DE 2300-3200 ( 1 4±0 3 ) 15) 0 41180 2

(k . . b ) DE 2300-3200 ( 1 5±0 3 ) ( 15) 0 27900 2 Pyrolysis of 3% Ethene in Kr behind incident shock-waves.

Data fit to a proposed mechanism.

CH =CH CH =CH -* CH =CH + CH CH 2 2 + 2 2 2 3 2 (a)

-

Ethene

83 AYR/BAC (k 0 ) RN 748-819 1.86(14) 0 32310±1007 2 4.0 Pyrolysis in a static system,

with (CH ) and CH CH 3 a 3 3 as additives. Gas-chromatography

P(Ethene) = (100-300) torr

83 MAC/PAC (k ) a DE 896 2.3(-l) 2 Pyrolysis in a flow-system. Gas-chromatography

P = (23-78) torr.

Estimation based on the relationships:

CH CH + CH CH - CH -CH CH CH (d) and 3 2 3 2 2 2 + 3 3 - CH CH CH CH (r) 3 2 2 3

79 4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CH2=CH2 -* CH CH + o 3 3 +

-* + CH3CH2

-* + CH3CH2 Ethene + Cyclopentene

-* Ethane + 1 , 3-Cyclopentadiene (a)

-* Ethyl + 2-Cyclopenten-l-yl (b)

-* Ethyl + 3-Cyclopenten-l-yl (c)

80 BEN (k k ) DE 650-770 2.0(13) 0 22295 2 b + c Estimation based on a proposed mechanism.

CH CH + N0 3 2 2 - products Ethyl + Nitrogen oxide (N02 )

83 PAR/GUT EX 298 (2 . 71±0 . 06) ( 13 ) 2

Reaction in a fast-flow system. CH CH2 generated by the reaction: 3 CH CH Cl - CH CH HC1 3 3 + 3 2 + Cl atoms generated by dissociation of Cl 2 in a microwave-discharge. = 3 -3 [Ethane] ~(5-50)xl0^ molec.cm . 11 -3 [Cl] . Q = (0.5-1.5)xl0 atom.cm P(Total) = (0. 7-2.0) torr. (N0 2 )

ch ch t ch =ch -* ch 3 2 2 2 3ch3 + ch2=ch Ethyl + Ethene

83 MAC/PAC DE 896 8,0(7) 2

Pyrolysis in a flow-system. Gas-chromatography.

P = (23-78) torr.

Estimation based on the relationships:

CH CH + CH CH -* CH ->CH CH CH (d) and 3 2 3 2 2 2 + 3 3 -* CH CH CH CH (r) 3 2 2 3

CH CH + CH CH -* CH =CH + CH CH (a) 3 2 3 2 2 2 3 3 -» CH CH CH CH (b) 3 2 2 3 Ethyl

83 ART/ANA (kb ) DE 308 8.77(12) 2 Molecular modulation spectrometry. CH CH 3 2 generated by photolysis of Azoethane at 350 nm. k extracted from the data by computer- based non-linear parameter estimation and numerical integration procedures.

80 . . . .

*. Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err type A,A/A(ref) B-B(ref) units factor

-» (a) CH3CH3 (+ M) CH3 + CH3 (+ M) -* =CH H M) (b) CH2 2 + 2 (+ Ethane

81 (k. . 1% Ethane in Ar. P = 3 atm. EX 1045-1172 3.98(15) 0 42728±1862 1 6.31 SKI/ROG a = . 1007-1241 . in Ar P 3 atm.) 1.00(15) 0 1 2.51 (k a 3% Ethane EX 41319±956 = (k . 1% Ethane in Ar . P 9 atm.) EX 1000-1105 5.01(15) 0 42124±1963 1 6.31 0

(k . 3% in Ar. P * 9 atm.) EX 1034-1126 3.16(16) 0 44338±2315 1 7.94 a Ethane

. 1000-1300 0 45798 1 (k 0 Limiting high-pressure k.) ES 1.58(17) Thermolysis behind reflected shock-waves,

in a single pulse shock-tube. Gas-chromatography

The limiting high-pressure expression is

based on a RRKM extrapolation.

83 KAN/PUR2 (k ) EX 841-913 0 44238±886 1 g 3.31(16) 2.75

(k SE 841-913 4.27(16) 0 44489±362 1 1.51 a ) Pyrolysis in a static reactor,

with or without No.

(1-20) torr.

CH=C=0 + CH^CH -» CO + C3H3 (a)

-* any other products (b) Ethenyl, 2-oxo- + Ethyne

83 HOM/WEL2 (k . a ) DE 295 1 0 ( 10 ) 2

(k . a ) ES 500 1 0 ( 10 ) 2

(k a ) ES 1000 1 . 0 ( 10 ) 2 Estimations based on a suggested mechanism

for the reaction of Ethyne with 0 atoms,

studied in a flow-reactor, with or without added H atoms

P(Total) = 2 torr.

- CH2=00 (+ M) CH2 + CO (+ M) Ethenone (Ketene)

71 WAG/ZAB (Low-pressure region k.) EX 1300-2000 3.6(15) 0 29844±1007 2

(Limiting high-pressure k.) EX 1650 3.0(14) 0 35732 1

Thermolysis of (0.01-0.5)% Ketene in Ar, behind reflected shock waves.

Mass-spectrometry. M = Ar.

^ [Ketene] = (0 . 03-1 . 2)xl0^ molec.cm

CH =C=€> + CH3COOH - 2 CH3C(0)0C(0)CH3 Ethenone (Ketene) + Acetic acid

71 BLA/DAV2 EX 379-488 6.46(8) 0 5564±29 2 1.12

Reaction in a static system.

81 ) ) , ))

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reactioq, Reference Code, Notes Data T/K k ,k/k (ref ) B, k,A k err.

type A , A/A( ref B-B(ref) units factor

+ CH C SH - cH c(0 )sc( )ce ch2=c=o 3 0 3 0 3 Ethenone (Ketene) + Ethanethioic acid

74 BLA/SPE EX 401-501 2.69(+8) 0 4559±108 1.78

Reaction in a static system.

M) - M) H(0)CH2 + 02 (+ CH(0)CH202 (+ thyl, 2-oxo- (Vinoxy) + Oxygen molecule

= . P(Total) = ( 6 . 87±0 . ( . 2 83 GUT/NEL (M N 2 1.5 torr ) EX 295 24 ) 10

= = . . . . ( ( 2 (M N2 P(Total) 100 torr ) EX 476 9 94±0 84 ) 10 = = (M SFg . P(Total) 10 torr . EX 292 ( 1 . 13±0 . 04 ) ( 11 2 = = . . . ( (M SF k P(Total) 90 torr . EX 473 ( 1 33±0 05) 11 2 Reaction in N or SFg buffer gas. 2 ,

CH(0)CH 2 generated by reacting Cl atoms with Ethylene oxide.

Cl atoms generated by the IR multiphoton

dissociation of CgHgCl.

Other rate constants at various temperatures and pressures for

M = N and = SFg, are also given. 2 M

- CH(0)CH2 + NO (+ M) CH(0)CH2N0 (+ M) Ethyl, 2-oxo- (Vinoxy) + Nitrogen oxide (NO)

83 GUT/NEL (M = N . P(Total) = 2.5 torr.) EX 295 ( 1 . 63±0 . ( 2 2 05) 11

=* = (M N . P(Total) . . ( 2 300 torr.) EX 295 ( 1 13±0 04 ) 13 2 - = (M SFg. P(Total) 10 torr.) EX 295 ( 4 . 18±0 . 15) ( 12 2 = (M SFg. P(Total) = 40 torr.) EX 295 ( 8 . 03±0 . 35 ) ( 12 2

(Limiting low-pressure k.) EX 295 ( 2 . 37±0 . 31 ) ( 19 3 Data fit to Troe’s

semiempirical expression, by using a non-linear least-squares procedure.

(Limiting high-pressure k.) EX 295 ( 1 . 51±0 . 18) ( 13 2 Data fit to Troe’s

semiempirical expression, by using a non-linear least-squares procedure.

Reaction of Vinoxy with NO in N or SFg 2 , buffer gas.

Vinoxy generated by reacting Cl atoms with Ethylene oxide. Cl atoms produced by the IR multiphoton dissociation of CgHgCl. The limiting low-pressure and high-pressure

expressions were obtained by data-fit to Troe’s semiempirical relationship.

Other rate constants at various pressures, for M = N are also given. 2 ,

82 .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CH 0C(0) + CH 0C(0) -» CH 0C(0)C(0)0CH 3 3 3 3 Methyl, methoxyoxo-

83 HAS/RIE DE 298 1.73(13) 2 Dimethyl oxalate Flash-photolysis.

Gas-chromatography, k calculated using a computer integration interaction program.

+ C(0)0N02 -* products CH3CHO CH3 + Peroxide, acetyl nitro

76 PAT/ATK2 EX 296 ( 4 . 45±0 . 81 ) ( 3 ) 2

Reaction in a Teflon-lined aluminum tank.

Gas-chromatography . Mass-spectrometry

IR- absorption spectrometry.

[Peroxide] = (3. 9-5.1) ppm.

[CH CHO] = (83-312) ppm. 3

(+ M) -» (+ M) -» CH CBO (+ M) (a) CHgCHOf 3 - (+ M) (b) CH3 + CHO - (+ (c) CH4 + CO M) Oxirane -* Acetaldehyde

83 LIF/BEN (k . Limiting high-pressure k. ) ES 830-1200 -7.26(13) 0 28787 1 a

(k . Limiting k. 830-1200 0 1 b high-pressure ) ES -3.63(13) 28787

(k . Limiting 830-1200 0 28787 1 c high-pressure k. ) ES -1.21(13) Pyrolysis behind reflected shock-waves, in a single-pulse shock-tube. Gas-chromatography.

P = (1.5-10) atm. M = Ar. Estimations based

on a suggested mechanism which was fit to the experimentally determined product- distributions of the pyrolysis products.

/°\ H - CH -» + 2CH2OHf CH2=CH2 + OH (a)

-* CH2=CH + H20 (b) Oxirane (Ethylene oxide) + Hydrogen atom

83 LIF/BEN (k a ) ES 830-1200 9.5(10) 0 2516 2

(k b ) ES 830-1200 5.0(9) 0 2516 2 Pyrolysis of Ethylene oxide diluted in Ar,

behind reflected shock-waves, in a single- pulse shock-tube. Gas-chromatography.

P = (1.5-10) atm.

Estimations based on a suggested mechanism which was fit to the experimentally determined product- distributions of the pyrolysis products.

83 O .

Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-* + (a) HC(0)0CH3 CH3OH CO -» hcho + co (b) + 2H2 + 2CO (c) Fomic acid methyl ester (Methyl formate)

83 DAV EX 1180-1500 2.09(10) 0 25466±2617 1 6.17 Pyrolysis behind reflected shock-waves,

in a single-pulse shock-tube.

CH (+ M) -» CH C0 OH (+ M) 3C(0)00H 3 + 2 + Ethaneperoxoic acid (Peracetic acid)

75 LEV/PRI EX 403-488 4.04(13) 0 16960+277 1 1.70

EX 403-513 1.15(13) 0 16383±1913 1 38.0 Thermolysis of Peracetic acid diluted

'in He, Ar, or N in a flow-type 2 , Teflon reactor.

[Peracid] = (0 . 03-1 . l)vol% (in He, or Ar).

P= 760 torr.

CH CH 0 + ch CH 0 -» CH CH 0 + ch ch o + (a) 3 2 2 3 2 2 3 2 3 2 °2 -* ch cho + ch ch oh + (b) 3 3 2 °2 — * CH CH OOCH t (c) 3 2 2CH3 02 Ethyldioxy

83 ANA/WAD (k /k RL 302 1 . 75±0 . 05 2/2 a b )

RL 333 2 . 12±0 . 10 2/2

(k /k 373 . 45±0 . a b ) RL 2 15 2/2 302-373 316±167 1.65 (k a ) ES 3.49(10) 2 302-373 683+24 1.08 (kb ) ES 1.94(11) 2 Molecular Modulation Spectrometry. CH CH 3 202 generated by photolysis of

trans-Azoethane in O . presence of 2 and N2

Gas-chromatography . Mass-spectrometry

[trans-Azoethane] =4.8 torr.

[N = (410-550) torr. 2 ]

[ = torr. 2 ] (5-150)

ch sch t CH^ + 1 3 2 (CH3 ) 2S ch3 Methyl, (methylthio ) - + Methane

76 ART/LEE DE 393-488 6.31(11) 0 7662 2

Calculated by using the k of the reverse

reaction and thermochemical data. . ) )

V Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

C(0)SH -» CH =C=0 + H S (a) CH3 2 2 - CH COS (b) a + Ethanethioic acid (Thioacetic acid)

529-655 0 20978 1 83 TAY1 (k a + kb ) EX 3.16(12) Thermolysis of CH C(0)SH in a 3 stainless-steel reactor. NMR-Spectroscopy

Thioacetic acid is either separately

prepared, or produced by decomposition of Diacetyl sulfide.

Channels (a) and (b) are the most likely paths.

NCCN (+ M) -* CN + CN (+ M) Ethanedinitrile (Cyanogen) (Oxalonitrile

71 SLA/FIS EX 2700-4000 ( 4 . 58±0 . 40 ) ( 14 34726±856 2

X 1 ^ 71 SLA/FIS SE 1750-4000 ) 2

Thermolysis of 0.05-1% Cyanogen in Ar, behind incident shock waves. 18 -3 [Ar] = (1.20-3.22)xlo molec.cm .

P (5-40) Q = mm.Hg. M = Ar.

1 ) A combination of the above

rate constant with the data

of Tsang et al. is best fitted by the expression:

k = 3.71xl0 6 T°' 5 (64771/T) 8 exp(-64771/T)

O _ 1 _ 1

cm mol s .

+ CH2CN N02 -* products Methyl, cyano- + Nitrogen (N0 oxide 2 )

83 PAR/GUT EX 298 ( 1 . 16±0 . 05) ( 13) 2 Reaction of CH CN 2 with N02 in excess, in a fast-flow system. CH 2CN generated by the reaction: CHjCN + Cl - CH CN + HC1 2 Cl atoms generated by dissociation of Cl2 in a microwave-discharge. = 13 -3 [CH CN] ~( 5-50 )xl0 molec.cm . 3 33 3 [Cl] ( . 5-1 . 0 = 0 5 )xl0 atom. cm . P(Total) = (0. 7-2.0) torr. (N02 )

85 .. ) . - )

Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

[CH =CHNH -» CH =CH + NH (a) 2 2 -- ^ ] 2 2 -» CH3CN + H2 (b)

- =CHNH + B (c) [CH2 = ^ ]

-* CB CH CN (d) 3 + 2 [Ethenamine = Aziridine]

( (k 303 7 . 34 1 83 KOD3 a /k d ) RL ) 1/1

t—i 1 (k /k RL 303 O CM H 1/1 b d )

( (k /k RL 303 5 . 64 -1 1/1 c d ) Photolysis of HN in presence of Ethene, 3 vapor

at 313 nm. Gas - chromatography . IR-spectrometry The reactant, [Ethenamine - Aziridine] formed

by the reaction NHia^A) + CH =CH . 2 2 P(Ethene) = (0-188) torr.

P(HN = (0-105) torr. 3 ) Rate constant ratios estimated on the basis of the above proposed mechanism. ch h=nch ch 1 ch 1 3 3 3 3 n2 (q) -* cb ch n 3 3 + 2 (b) Diazene, dimethyl- (Azomethane)

83 MAR/SHA

(k . Previous and present data) SE 504-657 6.31(13) 0 23143±457 1 2.18 fi Thermolysis in a static system with four Pyrex glass reactors. Gas-chromatography.

P = (4-300) torr.

83 SCH/CLA EX 573-595 7.08(15) 0 25897+1263 1 8.71

Thermolysis in a static system. Gas-chromatography

P(Azomethane) = 29 torr.

CH C(0)0N0 (CH C=CH -» 3 2 + 3 ) 2 2 products Peroxide, acetyl nitro + 1-Propene, 2-methyl-

( Isobutene

76 PAT/ATK2 EX 296 <4.05(2) 2

Reaction in a Teflon-lined aluminum tank.

IR-Absorption spectrometry. Gas -chromatography Mass -spectrometry.

[Peroxide] = 5.8 ppm.

[CH CHO] = 3 51 ppm.

86 4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

C + c (d3n v=1) + CO + 0 (or C0 ) (a) 3 °2 2 > 2 -* any other products (b)

Carbon trimer + Oxygen molecule

83 NEL/HEL EX 520 <1.20(8) 2

''overall - ^ MUltiphoton -Photolysis/Laser- induced Fluorescence detection apparatus.

C by multiphoton UV-photolysis 3 generated

of CjHg at 249 run. , by using a KrF excimer Laser.

Unreactive at 607 K and above. = P(02 ) 90 torr.

C CH^ -» products 3 + Carbon trimer + Methane

83 NEL/HEL EX 600 <3.01(8) 2 Multiphoton UV-Photolysis /Laser -induced Fluorescence detection apparatus.

C 3 generated by multiphoton UV-Photolysis

of CgHg at 249 nm. , by using a KrF excimer Laser.

Unreactive at 607 K and above.

P(CH = 90 torr. A )

C 3 + CH-CH < products Carbon trimer + Ethyne

83 NEL/HEL EX 296-610 ( 5 . 47*1 . 61 ) ( 12 ) 0 4065*161 2 Multiphoton UV-Photolysis /Laser-induced Fluorescence detection apparatus. C generated by UV-Photolysis 3 multiphoton of CgHg at 249 nm. , bu using a KrF excimer Laser.

P( CH-CH) = (0-30) torr.

C CH 3 + 2=CH2 < products Carbon trimer + Ethene

83 NEL/HEL EX 296-610 ( 1 . 02*0 . 31 ) ( 12 ) 0 3277*168 2 Multiphoton UV-Photolysis /Laser- induced Fluorescence detection apparatus. C generated 3 by multiphoton UV-Photolysis of C Hg at 249 nm. by using a KrF 3 , excimer Laser. P(CH = 2=CH2 ) (0-50) torr.

87 - - 4. Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Cg + CHgC-CH < products Carbon trimer + 1-Propyne

83 NEL/HEL EX 296-610 (2 . 97+0 . 28 ) ( 11 ) 0 121-5-35 2 Multiphoton UV-Photolysis /Laser- induced Fluorescence detection apparatus. Cg generated by multiphoton UV-Photolysis

of CgHg at 249 nm. , by using a KrF excimer Laser.

P( 1-Propyne) = (0-1) torr.

Cg + CHgCH=CH2 i products Carbon trimer + 1-Propene

83 NEL/HEL EX 296-610 ( 6 . 26+0 . 36 ) ( 10 ) 0 159+21 2 Multiphoton UV-Photolysis /Laser- induced Fluorescence detection apparatus. Cg generated by multiphoton UV-Photolysis of CgHg at 249 nm. , by using a KrF excimer Laser.

P(l-Propene) = (0-6.25) torr.

Cg + CHgCT^CH^CHg S products Carbon trimer + 1-Butene

83 NEL/HEL EX 296-610 ( 7 . 35+0 . 30 ) ( 10 ) 0 139+17 2 Multiphoton UV-Photolysis/Laser-induced Fluorescence detection apparatus. Cg generated by multiphoton UV-Photolysis of 249 CgHg at nm. , by using a KrF excimer Laser.

P(l-Butene) = (0-7) torr.

Cg + cis-CHgCH=CHCHg < products

Carbon trimer + 2-Butene, (Z)-

83 NEL/HEL EX 296-610 ( 1 . 26+0 . 06 ) ( 11 ) 0 -201+19 2 Multiphoton UV-Photolysis/Laser-induced Fluorescence detection apparatus. Cg generated by multiphoton UV-Photolysis

of CgHg at 249 nm., bu using a KrF excimer Laser.

P(cis-2-Butene) = (0-1) torr.

88 4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Cg + (CHg^C^f^ S products Carbon trimer + 1-Propene, 2-methyl- (Isobutene)

-759-5-15 83 NEL/HEL EX 296-610 (2 . 53*0 . 10 ) ( 11) 0 2

' Multiphoton UV-Photolysis/Laser-induced Fluorescence detection apparatus. Cg generated by multiphoton UV-Photolysis

of CgHg at 249 nm. , by using a KrF excimer Laser.

P(Isobutene) = (0-0.08) torr.

Cg + CHgCl^CI^CHg < products Carbon trimer + Butane

83 NEL/HEL EX 607 <1.20(8) 2 Multiphoton UV-Photolysis/Laser-induced Fluorescence detection apparatus. Cg generated by multiphoton UV-Photolysis of CgHg at 249 nm. , bu using a KrF excimer Laser.

P(Butane) = 90 torr.

Unreactive above 607 K.

Cg + (CHg) 2C=CHCHg -* products Carbon trimer + 2-Butene, 2-methyl-

83 NEL/HEL EX 296-610 (3 . 35+0 . 27 ) ( 11 ) 0 -1014±34 2 Multiphoton UV-Photolysis/Laser-induced Fluorescence detection apparatus. Cg generated by multiphoton UV-Photolysis

of CgHg at 249 nm. , by using a KrF excimer Laser.

P(2-Methyl-2-Butene) = (0-0.1) torr.

Cg + CHgCH2CH2C=CCHg -* products Carbon trimer + 2-Hexyne

83 NEL/HEL EX 296-610 (6 . 50±0 . 05) ( 11) 0 -695±24 2 Multiphoton UV-Photolysis/Laser-induced Fluorescence detection apparatus. Cg generated by multiophoton UV-Photolysis

of CgHg at 249 nm. a KrF , by using excimer Laser.

P(2-Hexyne) = (0-0.07) torr.

89 s . ) . 3

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Cg + (CHg^OCCCBg^ + products

Carbon trimer + 2-Butene, 2, 3-dimethyl-

83 NEL/HEL EX 296-610 ( 1 . 26±0 . 11 ) ( 12 ) 0 -917±33 2 •Multiphoton UV-Photoly sis /Laser-induced Fluorescence detection apparatus.

Cg generated by multiphoton UV- Photolysis

of CgHg at 249 nm. , by using a KrF excimer Laser. 3 P(2 , -Dimethy 1-2-Butene ) = (0-0.08) torr

m) -* =chch (+ M) ch2=chch2 + no c+ ch2 2no 2-Propenyl (Allyl) + Nitrogen oxide (NO)

82 TUL/MAC EX 295-404 (2 . 11±0 . 36 ) ( 12 ) 0 -403+12 2

Reaction in an Laser-Flash-Photolysis system. Allyl generated by Flash-photolysis of

, = (50-100) torr. 1 5-Hexadiene . [NO]

P(Total) = (50-500) torr.

Limiting high-pressure k. The frequency factor: _1 -1 = 3 A (2.11±0.36)xl0(12)cm .mol .s ,

given above, is equivalent to:

3 ^ A = ( 3 . 35±0 . 10 )xl0 ^cm . molec . .s

However, the authors give a value of:

3 ^ A = ( 3 . 35±0 . 10 )xl0 ^cm . molec. .

which is probably a misprint.

CH =CHCH -* 2 2 + CB2=CHCB2 CH2=CHCH2CH2CH=C0CH2 2-Propenyl (Allyl)

82 TUL/MAC EX 293-571 ( 1 . 02±0 . 02) ( 13 ) 0 -132+12 2

Recombination of Allyl in a Laser-Flash- Photolysis system. Allyl generated by

Flash-photolysis of 1, 5-Hexadiene.

P(l, 5-Hexadiene) = 182 mtorr.

P(Ar ) = 53 torr.

-» A (+ M) CHgCB=CH2 (+ M)

Cyclopropane

78 LEW/GIE (Limiting high-pressure k. RL 1038-1208 0 . 5±0 . 1

(k ref is k

(Limiting high-pressure k.) ES 1038-1208 2.82(15) 0 32964 1 (Second choice)

90 . . ..

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Isomerization in Ar, or He diluent,

in a single-pulse shock-tube, behind reflected shock-waves. Comparative-rate method with Cyclohexane decomposition taken

as internal standard reaction. Gas -chromatography.

P = (533-5097) torr.

80 FUR/PAC EX 897 1.72(-1) 1

Isomerization in a flow-reactor with quartz tubes. Gas-chromatography

P = 50 torr.

82 LEW/BOS EX 983-1333 2.24(11) 0 12823 1

Thermal isomerization in Ar, in presence of BCI behind reflected shock-waves, 3 , in a single-pulse shock-tube. Gas-chromatography

[Cyclopropane] = 1% in Ar.

[BC1 = 1% in Ar. 3 ]

P = (2 . 5-3 ) atm.

(CH CH -» + 3 ) 2 H CH3CH=CH2 (a) 1 CH3 CH2=CH2 (b) Ethyl, 1-methyl- (Isopropyl)

75 SZI/MAR3 RN 538-666 1.0(14) 0 18319±1057 1 6.31

Static-, or flow-system. (CH ) CH generated 3 2 by the pyrolysis of Azoisopropane. Mass-spectrometry

Determined relative to the reaction:

-* (CH ) CH + (CH ) CH (CH ) CHCH(CH 3 2 3 2 3 2 3 ) 2

(CH ) CH + (CH ) CB -* (CH CHCH(CH (a) 3 2 3 2 3 ) 2 3 ) 2 -» (CH (b) 3 ) 2CHCH(CH3 ) 2 Ethyl, 1-methyl- (Isopropyl)

83 ART/ANA (k ) ES 308 5.96(12) 2 fl Molecular modulation spectrometry. (CH CH 3 ) 2 generated by photolysis of Azoisopropane at 350 nm. k extracted from the data by computer-based non-linear parameter estimation and numerical integration procedures

91 . . . . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CH CH CH M) + CH CH M) (a) 3 2 3 (+ 3 2 (+

- any other products ( + M) (b) Propane

(k 1400-1800 ( . . ( 0 83 ALA/KIE a ) EX 7 74±1 55) 11 28030

(k . Limiting high-pressure k) TH 1400-1700 1.48(17) 0 43500 a (RRKM extrapolation.)

(k 1800-2300 . . 0 a ) EX (2 68±0 54 ) (17 28280 Pyrolysis in incident shock-waves. Laser-schlieren technique. (3-25) = PQ = torr. M Kr. (2-4)% Propane in Kr

83 773-793 1 KAN/PURI (k a ) EX 5.13(16) 0 41973±981 3.47 Pyrolysis in a static reactor,

in presence of Ethene.

P(Propane) = 200 torr.

P( Ethene) = (1. 5-6.0) Tor.

** i CH2=CHCH202 CHZ=CHCH2 02 2-Propenyldioxy

82 MOR/PIL EX 413-427 ( 1 . 6±0 8 ) ( 10 ) 0 6411±192 1 Laser Flash-photolysis system

with a Xenon lamp. 2-Propenyldioxy generated by the

addition of 0 to Allyl, in 2 turn generated by the Flash-photolysis

of 1 , 5-Hexadiene Gas- chromatography. = 17 3 [0 molec.cm' . 2 ] (0.49-1.38)xl0 13 -3 [Allyl] = 3xl0 particles cm .

P(Total) = 50 torr.

-» CEzCE20CBz -» CH2=CH2 +HCHO (a) t CH^CIJzCli 2P * CH2=CH2 HCHO (b) Oxetane

83 ZAL/HUN (k + k Limiting high-pressure k) 668-758 0 31214±457 1 2.04 a b- ES 2.63(15)

k 673-758 0 31515 1 < a> DE 1.3(15)

673-758 0 31755 1 < kb> DE 9.2(14) Thermolysis in a static vacuum system. Gas-chromatography

P = (0.075-52.5) torr.

Data fit to RRKM theory.

92 , . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-» CH2CH20CD2 -» CH2=CH2 +DCDO (a) D -+ -» + CH2CH2CD20 CH2=CH2 DC®0 ( b >

-+ -* HCHO CH2CD20CH2 CH2=CD2 + (c) -* + CH =CD HCHO (d) CD2CH2CH20 2 2 +

, 2-d Oxetane-2 2

83 ZAL/HUN (k overall . Limiting high-pressure k) ES 668-758 3.47(15) 0 31611+457 2 1.45 (k -723 0 31996 1 a ) DE 1.3(15)

(k DE -723 0 31755 1 b ) 9.2(14)

(k -723 0 32236 1 d ) DE 9.2(14) Thermolysis in a stativacuum system. Gas-chromatography

P = (0.075-52.5) torr.

Data-fit to RRKM theory.

O + CH CH CHO ^^CHj 3 2 (a) -» (CH CO (b) 3 ) 2 + ch2=chch2oh ( c -* (d) CH2=CHOCH3

-+ Oxirane , methyl-, Propanal (a)

+ Propanone (b)

+ 2-Propen-l-ol (c)

-+ Ethene, methoxy- (d)

77 FLO 654-717 (k a ) EX 2.45(14) 0 29434±289 1 1.51

(kb ) EX 654-717 1.51(14) 0 30131±289 1 1.51

(kb ffl. RRKM data-fit) ES 656-717 1.70(14) 0 30552 1

(k ) 656-717 0 28760±241 1 c EX 7.94(12) 1.41

(k d ) EX 656-717 3.24(13) 0 29578+373 1 1.70 Thermal isomerization in a static vacuum- system, with packed and unpacked vessels.

in presence or absence of NO. Gas--chromatography.

P = (5-326) torr.

CH CH C(0)OOH -» ch + 3 2 3ch2 + co2 OH Propaneperoxoic acid (Perpropionic acid)

83 LEV/PRI EX 403-513 1.35(13) 0 16671±1708 1 30.2

Thermolysis in He or Ar, in a flow-type Teflon reactor.

[Peracid] = 0.03-1. lvol% (in He, or Ar). P= 760 torr.

93 . . .

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err type A,A/A(ref) B-B(ref) units factor

(CB ) CB0 CH CH=CH -* (CH ) CHO /°\ 3 2 2 + 3 2 3 2 +

Ethyldioxy, 1-methyl- (Isopropylperoxo) + 1-Propene

83 SWA/WAD EX 303-408 8.31(11) 0 8143+301 2 2.29

Reaction in a Pyrex vessel.

(CH CH0 generated by photooxidation 3 ) 2 2 2’ of trans-2 , -Azopropane P(l-Propene) = (200-400) torr.

P(0 = (300-500) torr. 2 ) P(Total) = 750 torr.

(CH ) CH0 + CCH ) C=CH + (CB ) CH0 + /®\ 3 2 2 3 2 2 3 2 sC H.J ^CH,

Ethyldioxy, 1-methyl- (Isopropylperoxo) + 1-Propene, 2-methyl- (Isobutene)

83 SWA/WAD EX 303-408 3.89(11) 0 7542+265 2 1.55

Reaction in a Pyrex vessel.

(CH ) CH generated by photooxidation 3 2 2 2' of trans-2 , -Azopropane

P(Isobutene) = (50-200) torr.

P(Total) = (700-750) torr.

P(0 = 450 torr. 2 )

(ch cho ch ch c(ch )=ch 3 > 2 2 + 3 2 3 2

Ethyldioxy, 1-methyl-, (Isopropylperoxo) + 1-Butene, 2-methyl-

83 SWA/WAD EX 303-408 3.89(11) 0 7542+265 2 1.55

Reaction in a Pyrex vessel. Isopropylperoxo generated by photooxidation of trans-2, 2’ -Azopropane

P( Isobutene) = 80 torr. = (300-400) P(02 ) torr. P(Total) = 500 torr.

(CH ) CH0 (CH CH=CHCB 3 2 2 + 3 ) 2 3

- (CH ) CHO 3 2 + H,C A^CH, H,C'

Ethyldioxy, 1-methyl-, (Isopropylperoxo) + 2-Butene, 2-methyl-

83 SWA/WAD EX 303-408 3.89(11) 0 7542±265 2 1.55 : . . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

Reaction in a Pyrex reaction vessel. Isopropylperoxo generated by photooxidation 2' of trans-2 , -Azopropane

P( Isobutene) = 40 torr.

P(Total) = 500 torr.

P(C>2) = 400 torr.

- CH3CH2CN CH3 + CH2CN (a) - CH2=CH2 + HCN (b) -* + C02=CeCN H2 (c) Propanenitrile

83 (k 789-850 0 39607±478 1 2.0 TRE a ) EX 3.16(15) Pyrolysis in a static reactor.

P = (10-100) torr.

CH CH N=€=0 -* CH (a) 3 2 2CH2 + HN=C=0 -> CH + (b) 4 + HCN CO Ethane, isocyanato- (Ethyl Isocyanate)

83 . 701-803 BLA/IJA (k a Unimolecular elimination) EX 1.58(12) 0 28183±453 1 1.6

(k . 2 . 25( 1 a Unimolecular elimination EX 723 -5

(kb . Chain decomposition) EX 701-803 2.51(12) 0 26673±7 55 1 2.5

( (kb . Chain decomposition) EX 723 9 . 33 -5 1 Thermolysis in carbon-coated, packed and unpacked reaction vessels. (Chains are quenched by inhibitors.)

P = (29-204) torr.

CH CH CH OON0 -* CH CH CH 0 N0 3 2 2 2 3 2 2 2 + 2 Peroxynitric acid propyl ester

79 EDN/SPE DE 280-298 5.0(14) 0 9965 1

Decomposition in a flow reactor,

in air and in presence of NO. IR-spectrometry

P = 700 torr.

E g measured directly. The preexponential factor determined from

E a and the rate constant ratio of the reactions

ch ch ch o no -* ch ch ch o + no 3 2 2 2 + 3 2 2 2 and

ch ch ch o no ch ch ch no 3 2 2 2 + 2 - 3 2 2 2

95 . . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

(v=5, 6) -» CH2=CHCH=CH2

Cyclobutene 1 83 JAS/FRI (A = 13346 cm' ) EX 298 (3 . 5±0 . 8 ) (7 1 1 (A = 16602 cm' ) EX 298 (8.2±1. 1) (8) 1

Photoisomerization in a dye Laser. Tiotoacoustic spectrometry,

1- s- chromatography t-spectrometry

P = (0. 1-60) torr.

The rate constant, measured as a function of energy and overtone transition,

is increasing with A.

2- = CHjCH^CHj 1 H2 "* cis CH^CH CHCH2 1 0 Propenyl, 1-methyl-, + Hydrogen molecule

83 COL/RIC ES 773-794 1.26(13) 0 12179 2

Thermal reaction in a static system, k determined from the experimental data

on the basis of a suggested mechanism.

cis-CH CH=CHCH -* 3 3 (+ M) CH3CH=CHCH2 + H (+ M) (a) - CH H M) 2=CHCH=CH2 + 2 (+ (b) -* CH =CHCH CH M) (c) 2 2 + 3 (+ * trans-CH3CH=CHCH3 (+ M) (d) Butene, (Z)-

71 SPR/AKI (k 298-338 d ) EX 1.26(11) 0 6090±151 2 1.58

(k ) . . d EX 298 ( 1 48±0 03 ) (2 ) 2 Isomerization a glass reaction cell. = Gas-chromatography. M N02 .

P(cis-2-Butene ) = (1-30) torr. P(N0 = 2 ) (0. 1-3.0) torr.

ch ch chch h -* ch cb ch ch e 3 2 3 + 2 3 2 2 3 + Propyl, 1-methyl-, + Hydrogen molecule

1 83 COL/RIC ) RL 773-794 7.8(2) 2/1

k : CH CH CHCH -» CH CH CH=CH ref 3 2 3 3 + 3 2 Estimated ratio.

1 83 COL/RIC ) ES 773-794 3.98(13) 0 8907 2 1 ) Thermal reaction in a static system

96 . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

cis-CH CH=€HCH CH3CH2CHCH3 + 3 3 -* CH CH CH CB CH CH=CCH 3 2 2 3 + 3 3 Propyl, 1-methyl-, + 2-Butene, (Z)-

1 83 COL/RIC ) RL 773-794 2.5(3) 2/1 - '• CH CH CH=CH k re f CH3CH2CHCH3 3 + 3 2 Estimated ratio.

1 83 COL/RIC ) ES 773-794 2.51(11) 0 4026 2

1 ) Thermal reaction in a static system.

(CH C + (CH C -* (CH CH=CH (CH CH (a) 3 ) 3 3 ) 3 3 ) 2 2 + 3 ) 3 -* (CH CC(CH (b) 3 ) 3 3 ) 3 Ethyl, 1,1-dimethyl- (t-Butyl)

83 ART/ANA (k ) ES 308 4.31(12) 2 fa Molecular modulation spectrometry.

(CH C generated by photolysis of 3 ) 3 Azo-t-butare at 350 nm.

k extracted from the data by computer- based non-linear parameter estimation and numerical integratiopn procedures.

-» + CO CH^CH + C02

2 , 5-Furandione (Maleic anhydride)

81 BAC/PAR EX 645-760 2.14(14) 0 30649±503 1 2.0

Thermolysis in a static system. Gas-chromatography

P = (0.7-20) torr.

-* CO + other products (a)

-* C02 + other products (b)

, 2 5-Furandione , dihydro- (Succinic anhydride)

83 YAM/BAC (k ) EX 625-775 3.98(11) 0 26673 1 fl

(k ) EX 625-775 3.16(5) 0 17111 1 fa Thermolysis in packed, or unpacked vessels.

P = (4-20) torr.

CB C(0)0CH=CH (CB ) CO + CO (a) 3 2 - 3 2 -» + CH3CHO CH2=C=0 (b) Acetic acid ethenyl ester (Vinyl acetate)

83 TAY3 (k + k ) EX 636-722 2.69(10) 0 21940 1 a fa

(k ) EX 600 2 . 12( -6 1 fa Thermolysis in a static system.

97 .

A. Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

H,C

-» CH CH=CH C0 n 3 2 + 2

2-0xetanone, A-methyl- (/?-Butyrolactone)

83 FRE/WAT EX A82-523 2.A5QA) 0 19655±120 1 1.26

Thermolysis in a static system.

P = (0.1-10) torr.

CH -» CH3COOH + 3C(0)0C(0)CH3 ch2=c=o Acetic acid anhydride

71 BLA/SPE EX A70-6A3 1.86(11) 0 16202±226 1 1.55

Thermolysis in a static system.

ch ch och=ch ch = 3 2 2 2 ch2 1 CB3CHO Ethene, ethoxy- (Ethyl vinyl ether)

82 MCE/TA EX 617-677 6.65(11) 0 22363 1

EX 600 A . 32(-5) 1

Thermolysis in a stainless-steel reactor.

CH C(0)0CH CH CHgCCOH + CH =CH 3 2 3 - 2 2 Acetic acid ethyl ester

83 LOU/TIN EX 679-737 2.51(12) 0 2A056±252 1 2.0

EX 673 7.5K-A) 1 Liquid phase thermolysis of Ethyl Acetate

diluetd in Toluene or m-Xylene,

in a microprocessor. Gas-chromatography

CH 0C(0)0CH CH ch oh 1 co + CH -_ 3 2 3 3 2 2= C;i Carbonic acid ethyl methyl ester

83 TAY2 EX 626-682 1.59(12) 0 225A7 1

EX 600 7.61(-5) 1

Thermolysis in a stainless-steel reactor.

CH CH CH -» 3 2 2C(0)00H ch3ch2ch2 + co2 + OE Butaneperoxoic acid (Perbutyric acid)

83 LEV/PRI EX A03-513 9.55(12) 0 16527±20A5 1 55.0

Thermolysis in He or Ar, in a flow-type Teflon reactor.

P = 760 torr.

[Peracid] = (0.03-1.1) vol% (in He, or Ar).

98 . ..

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

(CH CHC(0)00B -* (CH CH + C0 OH 3 ) 2 3 ) 2 2 + Propaneperoxoic acid, 2-methyl- (Perisobutyric acid)

83 LEV/PRI EX 403-513 1.41(13) 0 16467±1888 1 42.7,

Thermolysis in He or Ar, in a flow-type Teflon reactor.

P = 760 torr.

[Peracid] = (0.03-1.1) volZ (in He, or Ar).

(CH CO (+ M) -* (CH ) CO + CH M) 3 ) 3 3 2 3 (+ Ethoxy, 1,1-dimethyl- (t-Butoxy)

82 BAT /ROB EX 402-443 3.98(14) 0 8002±604 1 3.98

(RRKM calculation.) ES 402-443 7.94(14) 0 8354 1

Thermolysis in a static system.

(CH ) CO generated by the decom- 3 3 position of di-t-Butyl peroxide

diluted in NO. Gas-chromatography

Limiting high-pressure k. 16 3 [t-BuO] = [NO] = ( 0 . 72-1 . 20 )xl0 molec.cm' .

(CH COOH(v=6) -* + 3 ) 3 (CH3 ) 3CO OH Hydroperoxide, 1,1-dimethyl ethyl- (t-Butyl hydroperoxide)

82 RIZ/CRI EX 298 (4. 0+0.4) (6) 1 Unimolecular decomposition of t-Butyl

hydroperoxide excited to v = 6 (above

the barrier for dissociation), with a

YAG pumped dye- laser. Time-resolved Laser-induced fluorescence.

P = (20-300) mtorr

Unreported T assumed to be 298 K.

CH C(0)SC(0)CH -* CH C(0)SH + 3 3 3 CH2=C=0 Ethanethioic acid anhydrosulf ide

(Acetic thioanhydride , or Diacetyl sulfide)

74 BLA/SPE EX 459-526 1.05(11) 0 15757±770 1 4.68

Decomposition in a static system.

83 TAY1 EX 569-600 6.92(11) 0 19125 1

Thermolysis in a stainless-steel reactor. NMR-Spectroscopy

99 ... ) . . . N ) ) ))

4. Table of Chemical Kinetic Data for Combustion Chemistry --Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(re£) B-B(ref) units factor

f CE^CHCHgNC 01i ~ ijCB2C 1-Propene, 3-isocyano-, (Allyl )

-* 3-Butenenitryle (Allyl cyanide)

79 RED/BER2 (A = 746.4 nm. EX 300 -6.0(5) 1 1.5

(A » 532.2 nm. EX 300 4.6(8) 1 1.2 Photoisomerization with an intracavity Vibrationally excited Allyl isocianide formed

from Allyl isocianide by a cw dye Laser. Photoacustic spectrometry. Gas-chromatography

P = (0-10) torr.

k increases when A decreases, (k values at intermediate wavelenghths are given

in a table .

— ( CH^ 2CHNCO * CH CH=CH HN=C=0 (a) ) 3 2 + -* CE CH3CN + CO (b) 4 + Propane, 2-isocyanato- (Isopropyl isocyanate)

72 BAR/MIR (k ) EX 686-771 5.13(12) 0 27831 2 fl UnimolecuLar elimination.

Thermolysis in a static reactor Gas-chromatography Mass-spa rtrometry

P = (70-433) torr.

83 (k 701-803 0 1 1.6 BLA/IJA a ) EX 1.58(12) 26220±251

( (k a ) EX 723 3 . 53 -4 1

701-803 20533±2014 1 1.1 (kb > EX 2.51(10) 0

( (kb ) EX 723 1 . 73 -3 1 Thermolysis in carbon-coated, packed and unpacked reaction vessels (Chains are quenched by inhibitors .

P = (29-204) torr.

CH C(0)NHC(0)CH CH C(0)NH ch =c=o 3 3 - 3 2 + 2 Acetamide, N-acetyl-

83 TAY1 EX 547-601 2.63(12) 0 19033 1

( EX 600 4 . 37 -2 1

Thermolysis in a stainless-steel reactor NMR-Spectroscopy

100 . ) .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

^ - o

-* Bicyclo [2 . 1 . 0]pent-2-ene 1 , 3-Cyclopentadiene

( 72 BAL/AND EX 323 ( 1 . 39±0 . 02 ) -A ) 1

Thermal isomerization in an aluminum column. Gas -chromatography

+ H2

Cyclopentene

73 KNE EX 753-803 (6 . 3±0 . 1 ) ( 12) 0 29089 1

Thermolysis in a Pyrex reaction vessel.

Gas-chromatography . Mass-spectrometry

UV-Spectrometry . P = (4-34) torr.

Cyclopentene-dg

73 KNE EX 753-803 (9 . 9±0 . 2) ( 12) 0 30347 1

Thermolysis in a Pyrex reaction vessel.

Gas-chromatography . Mass-spectrometry

UV-Spectrometry. P = (4-34) torr.

= txi CH2=CH2 1 C02^ CH2 ( a

(b)

Spiropentane -* Ethene + 1,2-Propadiene (a)

-* Cyclobutane, methylene- (b)

72 FLO/GIB (k 0 27932 1 a ) DE 663 7.94(13)

(k^. Isomerization) EX 663 1.58(15) 0 27932 1

Thermolysis in a static system, with or without CF CIF 2 2CI. Gas-chromatography. RRKM fit to the data, on the basis of

a proposed mechanism.

P(Spiropentane) = (0.9-335) torr. P(CF = 2C1CF 2C1) (0-721) torr.

73 KNE 753-803 ( 9 . 9±0 . ( 0 30347 1 (k a ) EX 2) 12) Thermolysis in a Pyrex reaction vessel. Gas-chromatography. Mass-spectrometry.

UV-Spectrometry. P = (4-34) torr.

101 . 2 )

4. Table of Chemical Kinetic Data for Combustion Chemistry --Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-* ch2=chch2ch2ch2

Cyclopentyl -* 4-Pentenyl

7 4 CAR/TAR2 DE 298 1.0(14) 0 17413±302 1 2.51

Decyclization of Cyclopentyl in a Pyrex reaction vessel. Cyclopentyl generated by reacting Cyclo- pentene with H atom, wich was itself generated by the Hg-photosensitized

decomposition H . calculated of 2 k by fitting the data to a model mechanism.

P = (0-11.1) torr.

+ N02 -* products

Cyclopentyl + Nitrogen oxide (N02 )

83 PAR/GUT EX 298 (2 . 23±0 . 06 ) ( 13 2

Reaction in a fast-flow system. Cyclopentyl generated by the reaction:

Cl atoms generated by dissociation of

Cl2 in a microwave-discharge. [Cyclohexane] = ~(5-50)xl0* 3 molec.cm U -3 [C1] Q = (0.5-1.5)xl0 atom. cm . P(Total) = (0. 7-2.0) torr. (N02 )

CH^CI^CE^CH^E^ (&)

- CH2=€H2 + A (b)

Cyclopentane

79 KAL/SHV (k 978-1143 3+1. 0 0 overall > RL 5. 1/1 Pyrolysis of Cyclopentane-Pentane mixtures

in a flow-reactor. Gas-chromatography

[Cyclopentane] = (3.5-26.4) Z

[Pentane) = (4.9-44.9) X.

P ~ 1 torr.

-* kre f ; CH3CH3 products.

102 .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CH CH CH CH CH -» products 3 2 2 3 2 Pentane

79 KAL/SHV RL 978*1143 1 . 3±0 . 1 0 0 1/1 Pyrolysis of Pentane-Cyclopentane mixtures

in a flow-reactor. Gas-chromatography. [Cyclopentane] = (3.5-26.4)%

[Pentane] = (4.9-44.9)%

P ~ 1 torr.

-* ^ref : o products

(CH C (+ M) -» (CH ) C + CH M) 3 ) A 3 3 3 (+ Propane, 2,2-dimethyl- (Neopentane)

83 BER/SKI (M = Ar) EX 1140-1300 1.7(17) 0 42677 1 2.0 Pyrolysis behind reflected shock-waves. Resonance-absorption Spectroscopy. Gas-chromatography.

[Neopentane] = ( 1 . 19-4 . 76 )xl0^ molec.cm

-* cb2=cbcb=cb2 + hcho

2H-Pyran, 3,6-dihydro-

79 FRE/LOD EX 602-647 2.86(14) 0 25254*221 1 1.42 Thermolysis in Pyrex, packed or unpacked reaction vessels. Gas-chromatography

(CU CflOCU--Cn CH t 3 ) 2 2 3CH=CH2 ch3cbo Propane, 2-(ethenyloxy)- (Ethyl isopropyl ether)

82 MCE/TAY EX 617-677 3.37(12) 0 21960 1

EX 600 4 . 32(-4 ) 1

Thermolysis in a stainless-steel reactor.

CB CH 0C(0)0CH CB -* CH =CH C0 CB CH OH 3 2 2 3 2 2 + 2 + 3 2 Carbonic acid diethyl ester (Diethyl )

83 FAR/BEC EX 540-620 (1 . 94±1 . 33 ) (13 ) 0 23524*375 1

Thermolysis in sealed Pyrex tubes. Gas-chromatography. Arrhenius expression calculated from the reported experimental data.

103 . .. . ) )) )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CH CH 0C(0)0CD CD -» CH =CH C0 CD CD OB (a) 3 2 2 3 2 2 + 2 + 3 2 -» CD =CD C0 CH CB OD (b) 2 2 + 2 + 3 2 Carbonic acid ethyl ethyl-d^ ester

(Diethyl carbonate- 1,1, 2, 2-dj)

83 FAR/BEC (k + k ) EX 540-620 ( 1 . 59±1 . 03 ) ( 13 0 23572±369 1 0 fa (Calculated from the reported

experimental data.

(k /k a b ) RL 540-620 (0.80±0.18) 0 574±131 1/1

CB 0C(0)0CB(CB ) -» CB OB + C0 CB CB 3 3 2 3 2 + 3 2=CH2 Carbonic acid methyl 1-methylethyl ester (Isopropyl methyl carbonate)

83 TAY2 EX 595-661 1.09(13) 0 21668 1

EX 600 2 . 23 (-3 1

Thermolysis in a stainless-steel reactor.

CB C(0)0CB(CH )CN CH COOH + 3 3 3 CB2=CHCH )- Propanenitrile , 2- ( acetyloxy

83 BER/CHU EX 583-683 7.59(12) 0 24454±313 1 1.95

Thermolysis in a static system.

P = (39-313) torr.

(CH CNCO -* 3 ) 3 (CB3 ) 2OCB2 + HM=C=0 Propane, 2-isocyanato-2-methyl- (-t-Butyl isocyanate)

72 BAR/MIR EX 683-693 3.89(13) 0 26371 2

Thermolysis in a static system. Gas-chromatography Mass-spectrometry

P = (70-433) torr.

83 BLA/IJA EX 701-803 2.51(13) 0 25969±151 1 1.26

( EX 723 5 . 74 -3 1 Thermolysis in carbon-coated, packed and unpacked reaction vessels.

P = (29-204) torr.

(CB ) NC(0)OCB CH -* (CB NB + co 3 2 2 3 3 ) 2 2 + cb2=cb2 Carbamic acid, dimethyl- ethyl ester

72 DAL/ZIO EX 643-703 1.26(12) 0 22315±201 1

Thermolysis in a static system. Unreported, assumed T-range

104 . .

4. Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

trans-CH2=CHCH=CHCH=CH2 cis-CH2=CHCH=CBCH=CE2

) , ( + , , 1, 3 5-Hexatriene , E — , 1 3 5-Hexatriene , (Z)-

74 ORC/THR EX 588-640 (4 . 5±1 . 5) (12) 0 21808±241 1

(Limiting high-pressure k.) EX 640 7.08(-3) 1 Thermal isomerization

in a static system.

P = (1-20) mtorr.

+ Ho

1 , 3-Cyclohexadiene

74 ORC/THR EX 719-824 (4 . 7±2 . 2 ) ( 13 ) 0 31033±481 1

Thermolysis in a static system.

P = (1-20) mTorr.

1 , 3-Cyclopentadiene 1-methyl- ,

-* 1 , 3-Cyclopentadiene, 2-methyl

72 BAL/AND EX 323 8.2(-6) 1 Thermal isomerization

in an aluminum column. Gas -chromatography

1, 3-Cyclopentadiene, 2-methyl-

-* 1, 3-Cyclopentadiene, 1-methyl-

72 BAL/AND EX 323 5.8(-6) 1 Thermal isomerization in an aluminum column. Gas-chromatography

-* Bicyclo[2.2. 0]hex-2-ene 1 , 3-Cyclohexadiene

76 GOL/LEI EX 376-425 (7 . 4±0 . 8) (13 ) 0 16583±45 1 Thermal rearangement

P = (240-420) torr.

105 .. .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

- <>

- O ''CH J

. Bicyclo[2. 1 0]pent-2-ene , 1-methyl-

* 1,3-Cyclopentene, 1-methyl - (a)

-» 1,3-Cyclopentene, 2-methyl - (b)

72 . (-4 BAL/AND

(k ) EX 323 1.2(-4) 1 fa Thermal isomerization in an aluminum column Gas-chromatography

Bicyclo[2. 1 . 0]pent-2-ene, 2-methyl-

* 1, 3-Cyclopentadiene, 1-methyl (a)

-* 1 , 3-Cyclopentadiene, 2-methyl (b)

72 BAL/AND (k 1 0 ) EX 323 3.6(-5)

( (k b ) EX 323 4 . 64 -5) 1 Thermal isomerization in an aluminum column. Gas-chromatography

(+ M) - CH2=CHCH=€H2 + CH2=CH2 (+ M)

Cyclohexene

78 LEW/GIE (Limiting high-pressure k.) SE 1038-1208 1.41(15) 0 33488 1

(Limiting high-pressure k.) ES 1038-1208 2.00(15) 0 33689 1

Decomposition in a single-pulse shock-tube, behind reflected shock-waves. Calibration experiments.

Gas-chromatography. M = Ar, or He. P = (533-5097) torr.

81 SKI/ROG (P = 3 atm. ) EX 1000-1241 1.00(16) 0 33518±1007 1 3.16

(P = 9 atm. ) EX 1000-1341 2,51(15) 0 33719±1359 1 3.16 Thermolysis behind reflected shock-waves,

in a single pulse shock-tube.

M = Ar ( with added CH^ ) Calibration experiments. Gas-chromatography

[Cyclohexene] = 0.9 % in Ar.

[Methane] = 0.9 1 in Ar.

106 . , )

Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-o

Cyclobutane, ethenyl- -* Ethene + 1,3-Butadiene (a)

-+ Cyclohexene (b)

569-639 7.41(14) 0 1 1.16 78 FRE/POT (k a ) EX 25529191

569-639 0 244801183 1 1.35

+ 569-639 0 25059179 1 1.14 kb> EX 5.25(14) Thermolysis in a static system.

Gas-chromatography. P = (1-13.5) torr.

(+ M -* CH =CHCB CH CH CH M) (a) ) 2 2 2 2 3 (+

-» any other products (b) Cyclohexane

81 SAT/KAL ^overall* EX 993-1103 8.91(18) 0 4474U1761 1 5.01 Pyrolysis in a tubular quartz reactor.

M = Ar. P(Ar ) = 760 torr.

P( Cyclohexane) = 80 torr.

83 ZYC/BAC (k overaii) EX 1023-1123 7.8(16) 0 41378+481 1 Thermolysis in a flow-reactor.

Gas-chromatography. P = 760 torr.

CH (CH )^CH -* products 3 2 3 Hexane

83 EBE/EDE EX 650-840 8.32(13) 0 31310 1

Thermolysis in a static reactor. Gas-chromatography

83 ZYC/BAC EX 953-1033 5.4(11) 0 26463±241 1 Thermolysis flow-reactor.

Gas-chromatography. P = 760 torr.

0=c±y=0 •+ CO + other products (a)

H,C CHj -* C02 + other products (b)

2 , 5-Furandione dihydro-3 , , 4-dimethyl- cis-

(Succinic anhydride, 2,3-dimethyl-, cis

83 YAM/BAC (k 625-775 0 23956 1 a ) EX 2.51(10)

P = (4-13) torr.

107 . ) ,

4. Tabl® of Chemical Kinetic Data for Combustion Chemistry --Continued

Reaction, Reference Code, Notes Data T/K k ,k/k(ref ) n B, k , A k err.

type A, A/A(ref B-B(ref) units factor

H jC = - 0-^ =0 0 ^l 7 -* CO + other products (a) CH 3 -» CO2 + other products (b)

, 2, 5-Furandione, dihydro-3 4-dimethyl- , trans- (Succinic anhydride, 2,3-dimethyl-, trans-)

83 YAM /BAC (k EX 625-775 0 21798 1 a ) 3.54(9)

(k EX 625-775 -1.58(8) 0 21137 1 b ; Thermolysis in packed, or unpacked vessels.

P = (4-13) torr.

*0

"* CH ==C(CH ) + CH =C=0 c-|—I 2 3 2 2 H 3

ch3

Cyclobutanone, 3 , 3-dimethyl-

77 FRE/SMI EX 534-586 3.74(14) 0 23186±101 1 1.20

Thermolysis in a static system, with packed or unpacked vessels. Gas-chromatography.

P 5-8.0) Q = (0. torr.

OCHj a —* CHgOCH=CH2 "t CH2=CHCHO

2H-Pyran, 3 , 4-dihydro-2-methoxy-

-* Ethene, methoxy-, + 2-Propenal

72 FRE/HOP EX 569-626 2.63(14) 0 24430±54 1 1.10

Thermolysis in a Pyrex vessel with vacuum system. Gas-chromatography.

P = (1-9) torr.

ce CH c ( esc ( ce ce -» cb cooh + 3 2 0 ) 0 ) 2 3 ch3 2 ch3ch=c=o Propanoic acid anhydride

76 BLA/CRA EX 493-567 2.40(11) 0 16888±391 1 2.09

Thermolysis in a static system,

with packed or unpacked vesels.

CB C(0)QCH(CH )C(0)CH CHgCOOH + CB =CHC(0)CB 3 3 3 - 2 3 2-Butanone, 3-(acetyloxy)-

83 HER/CHU EX 583-683 2.51(13) 0 24394±123 1 1.58

Thermolysis in a static system.

P = (39-313) torr.

83 LOU/TIN EX 711-793 1.58(12) 0 22899±252 1 2.0

EX 673 2.51(-3) 1

Liquid phase Thermolysis in Toluene or

m-Xylene, in a microreactor.

Gas - chromatogr aphy

108 3 . ) ))

A. Table of Chemical Kinetic Data for Combustion Chemistry — Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

)C(0)0Ce -* CH COOH + CB =CHC(0)0CH CH3C(0)0CH(CH3 3 3 2 3 2- ) Propanoic acid, ( acetyloxy - , methyl ester

83 HER/CHU EX 583-683 2.82(13) 0 25200±60 1 1.12

Thermolysis in a static system.

P = (39-313) torr.

83 LOU/TIN EX 725-790 2.00(13) 0 25516±252 1 2.0

( EX 673 6 . 30 -A 1

Liquid phase thermolysis in Toluene or

m-Xylene, in a microreactor. Gas-chromatography.

-+ + CH3C (0 )OCB2CH2C (0 )OCH3 CHgCOOB CB2=CBC(0)0CB3

Propanoic acid, 3- (acetyloxy)- , methyl ester

81 TAY EX 632-683 1.00(11) 0 19240 1

CB C(0)0CB CB 0C(0)CB -» CB C(0)OCB=CB CB COOB 3 2 2 3 3 2 + 3 1,2-Ethanediol diacetate (1,2-Diacetoxyethane)

83 TAY EX 683 2 . 4 (-4 1

( EX 691 3 . 6 -4 ) 1

Thermolysis in a static system with a stainless-steel reactor.

CB CB CB CB 0CB=CB -» cb cb cb=cb cbo 3 2 2 2 2 3 2 2 + cb3 Butane, l-(ethenyloxy)- (n-Butyl vinyl ether)

82 MCE /TAY EX 650-681 1.92(11) 0 21367 1

( EX 600 6 . 57 -5 1

Thermolysis in a stainless-steel reactor.

( cb ) cocb=cb -* (cb c=cb i cb 3 3 2 3 ) 2 2 3cbo Propane, 2- (ethenyloxy) -2-methyl- (t-Butyl vinyl ether)

82 MCE /TAY EX 595-651 1.48(12) 0 19733 1

EX 600 7 . 68( -3 1

Thermolysis in a stainless-steel reactor.

CB C(0)0C(CH ) -» CE COOB + CB =C(CB 3 3 3 3 2 3 ) 2

Acetic acid 1 , 1-dimethylethyl ester (t-Butyl acetate)

83 LOU/VER EX 582-627 1.91(14) 0 21050 1

Pyrolysis in a microreactor, or in a Pyrex glass macroreactor. Gas-chromatography

109 ... . )

Chemistry A . Table of Chemical Kinetic Data for Combustion --Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

"+ 1 LI CH-jCH ( OH ) CH2C ( 0 ) OCE^CH;} CH^CHO C -^C ( 0 ) OCH^,CH Butanoic acid, 3-hydroxy-, ethyl ester

71 YAT/RAM EX 583-613 9.54(10) 0 19980 1

Thermolysis in capilary glass tubes. Gas-chromatography

(CH ) C{0H)CH C(0)0CH -» (CH CO + CH C(0)0CH 3 2 2 3 3 ) 2 3 3

Butanoic acid, 3-hydroxy-3-methyl- , methyl ester

71 YAT/RAM EX 563-593 2.19(11) 0 19678 1 Thermolysis in capilary glass tubes. Gas-chromatography

CH 0C(0)0C(CH -» oh + (CH 3 3 ) 3 ch3 C02 + 3 ) 2C=CH2 Carbonic acid 1,1-dimethyl methyl ester

83 TAY2 EX 546-598 8.65(12) 0 18772 1

EX 600 2 . 22( -1 1

Thermolysis in a stainless-steel reactor.

CH C(0)CH SCH CH=CH -* CH C(0)CHS + ch ch=ch 3 2 2 2 3 3 2 2-Propanone, l-(2-propenylthio)- (Acetonyl allyl sulfide)

-* Propanethyal, 2-oxo- + 1-Propene

83 MAR/ROP EX 586-625 8.91(9) 0 15036±361 1 1.95

Pyrolysis in a stirred-flow-reactor

Mass-spectrometry. P = (3-13) torr.

(CH ) CHN=NCH(CH ) (CH ) CH + (CH CH + N 3 2 3 2 - 3 2 3 ) 2 ?

Diazene, bis ( 1-methylethyl)- (Azoisopropane)

75 SZ1/MAR2 EX 494-546 2.51(15) 0 22446+252 1 1.58

Thermolysis in a static system. Gas-chromatography

CH C(0)0C(CN)(CH -* CH COOH + CH =C(CN)CH 3 3 ) 2 3 2 3

Propanenitrile, 2- ( acetyloxy )-2-methyl-

83 LOU/TIN EX 640-713 7.94(11) 0 20232±252 1 2.0

( EX 673 6 . 30 -2 1

Liquid phase thermolysis in Toluene or

m-Xylene, in a microreactor. Gas -chromatography

(CH ) NC(0)0CH(CH ) (CH NH + C0 3 2 3 2 - 3 ) 2 2 + CH3CH=CH2 Carbamic acid, dimethyl-, 1-methylethyl ester

72 DAL/ZIO EX 643-703 1.10(13) 0 21797±201 1

Thermolysis in a static system. Assumed T-range.

110 . .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CHj o (+ M) (+ M)

-* 1, 3 , 5-Cycloheptatriene Benzene, methyl- (Toluene)

76 GAY/GIL EX 990-1250 3.98(13) 0 25741±1203 1 2.0 Thermal isomerization behind shock-waves,

f 1 , 3 , 5-Cycloheptatriene] = (0.01-0.1) X in Ar. 98-190 = PQ = torr. P (300-600) torr. 76 GAY/GIL EX 800-1130 3.98(13) 0 26186±253 1 1.26 Thermal isomerization by VLPP-Technique

Mass-spectrometry. P ~2 mtorr.

79 AST/TRO (M = Ar) EX 900-1300 2.69(13) 0 25079±722 1 1.58

(M = Ar. Limiting high-pressure k) ES 600-1400 1.25(14) 0 26523 1 (Extrapolation) Isomerization behind incident and reflected 13 -3 shock-waves. [Ar] = 4.46x10 molec . cm .

C=CH, X CH =CH CH =CHC(CH )=CB (a) r CH, 2 2 + 2 3 2 CHj

(b)

Cyclobutane, ( 1-methylethenyl)-

-* Ethene + 1,3-Butadiene, 2-methyl- (a)

-* Cyclohexene, 1-methyl- (b) 78 FRE/POT 574-624 EX 1.66(15) 0 26345±213 1 1.42 (k b ) EX 574-624 5.77(13) 0 24636±278 1 1.58 + 574-624 (k a kb> EX 9.08(14) 0 25699±152 1 1.29 Thermolysis in a static system, with packed or unpacked Pyrex vessels. Gas-chromatography.

P = (1-13.5) torr.

(+ M) -* products

Cyclohexane, methyl-

81 SAT/KAL EX 988-1073 9.12(17) 0 40765±1711 1 5.01

Pyrolysis in a quartz reactor. M = Ar.

P(Methylcyclohexane ) = 80 torr.

P(Ar) = 760 torr.

83 ZYC/BAC EX 993-1083 1.2(16) 0 38130±722 1

Thermolysis in a flow-reactor. Gas-chromatography

P = 760 torr.

Ill . - ) ,

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k ,k/k ( ref) n B, k , A k err.

type A, A/A(ref B-B(ref) units factor

i Cl C^O 1^

Bicyclo[3 . 2. 0 lhept-2-en-6-one

•* 1 , 3-Cyclopentadiene + Ethenone (Ketene)

72 EGG/C0C2 EX 471-534 1.45(13) 0 18888±126 1 1.29

Pyrolysis in a static reactor, in Propene diluent. Gas-chromatography.

P(substrate) = (148-223) torr.

P(Propene) = (132-500) torr. (15-485) PD = torr

H 3 C -* trans-CH3CH=CHCH=CH2 + CB3CHO

2H-Pyran, , 6-dihydro-2 , 6-dimethyl- cis- 3 ,

* 1,3-Pentadiene, (E)- + Acetaldehyde

79 FRE/POT EX 573-624 8.13(13) 0 23612±144 1 1.26

Thermolysis in a static system.

Gas-chromatography. P = (3-7) torr.

CH=CH 2

'H ^ 3 H C 3 (major pathway)

4 Oxetane, 3-ethenyl-2 , -dimethyl- , (2a, 30, 4a)

-* Acetaldehyde + 1,3-Pentadiene

80 CAR/MAI EX 599-657 2.63(13) 0 24093±902 1 3.98 Thermolysis static system.

P = (3.5-30) torr.

-» CH CH 0CH=CH ch =chcho 3 2 2 + 2

4 2H-Pyran, 2-ethoxy-3 , -dihydro-

77 BAI/FRE EX 561-628 2.92(14) 0 24308±75 1 1.14

Thermolysis in a static system.

Gas -chromatography. P = (1-13) torr.

H

ch3och=ch2 1 ch3ch=chcho

2H-Pyran, , 3 4-dihydro-2-methoxy-4-methyl- , cis

75 COL/FRE EX 560-618 9.08(13) 0 23576±84 1 1.15

Thermolysis in a static system.

P = (4-12) torr.

112 . . ) , .

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reference Code, Notes Data T/K k ,k/k (ref) n B, k A k err Reaction, , type A,A/A(ref B-B(ref) units factor

- cb3ocb=cb2 + cb3ch=chcbo

2H-Pyran, 3 , 4-dihydro-2~methoxy-4-methyl- , trans-

75 COL/FRE EX 560-618 1.76(14) 0 24233±144 1 1.28

Thermolysis in a static system.

1- P = (4-12) torr.

CBCB C(0)0CB CB (CB ) CHCH COOB + CB =CB (GB3 ) 2 2 2 3 + 3 2 2 2 2 Butanoic acid, 3-methyl-, ethyl ester

83 CHU/MAR EX 633-693 5.01(12) 0 24538±529 1 1.29

Pyrolysis in a static system.

P = (71-286) torr.

cb —* cb i =cbcb cb ocb cb3c(0)ocb2cb2 2cb2ocb3 3oob cb2 2 2 3 Butanol, 4-methoxy-, acetate

78 CHU/ROT EX 643-693 2.34(13) 0 25200±349 1 1.70

Pyrolysis in a static system.

P = (67-216) torr. 2-

CB CB ( OB CB ( CB C ( OCB CB 3 ) 3 ) 0 ) 2 3 -* CBgCBO + C(0)OCH CB3CB2 2CH3 3 Butanoic acid, -hydroxy- 2-methyl- , ethyl ester

71 YAT/RAM EX 573-603 1.78(11) 0 19628 1

Thermolysis in capilary glass tubes. Gas-chromatography

C 0E>CH C(0)0CH CH H> iCB3 5 2 ^ 2 2 3 CCB3 ) 2CO

Butanoic acid, 3-hydroxy-3-methyl- , ethyl ester

71 YAT/RAM EX 563-693 1.58(11) 0 19376 1

Thermolysis in capilary glass tubes. Gas-chromatography

CB C(0)0CB(CB )CB N(CB -* + N(CH 3 3 2 3 ) 2 CE,COOH CH2=CBCB2 3 ) 2 1- )- Propanol, (dimethylamino , acetate ester

83 HER/CHU EX 583-683 4.57(12) 0 22361+301 1 1.16

Thermolysis in a static system.

P = (39-313) torr.

(CB ) NC(0)0C(CB -+ (CB NB + =C(CB 3 2 3 ) 3 3 ) 2 C02 + CB2 3 ) 2

Carbamic acid, dimethyl-, 1 , 1-dimethylethyl ester

72 DAL/ZIO EX 643-703 7.41(12) 0 18993±201 1

Thermolysis in a static system. Assumed T-range.

113 '

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

(+ M) CO (+ M) (a)

+ CHhCH (+ M) (b)

-* 1 , 3 , 5, 7-Cyclooctatetraene Peentalene, 1,5-dihydro- (a)

Benzene + Ethyne (b)

79 DUD/GLA1 EX 1000-1400 1.58(13) 24177±601 1.58 EX 1000-1400 3.98(12) 23095 EX 1000-1400 6.31(13) 26944 Pyrolysis behind reflected shock-waves.

UV-, and IR-Absorption Spectrometry. M = Ar. 20 3 [Ar] = (0.06-1.2)xl0 molec.cm" .

83 MAR/PFO + kA ) EX 646-666 6.31(14) 27932±755 3.16 'a bK Thermolysis in a static system.

P = 0.3 torr.

=\ t t (+ M)]

isomerization products (+ M) (a)

+ CH^CH (+ M) (b)

- [1,3,5,7-Cyclooctatetraene Bicyclo[4 . 2. 0]octa-

2,4,7-triene] -* isomerization products (a)

-* Benzene + Ethyne (b)

79 DUD/GLA2 (k + k ) EX 298 1 . 1 ( 6 ) fl fa A = 311.8 nm. = 94.168 kcal.mol." 1 M * 1,3,5,7-Cyclooctatetraene.

(k + k ) EX 298 2.7(7) fl b A = 247.4 nm. = 118.045 kcal.mol. M = 1,3,5,7-Cyclooctatetraene.

(k . = 0 + k b M He) EX 298 4.5(6) A = 282 nm.

1 = 103.872 kcal.mol" .

(k k . = He) 298 3.0(7) a + b M EX A = 245 nm.

1 = 119.168 kcal.mol" . Isomerization and decomposition of Cyclooctatetraene by both, steady-state

Photolysis ’ iser Flash-photolysis...... ) , - )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-* 1 , 5-Dihydropentalene Benzene, ethenyl- (Styrene)

79 DUD/GLA1 EX 1200-1600 1.26(13) 0 29109±962 1 2.0 Pyrolysis behind incident or reflected shock-waves

M = Ar.

UV-, and IR-Absorption spectrometry. 3 [Ar] = (0 . 06-0 . 12)xl0^ molec.cm .

(main primary product)

-* 1 , 5-Dihydropentalene Cyclopropa[cd]pentalene

2a , 2b , 4a , 4b-tetrahydro- (Semibullvalene

79 DUD/GLA2 EX 298 1.5(7) 1

= 118.714 kcal.mol.'* at 246 nm.

M = 1 , 5-Dihydropentalene Isomerization by steady-state photolysis.

Cyclopropa [cd] pentalene 2a , 2b , , 4a, 4b-tetrahydro-

-» ( Semibullvalene) 1 , 5-Dihydropentalene

79 DUD/GLA1 EX 740-900 6.31(14) 0 20689+1203 1 2.51

Pyrolysis behind incident or reflected shock-waves M = Ar

UV-, and IR-Absorption Spectrometry. 19 3 [Ar] = (1.2-3. 0 )xl0 molec.cm' .

Tricyclo[4.2.0.0^’^]octa-3,7-diene, ( la, 2a, 5a , 6a)

-* (syn form) 1 , 3 , 5 , 7-Cyclooctatetraene

X 74 CAS /DEW EX ) 2.29(13) 0 14494±171 1 2.19

EX 370 2 . 75(-4 1

* ) Temperature range not given.

75 FRE/MAR EX 363-394 1.66(14) 0 15345±81 1 1.23 Gas-chromatography

115 0 . ) , ,

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

2, 7 ^]octa-3, ( Tricyclo [4.2.0.0 -diene , la 20 5/3, 6a)-

-* (anti form) 1 , 3 , 5, 7-Cyclooctatetraene

74 CAS /DEW EX *> 1.51(14) 0 16306±453 1 3.63

( EX 370 1 . 40 -5) 1

J ) Temperature range not given.

75 FRE/MAR EX 385-419 1.02(14) 0 16402±86 1 1.23 Gas-chromatography

2 • 8 7 ^0^ • 0^ > Pentacyclot A . 2 . 0 . ] octane (Cubane)

+ -* 1 , 3 , 5 , 7-Cyclooctatetraene Benzene + Ethyne

83 MAR/PFO EX 507-521 7.94(14) 0 21943±352 1 2.0 Thermolysis of Cubans in static system.

P = 0.3 torr.

-* 1 , 3 , 6-Cyclooctatriene 1 , 3 , 5-Cyclooctatriene

83 GRE/ORC EX 390-490 8.51(10) 0 1394 1±84 1 1.20 Static system. Gas-chromatography.

(+ M) -* products

1,3, 5-Cycloheptatriene , 7-methyl-

79 AST/TRO EX 900-1400 1.79(13) 0 24478±601 1 1.58

(Limiting high-pressure k) ES 600-1400 9.77(13) 0 26030 1

( Extrapolation . Isomerization behind incident and

reflected shock-waves. M = Ar. = 17 20 [Ar] 4.81xl0 -1.20xl0 molec . cm'

D

Bicyclo[2.2. l)hept-2-ene 5-methylene-d2“ ,

-* Bicyclo[2.2. l]hept-2-ene-5,5-d2, 6-methylene-

72 HAS EX 530-561 3.16(13) 0 23100±151 1 1.26 Static reactor.

P = 1 torr.

116 .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(re£) B-B(ref) units factor

Bicyclo[3 . 2 . 0]hept-2-ene, 6-methylene-

-* BicycloE .2.2. l]hept-2~ene, 5-methylene-

72 HAS EX 459-491 5.01(13) 0 19930±50 1 1.58 Static reactor.

P = 1 torr.

D

_ . Bicyclo [3 . 2 0 ]hept-2-ene , 6-methylene-d2

-* Bicyclo[3.2.0]hept-2-ene-7,7-d2, 6-methylene-

73 HAS EX 468-499 2.51(13) 0 20584±201 1 1.58 Static reactor. NMR-spectrometry

P = 1 torr.

Bicyclo [3 . 2 . 0 ]hept-2-ene-7 , 7-d2> 6-methylene-

-* Bicyclo[2.2. l]hept-2-ene-5, 5-d2> 6-methylene- (a)

-* Bicyclo[2.2. l]hept-2-ene, 5-methylene-d2 _ (b)

(k 468-499 g + kb ) EX 6.31(13) 0 20081±50 1 1.26 Static reactor. NMR-spectrometry.

P = 1 torr.

Bicyclo [3 . 2 . 0 ]hept~6-ene, 2-methylene-

-» 1, 3-Cycloheptadiene, 5-methylene- (a)

-* 1, 3-Cycloheptadiene, 6-methylene- (b)

80 HAS/LOO (k + k ) EX 436-481 4.07(13) 0 19024±81 1 1.20 a fa Static reactor.

P = (0.075-5.25) torr.

k is P-independent within this range.

117 ^ - - )

4. Table of Chemical Kinetic Data for Combustion Chemistry ""Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

-» Bicyclo [ 4 . 2 . 0 ] octa-2 , 4-diene 1 , 3 , 5-Cyclooctatriene

83 GRE/ORC EX 330-475 2.40(12) 0 12858±180 1 1.70 Static reactor. Gas-chromatography.

n

CH 2 7 Tricyclo[4 .1.0.0^’ ] heptane, 3-methylene-

-* . Bicyclo [3 . 2 0]hept-6-ene , 2-methylene- (a)

-* 1,3-Cycloheptadiene, 5-methylene- (b)

-* 1,3-Cycloheptadiene, 6-methylene- (c)

-* Cyclohexene, 3, 6-bis (methylene)- (d)

80 HAS/LOO (k overall ) EX 396-446 3.02(12) 0 16376+221 1 1.70 Static reactor. P = (0.075-3.75) torr.

k is P-independent within this range.

H iC CH ' products H,C CH,

Cyclobutane, 1 , 2-dimethyl-3-4-bis (methylene )- , cis-

-* products -5 72 GAJ/SHI EX 511 2 . 9 ( ) 1

( EX 528 ( 1 . 20± 0 . 05 ) 4 ) 1

Pyrolysis in a static reactor. P <10 torr.

CHlpt. H]C >— . . IX X -+ products CH,

Cyclobutane, , , )- 1 2-dimethyl-3 4-bis (methylene , trans-

-* products

( 72 GAJ/SHI EX 511 4 . 2 5 ) 1

( EX 528 ( 1 . 50±0 . 05 ) -4 1

Pyrolysis in a static reactor. P <10 torr.

118 - )

4. Table of Chemical Kinetic Data for Combustion Chemistry Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

/CHj H * ^CHj products CH,

Cyclobutane, l-ethylidene-3-methyl-2-methylene- (Z)- ,

-* products

72 GAJ/SHI EX 528 (1. 10±0 . 05) (-3) 1

Pyrolysis in a static reactor. P <10 torr.

hjC CH, h :ch 27 products

Cyclobutane, 1,2-diethylidene, (Z,Z)- -* products

( 72 GAJ/SHI EX 528 ( 5 . 6±0 . 1 ) -4 1

Pyrolysis in a static reactor. P <10 torr.

HjC-. C Hl HC s V XH Z7 products

Cyclobutane, 1,2-diethylidene, (E,Z)- + products

( 72 GAJ/SHI EX 528 (3 . 9±0 . 1 ) 4 ) 1

Pyrolysis in a static reactor. P <10 torr.

ch 2 ch 3

(+ M) products

Cyclohexane, ethyl-

81 SAT/KAL EX 993-1093 7.08(19) 0 44741±1711 1 5.25

Pyrolysis in a quartz reactor. M = Ar.

P(Ethylcyclohexane) = 80 torr.

P(Ar) = 760 torr.

83 ZYC/BAC EX 953-1083 9.6(13) 0 31996±241 1

Thermolysis in a flow-reactor. Gas-chromatography.

P = 760 torr.

(+ M) -* products

Cyclohexane, 1, 2-dimethyl-

81 SAT/KAL EX 953-1073 5.50(12) 0 27730±2365 1 7.94

Pyrolysis in a quartz reactor. M = Ar.

P( 1 , 2-Dimethylcyclohexane ) = 80 torr.

P(Ar ) = 760 torr.

119 : . , ) , .

A. Table of Chemical Kinetic Data for Con£>ustion Chemistry --Continued

Reaction, Reference Code, Notes Data T/K k ,k/k ( ref) n B, k A k err , type A,A/A(ref B-B(ref) units factor

(+ M) -*• products

Cyclohexane, 1 , 3-dimethyl-

81 SAT/KAL EX 993-1098 6.92(12) 0 28183±2365 1 5.01

Pyrolysis in a quartz reactor. M = Ar.

P( 1 , 3-Dimethylcyclohexane ) = 80 torr.

P(Ar ) = 760 torr.

(+ M) -» products

CH,

Cyclohexane, 1 , 4-dimethyl-

81 SAT/KAL EX 963-1103 7.08(15) 0 35682*1409 1 3.98

Pyrolysis in a quartz reactor. M = Ar.

P(l,4-Dimethylcyclohexane) = 80 torr.

P(Ar ) = 760 torr.

CHgfCHgJgCHg (+ M) -* products Octane

83 DOO/MAC EX 1100-1400 7.41(11) 0 27064±1202 1 2.69

(Theoretical fit) DE 1100-1400 4.57(11) 0 26463 1

(Based on a proposed mechanism.)

Pyrolysis in a single-pulse shock-tube, behind reflected shock-waves.

Gas-chromatography. M = Ar, or H2

CH, - CH =CHCH CH=CHC(CH 2 2 3 )=C(0) -» products (b)

Bicyclo 5 1- [3.2. 0 ]hept-3-en-6-one , -me thy

-* Bicyclo [ . . l]hept-5-en-2-one 5-methyl- (a) 2 2 ,

-* , , 1 3 6-Heptatrien-l-one , 2-methyl- (b)

73 COC/EGG2 (k + k ) EX 489-565 3.16(14) 0 22108±337 1 1.91 fl b Pyrolysis in a static system. Gas-chromatography.

P = (2.7-20) torr. The product of the channel

, , (b), 2-Methyl-l 3 6-hexatrien-l-one , undergoes rapid secondary reactions, to give two major products

3-Methyl-bicyclo [3.2. 0]hept-3-en-6-one and

5-Methyl-l , 3-Cyclohexadiene-l-carboxaldehyde

as well as two minor products:

3 -Me thy 1-benz aldehyde and Toluene.

120 , ( -

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

co(6)c-~t-ch h 5 h3Cxc(o}° ch O 3 c(o)oCHj HjC'^'

C(0J0CH,

H 3 C-v/^

Bicyclo [2 . 1 . 0 ] pent -2- ene-5- carboxylic acid

5-methyl-, methyl ester (la, 4a, 5a)- (exo form)

-* 2, 4-Cyclopentadiene-l-carboxylic acid, 1-methyl-, methyl ester

- 1, 3-Cyclopentadiene-l-carboxylic acid, 2-methyl-, methyl ester

= 1, 4-Cyclopentadiene-l-carboxylic acid, 5-methyl-, methyl ester

= ( 83 KLA/ADA (P 0.4 torr.) EX 322 ( 1 , 77 ± 0 . 07 ) 4 ) 1 -4 (P = 19.4 torr. ) EX 322 (2 . 31±0 . 03 ) ) 1

Gas-phase Thermolysis in a

Pyrex vessel, k increases with the pressure.

P = 1-(0.4-20) torr.

2- EX 304-343 1.22(14) 0 13191±96 1 Liquid-phase Thermolysis,

0.5 Vol.% in Hexane.

HjC-^r-cfojOCHj HjCy-C(o)OCHj 3o c(o)oCH,

H 3 C-^

c(o)oCH 3

H 3 C

Bicyclo[2. 1 . 0] pent-2-ene-5-carboxylic acid,

5-methyl-, methyl ester ( 4a )- (endo form) la, , 5/3

-* 2 , 4-Cyclopentadiene-l-carboxylic acid, methyl-, methyl ester

= 1 , 3-Cyclopentadiene-l-carboxylic acid, methyl-, methyl ester

- 1 , 4-Cvclopentadiene-l-carboxylic acid, 5-methyl-, methyl ester

83 KLA/ADA (P=0.4 torr.) EX 322 ( 1 . 45±0 . 07) (-4 ) . 1

121 . . ) ) ,

A. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref ) n B, k,A k err.

type A, A/A(ref B-B(ref) units factor

( 83 KLA/ADA (P = 18.3 torr) EX 322 ( 1 . 98±0 . 01) -4 ) 1

Gas-phase Thermolysis in a Pyrex vessel, k increases with the pressure.

P = (0.4-20) torr.

EX 304-343 5.07(13) 0 12974±55 1 Liquid-phase Thermolysis,

0.5 Vol.% in Hexane.

-* (CH (CH (a) 3 ) 2C”CH2 + 3 ) 2C=C=0 (major pathway

-* + CO (b) (minor pathway) »1 Liij

Cyclobutanone, 2,2,4, 4-tetramethyl-

-* 1-Propane, 2-methyl-

+ 1-Propenone, 2-methyl- (a)

-* Cyclopropane, 1 , 1, 2, 2-tetramethyl-

+ Carbon monoxide (b)

(k > EX 637-700 7.23(14) 0 28156±47 1 1.10 a

(k 637-700 0 29988+47 1 1.10 b ) EX 7.36(14)

PQ = (6-8) torr. Rate constants are P-independent within this range.

(CH ) CHC(0)0C(0)CH(CH (CH )CHCOOH (CH 3 2 3 ) 2 - 3 + 3 ) 2C=€=0 Propanoic acid, 2-methyl-, anhydride

76 BLA/CRA EX 519-556 6.45(11) 0 18223±366 1 1.95

Thermolysis in a static system with packed and unpacked vessels.

CH C ( ) OCH CH ( )CH 3 0 2 2CH ch3 2CH3 CH + CH )CH 3COOH 2=CHCB(CH3 2CH3 1-Pentanol, 3-methyl-, acetate

81 MAR/CHU EX 633-693 4.17(13) 0 25488±144 1 1.23

Pyrolysis in a static system.

P = (34-377) torr.

122 . .

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err 1- type A,A/A(ref) B-B(ref) units factor

CH C(0)0CH CH CH CH(CB CHgCOOH + CH =CHCH CH(CH 3 2 2 2 3 ) 2 + 2 2 3 ) 2 Pentanol, 4-methyl-, acetate

2- 81 MAR/CHU EX 633-693 6.61(12) 0 24430±72 1 1.12 Pyrolysis in a static system.

P = ( 34-377 ) torr.

C(0)OCH(CH CH-jCOOH + CH CH3 3C(CH3 ) 3 - 2=€HC(CH 3 ) 3 + other minor products Butanol, 3,3-dimethyl-, acetate

72 CHU/MAR EX 578-653 3.16(12) 0 22174±302 1 1.66

Pyrolysis in a static system.

P = (25-300) torr.

The rate constant is P-independent

within the given range.

(CH CCH C(0)0CH CH -» (CH CCE COOH + ch 3 ) 3 2 2 3 3 ) 3 2 2=ch2 Butanoic acid, 3,3-dimethyl-, ethyl ester

83 CHU/MAR EX 633-693 1.10(13) 0 24911±120 1 1.20

Pyrolysis in a static system.

P = (71-286) torr.

(CH ) CCX)C(CH ) •+ (CH ) CO + (CH CO (a) 3 3 3 3 3 3 3 ) 3

- (CH ) CO + (CH CO + CH CH (b) 3 2 3 ) 2 3 + 3 Peroxide, bis(l, 1-dimethylethyl)- (tert-Butyl peroxide)

82 BAT/ROB ) 402-443 0 18621+503 1 3.39 k a EX 3.16(15) Thermolysis in a static system,

in presence of NO. Gas-chromatography 33 [tert-Butyl peroxide] = (0 . 72-1 . 20)xl0 _ O

molec.cm .

16 3 [NO] = (0.72-1.20)xl0 molec.cm' .

(CH ) CSSC (CH ) -» (CH C=CH HSSH + other products 3 3 3 3 3 ) 2 2 + Disulfide, bis(l, 1-dimethylethyl)-

76 MAR/BAR EX 603-673 3.98(14) 0 22132±481 1 2.51

Thermolysis in a stirred-flow system.

76 MAR/BAR EX 519-573 3.98(13) 0 21290±241 1 1.58

Thermolysis in a static system.

123 . ) .

Table o£ Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err type A,A/A(ref) B-B(ref) units factor

CH 2 CHj

^ prot*ucts

1,3, 5-Cycloheptatriene, 7-ethyl-

79 AST/TRO EX 940-1350 1.38(13) 0 24141±601 1 1.58

(Limiting high-pressure k, model A^) ES 900-1400 9.12(13) 0 25741 1 (Extrapolated)

900-1400 0 24947 1 (Limiting high-pressure k, model A2 ) ES 3.89(13) (Extrapolated) Unimolecular isomerization behind incident

and reflected shock waves. M = Ar.

19 9 [Ar] = 1.81xl0 molec.cm .

CHXHjCH, 6 -» products Cyclohexane, propyl- 2-

83 ZYC/BAC EX 933-1073 8 . 8 ( 12 ) 0 28989±241 1

Thermolysis in a flow-reactor.

Gas-chromatography. P = 760 torr.

ch,c(o)och 2ch 2 CH=CH 2 6 -» CH-jCOOH + 6 3- Cyclopentaneethanol acetate - Acetic acid + Cyclopentane, ethenyl-

81 MAR/CHU EX 633-693 1.58(13) 0 24947±385 1 1.82

Pyrolysis in a static system.

P - (34-377) torr.

CH C(0)0C(Ce C(CH - CH COOH + CH =C(CH )C(CH 3 3 ) 2 3 )3 3 2 3 3 ) 3 Butanol, 2,3,3-trimethyl acetate

(1,1,2, 2-Tetramethylpropyl acetate

83 LOU/VER EX 538-582 1.66(14) 0 19847 1

Pyrolysis in a microreactor, or in a Pyrex

macroreactor . Gas-chromatography

CH C (O)OCH (ch ch cch 3 2 3 )C 3 ) 3 -• CH COOH + cis~CH CH=CHC(CH (a) 3 3 3 ) 3 -* CHgCOOH + trans-CH CH=CHC(CH (b) 3 3 ) 3 Pentanol, 2,2-dimethyl-, acetate

72 CHU/MAR (k k 578-653 0 22572±393 1 1.23 a + b ) EX 1.15(13) Thermolysis in a static system.

P = (25-300) torr. k is P-independent

within the given range.

124 . ) - )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

(CH3) C0C(0)0C(CH -* (CH ) COH + CO (CH C=€B 3 3 )3 3 3 z + 3 ) 2 2

Carbonic acid bis ( 1 , 1-dimethylethyl) ester

83 TAY2 EX 546-595 8.51(12) 0 18653 1

EX 600 2 . 68( -1 1

Thermolysis in a stainless-steel reactor.

hc(ch 3) 2 6 (+ M) -* products

1,3,5-Cycloheptatriene, 7- ( 1-methylethyl)

79 AST/TRO EX 960-1340 8.51(12) 0 23648±962 1 2.24

(Limiting high-pressure k, model A-> i ) ES 900-1400 2.19(14) 0 26402 1 (Extrapolated)

(Limiting high-pressure k, model ) ES 900-1400 2.29(13) 0 24394 1 A2 (RExtr apolated Unimolecular isomerization behind incident

and reflected shock waves in Ar. - [Ar] = 1.81x10^® molec.cm ^.

-» products

Naphthalene, decahydro-, (Decalin) (Unspecified form)

79 POP/PET EX 900-975 4.966(11) 0 26162 1

Thermolysis of Decalin/Dodecane mixtures in

presence of H20 vapor, in a static reactor. Mass-spectrometry. Gas-chromatography.

P( Hydrocarbons) “ 0.75 torr.

CHjGHjCHjCHj 0 products Cyclohexane, butyl-

83 ZYC/BAC EX 923-1023 7.4(12) 0 28628±722 1

Thermolysis in a flow-reactor. Gas-chromatography

P “ 760 torr.

CHjCfbJOCHjCH CH=CH a

-» CH COOH + 3

Cyclohexaneethanol acetate

-* Acetic acid + Cyclohexane, ethenyl-

81 MAR/CHU EX 633-693 2.0(13) 0 25031±409 1 1.91

Pyrolysis in a static system.

P “ (34-377) torr.

125 ( ) .. 3 . )

4. Table of Chemical Kinetic Data for Combustion Chemistry -- Continued

Reaction, Reference Code, Notes Data T/K k,k/k(ref), n B, k,A k err. type A,A/A(ref) B-B(ref) units factor

CH3C 0 )OCBCH ( CB3 c ( CH3 2 ) -» CBjCOOB + (CB C=CBC(CB CB =€(CB )CBC(CB 3 ) 2 3 ) 3 + 2 3 3 ) 3 (+ other minor products)

3-Pentanol, 2 , 2 , 4-trimethyl- , acetate

72 CHU/MAR EX 578-653 1.31(13) 0 23452±116 1 1.20

Thermolysis in a static system.

P = (25-300) torr.

k is P-independent within the given range.

CB C(0 0C(CB )[CB(CB 3 ) 3 3 ) 2 ] 2 - CB CQOB + (CH C=C(CB )CB(CB 3 3 ) 2 3 3 ) 2

3-Pentanol, 2 , 3 , 4-trimethyl acetate

( 1-Isopropyl-l , 2-dimethylpropyl acetate

83 LOU/VER EX 525-590 7.94(13) 0 19366 1

Pyrolysis in a microreactor, or in

a Pyrex glass macroreactor. Gas-chromatography

CH (CH CH 2 2)4 3 6 -» products

Cyclohexane, hexyl-

83 ZYC/BAC EX 923-1053 5.7(12) 0 28147±361 1

Thermolysis in a flow-reactor. Gas-chromatography

P = 760 torr.

CB (CB ^qCB -» products 3 2 ) 3 Dodecane

79 POP/PET EX 900-975 3.715(10) 0 23167 1

Thermolysis of Dodecane-Decalin mixtures in

presence of H20 vapor, in a reactor with a 75 cm vessel.

Mass-spectrometry . Gas-chromatography

P( Hydrocarbons) = 0.75 torr.

ch 2 (ch ch 2) 6 3 6 -* products

Cyclohexane, octyl-

83 ZYC/BAC EX 923-1003 1.7(12) 0 26703±962 1

Thermolysis in a flow-reactor.

Gas-chromatography. P = 760 torr.

126 5. References to the Table 73 FRE/HOP Frey, H. M., and Hopf, H., “The Thermal Uni- molecular Decomposition of 2,2,4,4-Tetramethylcy- 71 BLA/DAV2 Blake, P. G., and Davies, H. H., “Reaction of clobutanone,” J. Chem. Soc. Perkin Trans 2, 2016

Keten. Part I. Kinetics of the Gas-phase Reaction (1973). with Acetic Acid,” J. Chem. Soc. B, 1727 (1971). 73 HAS Hasselmann, D., “Entartete Umlagerung eines Bicy- 71 BLA/SPE Blake, P. G., and Speis, A., “Kinetics of Thermal clischen Methylen-cyclobutans: 6-Methylen-Bicy- Decomposition of in Flow and clo[3.2.0]Hepten-(2) Mechanismus Seiner Isomer-

Static Systems,” J. Chem. Soc. B, 1877 (1971). isierung zu 5-Methylen-Bicyclo[2.2.1]-Hepten-(2),” 71 GAR/MCF Gardiner, W. C., McFarland, M., Morinaga, K., Tetrahedron Lett. 3739 (1973). Takeyama, T., and Walker, B. F., “Initiation Rate 73 KNE Knecht, D. A., “Thermal Decomposition of Cy- for Shock-Heated Hydrogen-Oxygen-Carbon clopentene and Cyclopentene-dg in the Gas Phase,” Monoxide- Mixtures as Determined by OH J. Amer. Chem. Soc. 95, 7933 (1973). Induction Time Measurements,” J. Phys. Chem. 75, 73 ORC/THR Orchard, S. W., and Thrush, B. A., “Unimolecular 1504 (1971). Isomerisation of Hexa-1, trans-3,5-triene and Sym- 71 SLA/FIS Slack, M. W., Fishbume, E. S., and Johnson, A. R., metry-forbidden Pyrolysis of Cyclohexa-1, 3-diene,” “Kinetics and Thermodynamics of the CN J. Chem. Soc., Chem. Commun. 16 (1973).

Molecule. H. The Dissociation of CJ4 2,” J. Chem. 74 BLA/SPE Blake, P. G., and Speis, A., “Reactions of Keten. Phys. 54, 1652 (1971). Part IV. Kinetics and Thermodynamics of the Gas- 71 SPR/AKI Sprung, J. L., Akimoto, FL, and Pitts, J. N., Jr., “Ni- phase Reaction: Thioacetic Acid + Keten -*

trogen Dioxide Catalyzed Cis-Trans Isomerization Acetic Thioanhydride,” J. Chem. Soc. Perkin

of cis-2-Butene,” J. Amer. Chem. Soc. 93, 4358 Trans. 2, 1879 (1974). (1971). 74 CAR/TAR2 Carter, W. P. L., and Tardy, D. C., “Ring Opening 71 WAG/ZAB Wagner, H. Gg., and Zabel, F., “Zum thermischen of Chemically Activated Cyclopentyl and Methyl- Zerfall von Keten in der Gasphase,” Ber. Bunsen- cyclobutyl Radicals,” J. Phys. Chem. 78, 1573 ges. Phys. Chem. 71, 114 (1971). (1974). 71 YAT/RAM Yates, B. L., Ramirez, A., and Velasquez, O., “The 74 CAS/DEW Case, R. S., Dewar, M. J. S., Kirschner, St., Petit, Thermal Decomposition of fl-Hydroxy Esters,” J. R., and Slegeir, W., “Possible Intervention of Org. Chem. 36, 3579 (1971). Triplet States in Thermal Reactions of Hydrocar- 72 BAL/AND Baldwin, J. E., and Andrews, G. D., “The Thermal bons. A Study of the Rearrangements of Cyclobuta-

Gas-Phase Partitioning of 1-Methyl- and 2-Methyi- diene Dimers and Analogous Compounds,” J. bicyclo[2.1.0]pent-2-ene,” J. Am. Chem. Soc. 94, Amer. Chem. Soc. 96, 7581 (1974). 1775 (1972). 74 ORC/THR Orchard, S. W., and Thrush, B. A., “Photochemical 72 BAR/MIR Barroeta, N., and Miralles, A., “Thermal Reactions Studies of Unimolecular Processes. VI. The Uni- of Alkyl . I.,” J. Org. Chem. 37, 2255 molecular Reactions of C^Ha Isomers and the Inter- (1972). pretation of their Photolyses,” Proc. R. Soc. Lond. 72 CHU/MAR Chuchani, G., Martin, G., Barroeta, N., and Mac- A 337, 257 (1974); Supersedes 73 ORC/THR. coll, A., “Pyrolyses of Some Highly Branched Sec- 75 COL/FRE Collins, J. F., Frey, H. M., and Isaacs, N. S., “The

ondary Acetates,” J. Chem. Soc., Perkin Trans. 2, Thermal Decomposition of cis- and trans-2-

2239 (1972). Methoxy-4-methyl-3,4-dihydro-2H-pyran,” J.

72 DAL/ZIO Daly, N. J., and Ziolkowski, F., “Thermolyses of Chem. Soc. Perkin Trans. 2, 1 (1975). NN-Dimethylcarbamates and the Implications for 75 FRE/MAR Frey, H. M., Martin, H.-D., and Hekman, M., Thermal ^-Elimination Reaction Mechanisms,” J. “Thermolysis of syn- and anti-Dimers of Cyclobuta-

Chem. Soc., Chem. Commun. 911 (1972). diene,’ J. Chem. Soc., Chem. Commun. 204 (1975). 72 EGG/COC Egger, K. W., and Cocks, A. T., “Kinetics of the 75 LEV/PRI Levush, S. S., Prisyazhnyuk, Z. P., Shevchuk, U.

Four-centre Elimination of Keten from Bicy- V., and Garbuzyuk, I. A., “Kinetics of Thermal De- ” clo[3.2.0]hept-2-en-6-one in the Gas Phase,” J. composition of Peracetic Acid in the Gas Phase

Chem. Soc., Perkin Trans. 2, 211 (1972). Kinet. Catal. 16, 16 (1975); tr. of Kinet. Katal. 16, 26 72 FLO/GIB Flowers, M. C., and Gibbons, A. R., “Application (1975). of the RRKM Theory of Unimolecular Reactions to 75 LUU/GLA Luu, S. H., Glanzer, K., and Troe, J., “Thermal Iso- the Thermal Reactions of Spiropentane,” J. Chem. merization in Shock Waves and Flash Photolysis of

Soc., Perkin Trans. 2, 548 (1972). Cycloheptatriene, HI,” Ber. Bunsenges. Phys. 72 FRE/HOP Frey, H. M., Hopkins, R. G., and Isaacs, N. S., “The Chem. 79, 855 (1975).

Thermal Unimolecular Decomposition of 2- 75 RIC Richardson, R. J., “CS-O2 Flame Reaction Chem-

Methoxy-3,4-dihydro-2H-pyran,” J. Chem. Soc., istry,” J. Phys. Chem. 79,1153 (1975).

Perkin 2, 2082 (1972). 75 SZI/MAR2 Szirovicza, L., and Marta, F., “Thermal Decompo- 72 GAJ/SHI Gajewski, J. J., and Shih, C. N., “ sition of Azoisopropane,” React. Kinet. Catal. Lett.

Thermal Degenerate Rearrangements. V. Stereo- 2, 383 (1975). chemistry of the 1,2-Dimethylenecyclobutane Self- 75 SZI/MAR3 Szirovicza, L., and Marta, F., “Thermal Isomeriza- Interconversion and Its Relation to the Allene tion of Isopropenyl Radicals,” React. Kinet. Catal.

Dimerization and the Rearrangements of Other Lett 3, 155 (1975).

C6H8 Isomers,” J. Am. Chem. Soc. 94, 1675 (1972). 76 ART/ LEE Arthur, N. L., and Lee, M.-S., “Reactions of Methyl 72 HAS Hasselmann, D., “Degenerierte Thermische Um- Radicals. I. Hydrogen Abstraction from Dimethyl lagerung von 5-Methylen-Bicyclo[2,2,l]Hepten- Sulphide,” Aust. J. Chem. 29, 1483 (1976). (2),” Tetrahedron Letters No. 33, 3465 (1972). 76 BLA/CRA Blake, P. G., Craggs, A., and Vayjooee, M. B., 73 BLU/WAG Blumenberg, B., and Wagner, H. Gg., “Die Reak- “The Thermal Decomposition of Propanoic and 2- tion von Methylamin mit Wasserstoffatomen,” Ber. Methylpropanoic Anhydrides in the Gas Phase,” J.

Bunsenges. Phys. Chem. 77, 253 (1973). Chem. Soc. Perkin 2, 986 (1976). 73 COC/EGG2 Cocks, A. T., and Egger, K. W., “The Gas-phase 76 GAY/GIL Gaynor, B. J., Gilbert, R. G., King, K. D., and Thermal Reactions of l-Methylbicyclo[3.2.0]hept-2- Mackie, J. C., “The Isomerization of cyclohepta-

en-7-one,” J. Chem. Soc. Perkin Trans. 2, 835 triene at High Temperatures,” Int. J. Chem. Kinet. (1973). 8, 695 (1976).

127 76 GOL/LEI Goldstein, M. J., Leight, R. S., and Lipton, M. S., Dihydropentalene in Shock Waves and in a Flow “Thermolysis of Bicyclo[2.2.0]hex-2-ene,”J. Amer. System (Part I),” Ber. BunsengeS. Phys. Chem. 83, ChenL Soc. 98, 5717 (1976). 776 (1979).

76 HAC/PIL Hack, W., Pilz, C., and Wagner, 1L G., “Measure- 79 DUD/GLA2 Dudek, D., Glanzer, K., and Troe, J., “Photolysis of ments of the rate Constants of the Reaction of 1.3.5.7-Cyclooctatetraeneand 1.5-Dihydropentalene Atomic Hydrogen and Hydroxy Radicals with Car- by Steady State and by Laser Flash Irradiation (Part bon Suboxide in the 295 to 480 K Temperature II),” Ber. Bunsenges. Phys. Chem. 83, 788 (1979). Range,” Ber.- Max-Planck-Inst. Stroemungsforsch. 79 EDN/SPE Edney, E. O., Spence, J. W., and Hanst, P. L., “Syn-

1976, (6), 28 pp. (Ger); Chem. Abstr. 85:149615a thesis and Thermal Stability of Peroxy Alkyl Ni- (1976). trates,” J. Air Poll. Control Assoc. 29, 741 (1979). 76 MAR/BAR Martin, G., and Barroeta, N., “Gas-phase Thermol- 79 FRE/LOD Frey, H. M., and Lodge, S. P., “Thermal Decompo-

ysis of Sulphur Compounds. Part 1. Di-t-butyl sition of 3,6-Dihydro-2H-pyran,” J. Chem. Soc.

Disulphide,” J. Chem. Soc. Perkins 2, 1421 (1976). Perkin Trans. 2, 1463 (1979).

76 PAT/ATK2 Pate, C. T., Atkinson, R., and Pitts, J. N., Jr., “Rate 79 FRE/POT Frey, H. M., Pottinger, R., Carless, H. A. J., and Constants for the Gas Phase Reaction of Peroxy- Lingley, D. J., “The Thermal Decomposition of cis- acetyl Nitrate with Selected Atmospheric Con- 2,6-Dimethyl-3,6-dihydro-2H-pyran,”J. Chem. Soc.

stituents,” J. Environ. ScL Health - Environ. ScL Perkin Trans. 2, 1460 (1979). Eng., All(l), 19 (1976). 79 KAL/SHV Kalinenko, R. A., Shvedova, S. G., and Nametkin, 77 BAI/FRE Bailey, L M., and Frey, H. M., “Thermal Unimolec- N. S., “Kinetics of the Pyrolysis of Mixtures of Cy- ular Decomposition of 2-Ethoxy-3,4-dihydro-2H- clopentane with Paraffin Hydrocarbons,” pyran,” J. Chem. Soc. Perkins Trans. 2, 1976 (1977). Neftekhimiya 19, 415 (1979); Chem. Abstr. 77 FLO Flowers, M. C., “Kinetics of the Thermal Gas- 91:123197f (1979). Phase Decomposition of 1,2-Epoxypropane,” J. 79 POP/PET Pop, G., Petre, K., Ivanus, G., and Tomi, P., “Ki- Chem. Soc., Faraday Trans. 1 71, 1927 (1977). netics of the Thermal Decomposition of n-Dode- 77 FRE/SMI Frey, H. M., and Smith, R. A., “Thermal Decompo- cane-Decalin Binary Mixtures in the Presence of sition of 3,3-Dimethylcyclobutanone,” J. Chem. Water Vapor,” Neftekhimiya 19, 535 (1979); Chem. Soc. Perkin 2, 752 (1977). Abstr. 91:192556j (1979). 77 RED/BER Reddy, K. V., and Berry, M. J., “Intracavity CW 79 RED/BER1 Reddy, K. V., and Berry, M. J., “Reaction Dynam- Dye Laser Photoactivation of Unimolecular Reac- ics of State-Selected Unimolecular Reactants. En- tants: Isomerization of State-selected Methyl Iso- ergy Dependence of the Rate Coefficient for cyanide,” Chem. Phys. Lett 52, 111 (1977). Isomerization,” Faraday Dis 77 SAL/THR Salter, L. F., and Thrush, B. A., “Reaction of Oxy- cuss. Chem. Soc. pg. 188 (No. 67) (1979). gen Atoms with Methyl and Ethyl Nitrates,” J. 79 RED/BER2 Reddy, K. V., and Berry, M. J., “A Nonstatistical Chem. Soc. Trans. 1 73, 1098 (1977). Unimolecular Chemical Reaction: Isomerization of 77 TAB/FUE Tabayashi, K., Fueno, T., Takasa, K., Kajimoto, O., State-Selected Allyl Isocyanide,” Chem. Phys. Lett. and Okada, K., “Thermal Decomposition of Hydro- 66, 223 (1979). gen Cyanide in Shock Waves,” Bull. Chem. Soc. 79 TEM Temps, F., “Investigation of reactions of the hy- Jpn. 50, 1754 (1977). droperoxyl radical by a Combined Electron Spin

78 CAM/HAN Campbell, L M., and Handy, B. J., “Studies of Reac- Resonance-Laser Magnetic Resonance Spectrome- tions of Atoms in a Discharge Flow Stirred Reac- ter,” Ber.-Max-Planck-Inst Stroemungsforsch. 1979

tor. Part 2. - O + H2 + CO System,” J. Chem. (16) 79 pp. (Ger); Chem. Abstr. 92:65334f (1980). Faraday Trans. 2 74, 316 (1978). 79 TSU/NAK Tsughiya, A., and Nakamura, T., "Lifetime Mea-

78 CHU/RQT Chuchani, G., and Rodnov, A., “Assessment of the surement of HO2 Radical,” Bull. Chem. Soc. Jpn. Methoxy Effect in the Gas Phase Elimi- 52, 1527 (1979). nation of Methoxyalkyl Acetates,” React Kinet 80 BEN Benson, S. W., “On the Reaction between Ethylene Catal. Lett 9, 359 (1978). and Cyclopentene, A Radical Mechanism,” Int J. 78 FRE/POT Frey, H. M., and Pottinger, R., “Thermal Uni- Chem. Kinet 12, 755 (1980). molecular Reactions of Vinylcyclobutane and Iso- 80 CAN/CRI Cannon, B. D., and Crim, F. F., “Direct Observa- propenylcyclobutane,” J. Chem. Soc. Faraday tion of Unimolecular Reaction in State Selected Tc- Trans. 1 74, 1827 (1978). tramethyldioxetane,” J. Chem. Phys. 73, 3013 (1980). 78 HAC/KAU Hack, W., Kaufman, F., Preuss, A. W., and Wagner, 80 CAR/MAI Carless, H A. J., Maitra, A. K., Pottinger, R., and H. G., “Measurement of the Rate of the Reaction Frey, H. M., “Thermal Decomposition of cis-2,4- + radical -• Hydroxyl Dimethyl-trans-3-viny!oxetan,”J. Chem. Soc. Fara- radical + Nitrogen Dioxide Using Laser Magnetic day 1 76, 1849 (1980). Resonance,” Ber.-Max-Planck-Inst Stroemungs- 80 FUR/PAC Funic, H., and Pacey, P. D., “Performance of Cylindrical Flow Reactors in a Kinetic Study of the forsch. 1978 (8), 28 pp. (Ger); Chem. Abstr. 89:200860c (1978). Isomerization of Cyclopropane,” J. Phys. Chem. 84, 78 HIP/LUT Hippier, H., Luther, K., Troe, J., and Walsh, R., 3139 (1980). “-Laser Study of Specific Rate' Constants 80 HAS/LOO Haaseimann, D., and Loosen, K., “New C1H10 Iso- for Unimolecule Isomerization of Substituted Cy- mers: 2-Methylene-bicyclo[3.2.0p>ept-6-ene and 3- 7 clohcptatrienea,” J. Chem. Phys. 68, 323 (1978). Methylenetricyc!o[4. 1 .0.(f ]heptane - Thermal and 78 LEW/GIE Lewis, D. K., Giesler, S. E., and Brown, M. S., Metal-Catalyzed Rearrangements,” Angew. Chem. “Further Study of of Cyclopropane Structural Iso- Int Ed. Engl. 19, 634 (1980). merization behind Reflected Shock Waves,” Int J. 81 BAC/PAR Back, R. A., and Parson, J. M., “The Thermal and Chem. Kinet 10, 277 (1978). Photochemical Decomposition of Maleic Anhy- 79 AST/TRO Astholz, D. C., Troe, J., and Wieters, W., “Uni- dride in the Gas Phase,” Can. J. Chem. 59, 1342 molecular Processes in Vibrationally Highly Ex- (1981). cited Cycloheptatrienes. L Thermal Isomerization 81 CAN/CRI1 Cannon, B. D., and Crim, F. F., “Kinetics of Gas in Shock Waves," J. Chem. Phys. 70, 5107 (1979). Phase Tetramethyldioxetane Decomposition and 79 DUD/GLA1 Dudek, B., Glanzer, K., and Troe, J., "Pyrolysis of Chemiluminescence,” J. Am. Chem. Soc. 103, 6722 I.3.5.7-Cydooctatetraene, Semibullvalene, and 1.5- (1981).

128 81 CAN/CRI2 Cannon, B. D., and Crim, F. F., “Local Mode Exci- icals,” J. Chem. Soc. Faraday Trans I 79, 505 tation and Direct Unimolecular Reaction Rate Mea- (1983).

surements in Tetramethyldioxetane,” J. Chem. 83 ARI/ART1 Arican, H., and Arthur, N. L., “Reactions of Phys. 75, 1752 (1981). Methyl Radicals. IV. Hydrogen Abstraction from 81 MAR/CHU Martin, I., and Chuchani, G., “Steric Acceleration TetramethylsUane by Methyl Radicals Produced by in the Pyrolysis Kinetics of 2-Substituted Ethyl the Photolysis of both Acetone and Azomethane,” Acetates,” J. Phys. Chem. 85, 3902. Aust. J. Chem. 36, 2185 (1983). 81 SAT/KAL Satanova, R B., Kalinenko, R. A., and Nametkin, 83 ARI/ART2 Arican, H., and Arthur, N. L., “Reactions of N. S., “Kinetic Relationships in Pyrolysis of Methyl Radicals. V. Hydrogen Abstraction from

Dimethylcyclohexanes,” KineL Catal. 21, 986 Hydrogen Sulfide,” Aust. J. Chem. 36, 2195 (1983). (1981); tr. of Kinet Katal. 21, 1390 (1980). 83 ART/ANA Arthur, N. L., and Anastasi, C., “Rate Constants for

81 SKI/ROG Skinner, G. B., Rogers, D., and Patel, K. B., “Con- the Reaction of CH3 Radicals with C2 i-DjH7 and H3 ,

sistency of Theory and Experiment in the Ethane- t-C4H9 Radicals,” Bull. Soc. Chim. Belg. 92, 647 System,” InL J. Chem. Kinet. 13, (1983). 481 (1981). 83 ATK/ASC1 Atkinson, R., Aschmann, S. M., and Carter, W. P. 81 TAY Taylor, R., “The Mechanism of Ester Pyrolysis. L., “Rate Constants for the Gas-Phase Reactions of Part 10. The Effect of the p-Methoxy carbonyl OH Radicals with a Series of Bi- and Tricycloalka-

Group in Pyrolysis of Methyl 3-Acetoxypropio- nes at 299 ± 2 K: Effects of Ring Strain,” Int. J. nate,” J. Chem. Res. (S), 250 (1981). Chem. Kinet. 15, 37 (1983). 81 TIE/WAM Tiee, J. J., Wampler, F. B., Oldenborg, R. C., and 83 ATK/ASC2 Atkinson, R., Aschmann, S. M., and Carter W. P. Rice, W. W., “Spectroscopy and Reaction Kinetics L., “Kinetics of the Reactions of 0738 and OH Rad- of HS Radicals,” Chem. Phys. Lett 82, 80 (1981). icals with Furan and Thiophene at 298 ± 2 K,” Int. 82 BAT/ ROB Batt, L., and Robinson, G. N., “Decomposition of J. Chem. Kinet. 15, 51 (1983).

the t-Butoxy Radical,” Comm. Eur. communities 83 ATK/ASC3 Atkinson, R., Aschmann, S. M., and Pitts, J. N., Jr., [Rep] EUR 1982, EUR 7624, Phys. Chem. Behav. “Kinetics of the Gas-Phase Reactions of OH Radi- Atmos. PolluL, 172-80 (Eng); Chem. Ab- cals with a Series of a,|3-Unsaturated Carbonyls at str.96:217074u (1982). 299 ± 2 K,” Int J. Chem. Kinet. 15, 75 (1983). 82 LEW /BOS Lewis, D. K., Bosch, H. W., and Hossenlopp, J. M., 83 ATK/ASC4 Atkinson, R., Aschmann, S. M., Carter, W. P. L., “Thermal Isomerization of Cyclopropane to and Pitts, J. N., Jr., “Effects of Ring Strain on Gas-

Propene in the Presence of Boron Trichloride at T Phase Rate Constants. I. Ozone Reactions with Cy- - 1000-1300 K,” J. Phys. Chem. 86, 803 (1982). cloalkenes,” Int. J. Chem. Kinet. 15, 721 (1983). 82 MCE/TAY McEwen, I., and Taylor, R., “The Mechanisms of 83 ATK/ASC5 Atkinson, R., Aschmann, S. M., and Carter, W. P., Thermal Eliminations. Part 12. Relative Rates of “Effects of Ring Strain on Gas-Phase Rate Con- Pyrolysis of Ethyl, Isopropyl, t-Butyl, and n-Butyl stants. 2. Oil Radical Reactions with Cycloalke-

Vinyl Ethers: Rate Spread as an Index of Elimina- nes,” Int. J. Chem. Kinet. 15, 1161 (1983). tion Mechanisms,” J. Chem. Soc. Perkin Trans. 2, 83 AYR/BAC Ayranci, G., and Back, M. H., “Kinetics of the Re- — 1179 (1982). action: 2C2H* C 2H5 + C2H3 . Heat of Formation

82 MOR/PIL Morgan, C. A., Pilling, M. J., and Tulloch, J. M., of the Vinyl Radical,” Int. J. Chem. Kinet. 15, 83 (1983). “Direct Determination of the Equilibrium Constant 83 BAC Back, R. A., “A Search for a Gas-Phase Free-Radi- and Thermodynamic Parameters for the Reaction cal Inversion Displacement Reaction at a Saturated C3H5 + O2 -* C3H3O2,” J. Chem. Soc., Faraday Carbon Atom,” Can. J. Chem. 61, 916 (1983).

Trans. 2 78, 1323 (1982). 83 BAR/BEC Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., 82 RIZ/CRI Rizzo, T. R., and Crim, F. F., “State-to-State Uni- and Zabel, F., “Rate Constants and Products of the

molecular Reaction of t-Butylhydroperoxide,” J. Reaction CS2 + OH in the Presence of O2,” Int. J. Chem. Phys. 76, 2754 (1982). Chem. Kinet. 15, 631 (1983). 82 TUL/MAC Tulloch, J. M., Macpherson, M. T., Morgan, C. A., 83 BAU/CRA Baulch, D. L., Craven, R. J. B., Din, M., Drysdale,

and PUling, M. J., “Flash Photolysis Studies of D. D., Grant, S., Richardson, D. J., Walker, A., and

Free-Radical Reactions: CjH5 + C3H5 (298-691 K) Watling, G., “Rates of Hydroxy Radical Reactions and C3H5 + NO (295-400 K),” J. Phys. Chem. 86, with Methane, Ethane and Propane over the Tem- 3819 (1982). perature Range 403-696 K,” J. Chem. Soc., Faraday

83 ALA/KIE Al-Alami, M. Z., and Kiefer, J. H., “Shock-Tube Trans. I 79, 689 (1983). Study of Propane Pyrolysis. Rate of Initial Dissocia- 83 BER Bemfeld, D. L., “1. Tests of the Coupled Shock tion from 1400 to 2300 K,” J. Phys. Chem. 87, 499 Tube/Mass Spectrometer Technique. 2. The Pyrol- (1983). ysis of Neopentane by Atomic Resonance Absorp- 83 AMA/YAM Amano, A., Yamada, M., Hashimoto, K., and Sug- tion Spectrophotometry,” Diss. Abstr. Int. 44, iura, K., “Kinetic Feature of the Reaction between 180-B (1983); superseded by 83 BER/SKI. Methanethiol and Hydrogen Atoms,” Nippon Ka- 83 BER/FLE Berman, M. R., Fleming, J. W., Harvey, A. B., and gaku Kaishi, 385 (1983). Lin, M. C., “Temperature Dependence of the Reac- 83 ANA1 Anastasi, C., “Study of the Methyl-Isobutane Reac- tions of CH Radicals with Unsaturated Hydrocar- tion in the Range 478 T/K 560,” J. Chem. Soc., bons,” Chem. Phys. 73, 27 (1983). Faraday Trans. I 79, 741 (1983). 83 BER/ LIN Berman, M. R., and Lin, M. C., “Kinetics and 83 ANA2 Anastasi, C., “Reaction of Methyl Radicals with Mechanism of the CH + N? Reaction. Tempera- Formaldehyde in the Range 500 sT/K« 603,” J. ture- and Pressure-Dependence Studies and Transi- Chem. Soc., Faraday Trans. I 79, 749 (1983). tion-State-Theory Analysis,” J. Phys. Chem. 87, 83 ANA/BLA Anastasi, C., Blackmore, D. K., and Hancock, D. 3933 (1983). U., “A Study of the Mutual Reaction and Thermo- 83 BER/SKI Bemfeld, D., and Skinner, G. B., “Formation of Hy- chemistry of the CH3O2 Radical at 550K,” Bull. drogen Atoms in Pyrolysis of 2,2-Dimethylpropane Soc. Chim. Belg. 92, 645 (1983). behind Shock Waves,” J. Phys. Chem. 87, 3732 83 ANA/WAD Anastasi, C., Waddington, D. J., and Woolley, A., (1983). “Reactions of Oxygenated Radicals in the Gas 83 BLA/UA Blake, P. G., and Ijadi-Maghsoodi, S., “The Kinet- Phase. Part 10. - Self-reactions of Ethylperoxy Rad- ics and Mechanism of Thermal Decomposition of

129 Alkyl Isocyanates,” Int J. Chem. Kinet. IS, 609 1,3,6-Cyclooctatriene and Bicyclo[4.2.0]octa-2,4-di- (1983). ene,” Int. J. Chem. Kinet 15, 1069 (1983). 83 B LA/JUS Black, G., Jusinski, L. E., and Slanger, T. G., “Rate 83 GUE/VAN de Guertechin, L. O., Vandooren, J., and Van Coefficients for CS Reactions with O2, O3 and NO2 Tiggelen, P. J., “Radical Reactions in Formalde- at 298 K,” Chem. Phys. Lett 102, 64 (1983). hyde Flames,” Bull. Soc. Chim. Belg. 92, 663 (1983). 83 BLA/SHA Black, G., Sharpless, R. L., and Slanger, T. C., 83 GUT/NEL Gutman, D., and Nelson, H. H., “Gas-Phase Reac-

“Stratospheric Reactions of SO - A Source or Sink tions of the Vinoxy Radical with O2 and NO,” J. for Odd Oxygen?,” Bull. Soc. Chim. Belg. 92, 629 Phys. Chem. 87, 3902 (1983). (1983). 83 HAC/KUR Hack, W., Kurzke, H., and Wagner, H. G., “Ele-

83 BRU/SCH1 Brune, W., Schwab, J., Friedl, R., and Anderson, J., mentary Reactions of NHrRadicals in the Gas

“Laboratory Studies of HO2, OH and SH,” Bull. Phase. HI.,” Ber.-Max-Planck-Inst Stroemungs- Soc. Chim. Belg. 92, 624 (1983). Superseded by 83 forsch., 29 (1983) (Eng); Chem. Abstr. 99:146913r BRU/SCH2. (1983).

83 BRU/SCH2 Brune, W. H., Schwab, J. J., and Anderson, J. G., 83 HAG /LOR Hagele, J., Lorenz, K., Rhasa, D., and Zellner, R.,

“Laser Magnetic Resonance, Resonance fluores- “Rate Constants and CH3O Product Yield of the -* cence, and Resonance Absorption Studies of the Re- Reaction OH + CH3OH Products,” Ber. Bun-

action Kinetics of O + OH -* H + Oj, O + HO2 senges. Phys. Chem. 87, 1023 (1983). — + + — + NO, and + HOj 83 HAS/RIE Hassinen, E., Riepponen, P., Blomqvist, K., OH O3, N OH H N - Products at 300 K between 1 and 5 torr,” J. Phys. Kalliorinne, K., and Koskikallio, J., “Rates of Reac- Chem. 87, 4503 (1983). tions between Methoxycarbonyl, Methyl and 83 BUR/WAL Burrows, J. P., Wallington, T. J., and Wayne, R. P., Methoxy Radicals Formed in Flash Photolysis of “Kinetics of the Gas-phase Reactions of OH with Dimethyl Oxalate in Gas Phase,” Bull. Soc. Chim.

NO2 and with NO,” J. Chem. Soc. Faraday Trans. Belg. 92, 847 (1983). 79, 111 (1983). 83 HAT/AKI Hatakeyama, S., and Akimoto, H., “Reactions of 83 CHI/BIG Chiorboll, C., Bignozzi, C. A., Maldotti, A., Giar- OH Radicals with Methanethiol, Dimethyl Sulfide, dini, P. F., Rossi, A, and Carassiti, V., “Rate Con- and Dimethyl Disulfide in Air,” J. Phys. Chem. 87, stants for the Gas-Phase Reactions of OH Radicals 2387 (1983). with 0-Dimethylstyrene and Acetone. Mechanism 83 HER/CHU Hernandez A, J. A., and Chuchani, G., “Gas-Phase of 0-Dimethylstyrene NO,-Air Photooxidation,” Elimination Kinetics of 1-Substituted Ethyl Ac- InL J. Chem. Kinet. 15, 579 (1983). etates. Effect of Polar at the a Carbon 83 CHU/MAR Chuchani, G., and Martin, L, “The Pyrolysis Kinet- of Secondary Acetates,” Int J. Chem. Kinet. 15, ics of Ethyl Esters in the Gas Phase. The Alkyl Sub- 205 (1983).

stituent Effect at the Acyl Carbon,” InL J. Chem. 83 HXP/LUT Hippier, H., Luther, K., Troe, J., and Wendelken,

Kinet 15, 455 (1983). H. J., “Unimolecular Processes in Vibrationally 83 CQL/RIC Collongues, C., Richard, C., and Martin, R., “Ther- Highly Excited Cycloheptatrienes. HL Direct k(E) mal Reaction of Hydrogen-Butene-2-cis Mixtures at Measurements after Laser Excitation,” J. Chem. 500°C: Hydrogenation, Hydrogenolysis, and Ther- Phys. 79, 239 (1983). mal Reaction of the Olefin,” InL J. Chem. Kinet 15, 83 HOM/WEL1 Homann, K. H., and Wellmann, Ch., “Arrhenius 5 (1983). Parameters for the Reactions of O Atoms with 83 DAV Davis, C. P., Jr., “The Pyrolysis of Methyl Formate Some in the Range 300-1300 K,” Ber. Bun- in Shock Waves,” Diss. Abstr. Int 44, 803-B (1983). senges. Phys. Chem. 87, 527 (1983). 83 DOO/MAC Doolan, K. R., and Mackie, J. C., “Kinetics of Py- 83 HOM/WEL2 Homann, K. H., and Wellmann, Ch., “Kinetics and rolysis of Octane in Argon-Hydrogen Mixtures,” Mechanism of Hydrocarbon Formation in the sys-

Combust Flame 50, 29 (1983). tem CJH2 /O/H at Temperatures up to 1300 K,” 83 DUN/GUI Duncanson, J. A, Jr., and Guillory, W. A., “The Ber. Bunsenges. Phys. Chem. 87, 609 (1983). State-Selective Reactions of Vibrationally Excited 83 HOR/BAU Horie, O., Bauer, W., Meuser, R., Schmidt, V. H.,

CH/X^II) with Oxygen and Nitrogen,” J. Chem. and Becker, K. H., “The Rate of the Reactions of

Phys. 78, 4958 (1983). C2O Radicals with H and H*” Chem. Phys. Lett 83 EBE/EDE Ebert, K. H., Ederer, H. J., and Isbara, G., “The 100, 251 (1983). Thermal Decomposition of n-Hexane,” Int J. 83 HSU/SHA Hsu, D. S. Y., Shaub, W. M., Creamer, T., Gutman, Chem. Kinet 15, 475 (1983). D., and Lin, M. C., “Kinetic Modeling of CO Pro-

83 FAR/BEC Fameth, W. E., and Beck, T. L., “Intramolecular duction from the Reaction of CH3 with O2 in Shock Hydrogen Isotope Effect in the Pyrolysis of Diethyl Waves,” Ber. Bunsenges. Phys. Chem. 87, 909

Carbonate-1, 1,1,2,2-4,” Int J. Chem. Kinet 15, 461 (1983). (1983). 83 JAS/FRI Jasinski, J. M., Frisoli, J. K., and Moore, C. B.,

83 FON/MAE Fonderie, V., Maes, D., and Peeters, J., “The Ki- “High Vibrational Overtone Photochemistry of Cy- clobutene,” J. Phys. netic Coefficient of the C2H4 + O Reaction over Chem. 79, 1312 (1983). Extended Pressure and Temperature Ranges,” Bull. 83 JOH/MEC Johnson, C. A. F., and Mechie, C. M., “Kinetics of Nitrogen Dioxide and 2- Soc. Chim. Belg. 92, 641 (1983). the Reaction between 83 FRE/WAT Frey, H. M., and Wads, H. P., “Thermal Unimolec- Methyl-2-Nitrosopropane,” J. Chem. Res. (S), 212 ular Decomposition of 0-Butyrolactone (4-Methy- (1983). Purnell, H., Smith, E., “Induced loxetan-2-one),” J. Chem. Soc. Faraday Trans. I 79, 83 KAN /PURI Kanan, K., and Heterogeneity, a Novel Technique for the Study of 1659 (1983). 83GON Gonzalez, F. S., “A Shock Tube Study of the Pyrol- Gas-Phase Reactions. Part I. Determination of the ysis of Nitric & Nitrous Oxides,” Diss. Abstr. Int. Arrhenius Parameters for C-C Bond Scission in 44, 1184—B (1983). Propane,” Int J. Chem. Kinet 15, 63 (1983). 83 GOE/SCH Goede, H.-J., and Schurath, U., “Temperature De- 83 KAN/PUR2 Kanan, K., Purnell, H., and Sepherad, A., “Induced for Study of pendence of the Reactions SO + O3 and SO + O2,” Heterogeneity, a Novel Technique the Bull. Soc. Chim. Belg. 92, 661 (1983). Gas-Phase Reactions. 2. Direct Study of C-C Bond 83 GRE/ORC Greathead, J. M., and Orchard, S. W., “Kinetic and Scission in Ethane,” Int J. Chem. Kinet. 15, 845 Equilibrium Study of Gas-Phase Interconversions of (1983).

130 83 KEY Keyser, L. F., “Relative Rate Constants for the Re- 83 MAC/JOU MacLeod, H., Jourdain, J. L., and Le Bras, G., “Ab- actions of Atomic Oxygen with HO? and OH Radi- solute Rate Constant for the Reaction of OH with

cals,” J. Phys. Chem. 87, 837 (1983). Thiophene between 293 and 473 K,” Chem. Phys. 83 KIE/KAP Kiefer, J. H., Kapsalis, S. A., Al-Alami, M. Z., and Lett. 98, 381 (1983). Budach, K. A., “The Very High Temperature Py- 83 MAC/PAC MacKenzie, A. L., Pacey, P. D., and Wimalasena, J. rolysis of Ethylene and the Subsequent Reactions of H., “Induction Periods in the Formation of Ethane Product ,” Combust. Flame 51, 79 (1983). fromn the Pyrolysis of Ethylene,” Can. J. Chem. 61, 83 KLA/ADA Klamer, F.-G., and Adamsky, F., “Synthese und 2033 (1983). Umlagerung substituierter Bicyclo[2.1.0]pent-2-ene. 83 MAC/PIL MacPherson, M. T., Pilling, M. J., and Smith, M. J. Eine Thermische “walk” Umlagerung,” Chem. Ber. C., “The Pressure and Temperature Dependence of 116, 299 (1983). the Rate Constant for Methyl Radical Recombina- 83 KLO/DRO Klotz, H.-D., Drost, H., und Schulz, G., “Zum Ein- tion over the Temperature Range 296-577 K,” fluss der Stosswellenreflexion auf die Hochtemper- Chem. Phys. Lett. 94, 430 (1983). aturpyrolyse von Kohlenwasserstoffen im 83 MAC/POU MacLeod, H., Poulet, G., and Le Bras, G., “Etude Stosswellenrohr,” Exper. Techn. Phys. 31, 125 Cinetique des Reactions du Radical OH Avec (1983) (Ger). CH3SCH3, CH3SH et C?H5SH,” J. Chim. Phys. 83 KOD1 Kodama, S., “Reactions of NH Radicals. I. Photoly- Phys.-Chim. Biol. 80, 287 (1983).

sis of HN 3 Vapor at 313 nm,” Bull. Chem. Soc. Jpn. 83 MAR/HER Martinez, R. I., and Herron, J. T., “Methyl Thi- 56, 2348 (1983). irane: Kinetic Gas-Phase Titration of Sulfur Atoms 83 KOD2 Kodama, S., “Reactions of NH Radicals. II. Photol- in SrOy Systems,” Int. J. Chem. Kinet. 15, 1127 ysis of HN3 in the Presence of C2H6 at 313 nm,” (1983). Bull. Chem. Soc. Jpn. 56, 2355 (1983). 83 MAR/PFO Martin, H.-D., PfOhler, P., Urbanek, T., and Walsh, 83 KOD3 Kodama, S., “Reactions of NH Radicals. HI. Pho- R., “Thermolyse von Ansaran, Ansaren und

tolysis of HN 3 in the Presence of C2H4 at 313 nm,” Cuban,” Chem. Ber. 16, 1415 (1983). Bull. Chem. Soc. Jpn. 56, 2363 (1983). 83 MAR/ROP Martin, G., and Ropero, M., “Gas Phase Thermoly- 83 KYO/WAT Kyogoku, T., Watanabe, T., Tsunashima, S., and sis of Acetonyl Allyl Sulfide,” React. Kinet. Catal. Sato, S., “Arrhenius Parameters for the Reactions of Lett. 22, 171 (1983). Hydrogen and Deuterium Atoms with Four Bute- 83 MAR/SHA Marshall, R. M., and Shahkar, G., “The Molecular nes,” Bull. Chem. Soc. Jpn. 56, 19 (1983). Component in the Thermal Decomposition of 83 LAM/MOL Lamb, J. J., Molina, L. T., Smith, C. A., and Azomethane,” J. Chem. Soc. Faraday Trans. I 79,

Molina, M. J., “Rate Constant of the OH + H2O2 -* 1891 (1983).

HO? + H?0 Reaction,” J. Phys. Chem. 87, 4467 (1983). 83 NEL/HEL Nelson, H. FL, Helvajian, H., Pasternack, L., and 83 LAN /PET Langford, A. O., Petek, H., and Moore, C. B., “Col- McDonald, J. R., “Temperature Dependence of

, 1 + lisional Removal of CH?( Ai): Absolute Rate Con- Cj(X 2g ) Reactions with and Alkynes, stants for Atomic and Molecular Collisionai 295-610 K,” Chem. Phys. 73, 431 (1983). Partners at 298 K,” J. Chem. Phys. 78, 6650 (1983). 83 NIK/MAK Niki, H., Maker, P. D., Savage, C. M., and Breiten- 83 LAU/YUN Laufer, A. H., and Yung, Y. L., “Equivalence of bach, L. P., “A Fourier Transform Infrared Study Vinylidene and C?H?: Calculated Rate Constant for of the Kinetics and Mech anism for the Reaction

Vinylidene Abstraction from CH4,” J. Phys. Chem. HO + CH3 OOH,” J. Phys. Chem. 87, 2190 (1983). 87, 181 (1983). 83 QHT Ohta, T., “Rate Constants for the Reactions of Di-

83 LEE/TAN Lee, J. H., and Tang, I. N., “Absolute Rate Con- olefins with OH Radicals in the Gas Phase. Estimate stants for the Reactions with of the Rate Constants from Those for Monoolefins,”

CH3SH and C2H5SH at Room Temperatures,” J. J. Phys. Chem. 87, 1209 (1983). Chem. Phys. 78, 6646 (1983). 83 PAR/ GUT Park, J.-Y., and Gutman, D., “Reactions of Ethyl, 83 LEV/PRI Levush, S. S., Prisyazhnyuk, Z. P., and Kovalskaya, Cyclopentyl, and Cyanomethyl Radicals with Ni- A. M., “Kinetics of the Thermal Gas Phase Decom- trogen Dioxide,” J. Phys. Chem. 87, 1844 (1983).

position of C 1 -C4 Organic Peracids,” Kinet Catal. 83 PAR/ SIN Paraskevopoulos, G., Singleton, D. L., and Irwin, 24, 1098 (1983); tr. of KineL Katal. 24, 1294 (1983). R. S., “Rates of OH Radical Reactions. The Reac-

83 LIC/BER Lichtin, D. A., Berman, M. R., and Lin, M. C., “Ki- tion OH + SO2 + N?t,” Chem. Phys. Lett. 100, 83 netic Studies of Initiated Reactions of CH and CN (1983). Radicals,” Bull. Soc. Chim. Belg. 92, 656 (1983). 83 PEN /CAN Penzhom, R.-D., and Canosa, C. E., “Second 83 LIF/BEN Lifshitz, A., and Ben-Hamou, H., “Thermal Reac- Derivative UV Spectroscopy Study of the Thermal tions of Cyclic Ethers at High Temperatures. 1. Py- and Photochemical Reaction of NO? with SO? and rolysis of Ethylene Oxide Behind Reflected SO?,” Ber. Bunsenges. Phys. Chem. 87, 648 (1983). Shocks,” J. Phys. Chem. 87, 1782 (1983). 83 PLU/SAN Plum, C. N., Sanhueza, E., Atkinson, R., Carter, W. 83 Loirat, H., Caralp, F., Destriau, LOI/CAR and M., “Rate Con- P. L., and Pitts, J. N., Jr., “OH Radical Rate Con- stant and Activation Energy of the Exchange Reac- stants and Photolysis Rates of a-Dicarbonyls,” En- — tion CO + N?0 CO? + N? in the Temperature viron. Sci. Technol. 17, 479 (1983). Range 1060-1220 K. Application of the Thermal Ex- 83 PRA/WOO Pratt, G. L., and Wood, S. W., “Stoichiometry and plosion Theory to a System with Two Parallel Re- Rate of Reaction of Hydrogen Atoms with Oxy-

actions,” J. Phys. Chem. 87, 2455 (1983). gen,” J. Chem. Soc., Faraday Trans. I 79, 2597 83 LOU/ TIN Louw, R., Tinkelenberg, A., and Werner, E. S. E., (1983). “Thermolytic Reactions of Esters. Part XHI. The 83 RAV/THO Ravishankara, A. R., and Thompson, R. L., “Ki- Effect of Electron Attracting a-substituents in netic Study of the Reaction of OH with CO from Alkyl Acetates,” Reel. Trav. Chim. Pays-Bas 102, 250 to 1040 K,” Chem. Phys. Lett. 99, 377 (1983). 519 (1983). 83 RAV/WIN Ravishankara, A. R., Wine, P. H., and Nicovich, J. 83 LOU/VER Louw, R., Vermeeren, H. P. W., and Vogelzang, M., “Pulsed Laser Photolysis Study of the Reaction 3 M., “Thermolytic Reactions of Esters. Part 12. between 0( P) and HO2,” J. Chem. Phys. 78, 6629 Steric versus Polar Effects on Pyrolytic p-Elimina- (1983). 3 tion of Acetic Acid fron (Tertiary) Alkyl Acetates,” 83 ROS Roscoe, J. M., “The Reactions of 0( P) with the J. Chem. Soc. Perkin Trans. II, 1875 (1983). Butanols,” Can. J. Chem. 62, 2716 (1983).

131 83 SCH Schwab, J. J., “Spectroscopy and Reaction Kinetics 83 THI/ROT Thielen, K., and Roth, P., “Stosswellenunter- ,” of Halogen-, Hydrogen-, and Oxygen-Containing suchungen zum Start der Reaktion CO + 02 Ber. Free Radicals,” Diss. Abstr. Int. 44, 1344-B (1983). Bunsenges. Phys. Chem. 87, 920 (1983). 83 SCH/CLA Scherzer, K., Claus, P., and Dabbagh, M., “Kinetis- 83 TRE Trenwith, A. B., “Pyrolysis of and the che Untersuchungen der Reaktionen von Methyl- Resonance Stabilisation Energy of the Cyanomethyl radikalen mit Allen,” J. Prakt. Chem. 325, 680 Radical,” J. Chem. Soc. Far. Trans. I 79, 2755 (1983). (1983). 83 SCH/KOH Schieferstein, M., Kohse-HOinghaus, K., and Stuhl, 83 TUA/ATK Tuazon, E. C., Atkinson, R., Plum, C. N., Winer, A. F., “Temperature Dependence of the Rate Con- M., and Pitts, J. N., Jr., “The Reaction of Gas Phase -* stants of the Reaction O + NO + M NOj + M N 2Os with Water Vapor,” Geophys. Res. Lett. 10,

(M = He, NO, Nfe CH4),” Ber. Bunsenges. Phys. 953 (1983). Chem. 87, 361 (1983). 83 TUA/CAR1 Tuazon, E. C., Carter, W. P. L., Atkinson, R., and 83 SCH/MEU Schmidt, V. H., Meuser, R., Horie, O., Bauer, W., Pitts, J. N., Jr., “The Gas-Phase Reaction of Hy-

and Becker, K. H, “The Reaction of C 20 Radicals drazine and Ozone: A Nonphotolytic Source of OH with H Atoms,” Bull. Soc. Chim. Belg. 92, 655 Radicals for Measurement of Relative OH Radical (1983). Rate Constants,” Int. J. Chem. Kinet. 15, 619 (1983). 83 SEL/BAY Selzer, E. A., and Bayes, K. D., “Pressure Depen- 83 TUA/CAR2 Tuazon, E. C., Carter, W. P. L., Brown, R. V.,

dence of the Rate of Reaction of Methyl Radicals Winer, A. M., and Pitts, J. N., Jr., “Gas-Phase Reac- with O2,” J. Phys. Chem. 87, 392 (1983). tion of 1,1-Dimethylhydrazine with Nitrogen Di- 83 SMI Smith, R. H, “Rate Constant for the Gaseous Reac- oxide,” J. Phys. Chem. 87, 1600 (1983). tion between Hydroxyl and Propene,” J. Phys. 83 TUL Tully, F. P., “Laser Photolysis/ Laser-Induced Chem. 87, 1596 (1983). Fluorescence Study of the Reaction of Hydroxyl 83 SRI/KAU Sridharan, U. C., and Kaufman, F., “Primary Prod- Radical with Ethylene,” Chem. Phys. Lett. 96, 148 ucts of the O + C2H4 Reaction,” Chem. Phys. Lett (1983).

102, 45 (1983). 83 TUL/RAV Tully, F. P., Ravishankara, A. R., and Carr, K.,

83 SWA/WAD Sway, M. I., and Waddington, D. J., “Reactions of “Kinetic Study of the Reactions of the Hydroxyl Oxygenated Radicals in the Gas Phase. Part 12. The Radical with Ethane and Propane,” Int. J. Chem. Reactions of Isopropylperoxyl Radicals and Alke- Kinet. 15, 1111 (1983). nes,” J. Chem. Soc. Perkin Trans. II, 139 (1983). 83 WAS/HAT Washida, N., Hatakeyama, S., Takagi, H., Kyogoku, 83 SZE/HAN1 Szekely, A. Hanson, R. K., and Bowman, C. T., T., and Sato, S., “Reaction of with Atomic “High-Temperature Determination of the Rate Co- Oxygen,” J. Chem. Phys. 78, 4533 (1983).

efficient for the Reaction H2 + CN -* H + HCN,” 83 WHY/ PHI! Whyte, A. R., and Phillips, L. F., “Rate of Reaction = Int J. Chem. Kinet. 15 , 915 (1983). of CN(v 0,l) with N Atoms,” Bull. Soc. Chim. 83 SZE/HAN2 Szekely, A., Hanson, R. K., and Bowman, C. T., Belg. 92, 635 (1983); superseded by 83 WHY/PHI2. “Shock-Tube Determination of the Rate Coefficient 83 WHY/PHX2 Whyte, A. R., and Phillips, L. F., “Rate of Reaction

for the Reaction CN + HCN — C 2N 2 + H,” Int J. of N with CN(v = 0,lX” Chem. Phys. Lett. 98, 590 (1983).

Chem. Kinet 15 , 1237 (1983). 83 WHY/PHB Whyte, A. R., and Phillips, L. F., “Rates of Reac-

83 TAY1 Taylor, R., “The Mechanism of Thermal Elimina- tion of NH2 with N, NO and N0 2,” Chem. Phys. tion. Part 14. Pyrolysis of Diacetamide, 2-Ace- Lett 102, 451 (1983).

toxypyridine, Diacetyl Sulphide, and Thioacetic 83 WIN/NIC Wine, P. H., Nicovich, J. M., Thompson, R. J., and 3 Acid: Possible Involvement of Enol Forms in Gas- Ravishankara, A. R., “Kinetics of 0( Pj) Reactions phase Eliminations,” J. Chem. Soc. Perkin Trans. II, with H2Q2 and O3,” J. Phys. Chem. 87, 3948 (1983). 89 (1983). 83 YAM/BAC Yamamoto, S., and Back, R. A., “The Thermal and 83 TAY2 Taylor, R., “The Mech anism of Thermal Elimina- Photochemical Decompositions of Succinic Anhy- tions. Part 15. Abnormal Rate Spread in Pyrolysis dride and 2,3-Dimethyl Succinic Anhydride in the of Alkyl Methyl and S-Alkyl O-Methyl Gas Phase,” Can. J. Chem. 61, 2790 (1983). Carbonates due to Enhanced Nucleophilicity of the 83 YAM/FUE Yamasaki K., Fueno, T., and Kajimoto, O., “Stud- , 3 Carbonyl Group,” J. Chem. Soc. Perkin Trans, n, ies on the Reaction N + N 3 -» N 2(B ng) + 1 + 291 (1983). N2(X Xg ),” Chem. Phys. Lett. 94, 425 (1983). 83 TAY3 Taylor, R., “The Mechanism of Thermal Elimina- 83 ZAL/HUN Zalotai, L., Hunyadi-Zolthn, Zs., B6rces, T., and tion. Part 17. Rate Data for Pyrolysis of Vinyl Ac- MZLrta, F., “Kinetics of Gas Phase Decomposition of etate and 1,2-Diacetoxyethane,” J. Chem. Soc. Oxetan and Oxetan-2,2-d2,” Int. J. Chem. Kinet. 15, Perkin Trans, n, 1157 (1983). 505 (1983). 83 TEM Temps, F., “Study of Radical-Radical Reactions us- 83 ZYC/BAC Zychlinski, W., Bach, G., Glauch, B., and Zirnmer- ing a FER-LMR Spectrometer,” Ber. -Max-Planck- mann, G., “Kinetische Untersuchungen zur Py- InsL Stroemungsforsch., 140 pp. (1983) (Ger); rolyse von Mono-n-alkyl-cyclohexanen,” J. f. prakt. Chem. Abstr. 100:127433g (1984). Chemie 315, 66 (1983).

132 1

6. Conversion Factors for Rate Constants

Equivalent second order rate constants

B cm 3 dm 3 m 3 cm 3 (mm Hg) -1 atm -1 ppm -1 2 - -1 - - - m kN ' s -1 ' -1 ' -1 -1 1 _l -1 A mol ' s mol ' s mol s molecule s s" s min

3 -1 -1 3 6 1 cm mol s = 1 10 10 1.66 1.604 1.219 2.453 1.203

~ 24 -5 ' -2 -9 X 10 x 10 T x io p* X 10 X 10 -4 r->

3 -1 -1 3 3 1 dm mol s = 10 1 10 1.66 1.604 12.19 P' 2.453 1.203

-2 ‘ -2 X 10 x 10 p' X 10 -o x 10 - 'p>

3 - ' 3 - ' 10“ 7’ ' 1 m mol s = 10 1 1.66 16.04 P' 1.219 2.453 120.3 - X 10 ' 8 x 10“ p' x 10 -3

3 -1 -1 1 cm molecule s = 6.023 6.023 6.023 1 9.658 7.34 1.478 7.244

23 20 7 8 2 ' 5 9 1 x 10 x 10 X 10' x 10' P* x 10 ' T x IO' x 10' p

-1 -1 1 (mm Hg) s = 6.236 62.36 T 6.236 1.035 1 760 4.56 7.500 -2 x 10* T x 10 T X lO 'T x 10 -2

- -1 ' -5 1 atm s 82.06 T 8.206 8.206 1.362 1.316 1 6 x 10 9.869 -2 -22 -3 x 10 T x 10 5 r x 10 T x 10 x 10 -3

-1 -1 1 ppm min - 4.077 4.077 407.7 6.76 21.93 1.667 1 164.5 - 5 ' 6 4 at 298 K, 1 atm X 10“ x 10 x 10 x 10 total pressure

- 2 -1 ' 1 m kN s = 8314 T 8.314 r 8.314 1.38 0.1333 101.325 6.079 1 x io -3 r x io -2 °r x 10 -3

To convert a rate constant from one set of units A to a new set B find the conversion factor for the row A under column B and multiply the 3 - -1 3 -1 -1 17 ' old value by it, e.g. to convert cm molecule s to m mol s multiply by 6.023 X 10 .

Table adapted from High Temperature Reaction Rate Data No. 5, The University, Leeds (1970).

Equivalent third order rate constants

-2 - B cm 6 dm 6 m 6 cm 8 (mm Hg)" 2 atm 2 ppm 2 m 4 kN s ' - - - -1 -2 -1 -2 -1 -2 - ' -2 ' * 1 mol s mol s mol s molecule s 9 9 min

8 -2 -1 -9 - 12 -48 1.003 1.447 1 cm mol s = 1 10 IO 2.76 X 10 2.57 1.48 - -4 - -8 2 x 10 '°P 2 x 10 P 2 x 10 ' 9 X 10 P

6 -2 -1 8 -8 -42 2 1.003 1.447 1 dm mol s = 10 1 10 2.76 x 10 2.57 148 P - -2 2 x 10 -4 P 2 X 10 ' 3 x 10 P

- 8 -36 2 6 -2 ' 2 1.48 1.003 1.447 1 m mol s = 10' 10 1 2.76X 10 257 P -7 4 2 x 10 8 P 2 x 10 x 10 P

- 6 -2 ' 3.64 5.248 1 cm molecule s = 3.628 3.628 3.628 1 9.328 5.388 37 -2 43 2 28 39 2 x 10 47 x 10 4 ' x 10 35 x 10 r x 10 T x 10 x 10 P

-38 -2 -1 x 1 5.776 3.46 56.25 1 (mm Hg) s = 3.89 3.89 3.89 1.07 10 P -3 5 -5 x 10 9 P x 10 3 P x 10 P x 10 x 10

- 2 ' 6X 10" 9.74 1 atm s = 6.733 6.733 6.733 1.86 1.73 1 -5 -3 -9 -44 -8 x 10 x 10 3 P x 10 P x 10 P x 10 P x IO

-2 -1 2.89 1.667 1 1.623 1 ppm min = at 298 K, 9.97 9.97 9.97 2.75 8 2 8 -29 4 x 10'° x 10« 1 atm total pressure x 10' x 10' x 10 x 10 x 10

1 1 -2 - 1.904 0.0178 1.027 6.16 1 m kN s = 6.91 69.1 P 6.91 -7 -5 -40 4 x 10 x 10 7 P X 10 P x 10 P x 10

See note to table for second order rate constants.

133 ,

7. ERRATUM

to

NSRDS-NBS 73, Part 1 Compilation of Chemical Kinetic Data for Combustion Chemistry.

Part 1. Non-Aromatic C, H, 0, N, and S Containing Compounds. (1971-1982)

Page No. Line No.

55 12 (from top) For entry 80 TOB/ULL, the reference reaction is:

-> : + . k ref 0 CO C02 94 10 (from top) Instead of: 0 + Cf^CHCF^CI^Ct^ products

it should be: 0 + cy-Cf^CHCf^CE^CI^ products

112 7 (from bottom) The first product of the reaction 0 + 1-Pentanethiol

is not OOH, but OH.

188 8 (from top) For entry 71 COW/KEI the data type is not RL,

but RN.

192 18 (from top) Step (a) of the reaction is not H + (CH )2CHCHCH=CH2 3

but (CH ) CHCH=CH . 3 2 2 201 16 (from top) For the second entry 73 DAY/THO, the reference reaction is: - : + + - k ref OH CO H C02

201 5 (from bottom) For entry 76 BRA/CAP the units are not 2, but 2/2.

203 12 (from top) Reaction OH + HD -* HDO + H is valid only for the last two entries under this heading, namely:

72 DIX with k = ( 9 . 6±0 . ) ( and 73 DAY/THO with the same k. 5 11 ) ,

For the two entries, 72 = and first DIX with k/k re £ 2.8±0.42,

72 DIX, with k/k = 2 . 4exp( 155/T the reaction is: re £ ) , OH + + H 2 - H 20 H. 242 1 (from bottom) The reference reaction is not OH + CH.JCH2CH2CH2 "* products, but

OH + CH2CH2CH2CH3 -* products.

252 14 (from bottom) For the first entry 74 GOR/VOL, the reference reaction is: - k : OH + CO H + - ref C02 269 26 (from top) For entry 82 ATK/ASC2, the reference reaction is

not OH + CH (CH )CH but OH + CH (CH ) CH . 3 2 3 , 3 2 4 3 269 19 (from top) For first entry 74 GOR/VOL, the reference reaction is:

k : OH + CO - H + C0 . ref 2

276 20 (from top) , The formula for 2 6-dimethyl-4-heptanone , incorrectly written,

should be: (CH ) CH CHC(0)CHCH (CH . 3 2 2 2 3 ) 2 278 3 (from top) For the second entry 77 HAM/LII, the products of

the reference reaction are not H + 0 202 2 ,

but D2O2 + 0 . 2 280 1 (from bottom) After this line, just before the page number,

the definition of footnote 2 should be indicated: o ) k^. (All the entries marked with footnote 2

refer to step (b) of reaction HO2 + N (+ M) ).

134 Page No. Line No.

287 4 (from top) For entry 71 BAL/LAN, the reference reaction

is not CH CH HCHO -* products, 3 3 +

H0 -» H 0 CHO. but 2 + HCHO 2 2 +

287 5 (from bottom) For first entry 71 BAL/LAN, the value of the rate ratio

is not 7.8(-2), but 8.8(-2),

287 3 (from bottom) For the same entry, the reference reaction

is not HCHO + CH CH CH -* products, 3 2 3 H0 - H 0 CHO. but 2 + HCHO 2 2 + 287 2 (from bottom) For the second entry 71 BAL/LAN, the rate constant

is not k = 7.86(7), but k = 7.57(7).

289 6 (from top) For entry 71 BAL/LAN, the reference reaction

is not HCHO + (CH CH -* products, 3 ) 3 - but H02 + HCHO H 202 + CHO.

386 9 (from bottom) The product of step (a) is not CH CH CH(CH )C(CH ) 3 2 3 3 23

but CH CH CH(CH )C(CH ) . 3 2 3 3 2 394 1 (from bottom) The first reactant of the reference reaction

is not CH but CH 0. 3 , 3 399 8 (from top) The second product of the reaction CH 0 + (CH CH, 3 3 ) 3 is not (CH )C, but (CH C. 3 3 ) 3

407 1 (from top) The second product of the reaction CH 0 (CH CH0 3 2 + 3 ) 2 2

should be written (CH ) CO. 3 2 410 3 (from bottom) In the reaction of Mercaptomethyl + Thiirane, the reactants are

not CH S + but CH cy-CH CH S. 3 #172, 3 + 2 2 412 19 (from top) The first product of the CN + reaction C02 is not CNO, but NCO (Cyanato free radical). 415 14 (from top) The systematic name of NH2CO is not Amidogen, formyl-, but Methyl, aminooxo- (or Carbamyl).

432 9 (from bottom) The products of the reference reaction

are CO, not CH3CH3CH3CH2 but CH CH CH CH CO. 3 3 + 3 2 468 1 (from top) The product of step (a) is not CH CH=CH 2 3 ,

but CH CH=CH . 3 2 497 11 (from top) The reactants of the reference reaction

are not (CH ) H 3 3 + 2 ,

but (CH C + H . 3 ) 3 2 550 7 (from bottom) The first product of the reaction is the free radical

CH C=CCH( • )CH . 3 3

135 )

NBS-114A (REV. 2-80) U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date REPORT NO. BIBLIOGRAPHIC DATA NBS/NSRDS-73/2 December 1987 SHEET (See instructions

4. TITLE AND SUBTITLE

Compilation of Chemical Kinetic Data for Combustion Chemistry. Part 2. Non-Aromatic C, H, 0, N, and S Containing Compounds. (1983)

5. AUTHOR(S) Francis Westley, John T. Herron, and R. J. Cvetanovid

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS 8 . Type of Report & Period Covered U.S. DEPARTMENT OF COMMERCE GAITHERSBURG, MD 20899 1983

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number: 87-20244

Document describes a computer program; SF-185, FiPS Software Summary, is attached. | |

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)

Chemical kinetic data for reactions of importance in combustion chemistry are compiled. Experimental, theoretical, evaluated, or estimated rate constants are

given for reactions of O, , H, H OH, H0 H N, N NO, N0 NH, 03 2, 2 , 20, 3 , 2 , N20,

NH SH, H^, SO, S0 , and the aliphatic, alicyclic, and heterocyclic saturated and 2 , 2

unsaturated Q to Ci5 hydrocarbons, alcohols, aldehydes, ketones, thiols, ethers, peroxides, amines, amides, and their free radicals. The data were taken from the literature published in 1983. Data omitted from Part 1 of this series, covering the period 1971 to 1982, are also included. The data are reported as rate constants or in terms of the parameters A, n, and B of the extended Arrhenius expression k = A(T /298)" x exp(— B IT), where B = E /R. Data are given for 434 reactions.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

Arrhenius parameters; carbon; chemical kinetics; combustion; compilation; free radicals; gas phase;

hydrocarbons; hydrogen; nitrogen; oxygen; rate of reaction; sulfur.

13. AVAILABILITY 14. NO. OF PRINTED PAGES [xj Unlimited 142 For Official Distribution. Do Not Release to NTIS | | Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. [x~l Price 20402. 15.

Q3] Order prom National Technical Information Service (NTIS), Springfield, VA. 22161

USCOMM-DC 6043-P80 Announcement of New Publications in National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series — National Bureau of Standards.

Name

Company

Address

City State Zip Code

(Notification Key N-519) .

'

. )

JUST PUBLISHED! HERMOCHEMICAL TABLES Third Edition A Major Supplement from JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA

Presenting Reliable Data Utilized by Chemists, Chemical Engineers, and Materials

Scientists from Around the World for Over 25 Years

JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA is verv pleased to publish the Third Edition of the JANAF THERMOCHEMICAL TABLES.

Since the first version appeared 25 years ago, the JANAF THERMOCHEMICAL

TABLES have been among the most widely used data tables in science and engineering.

You’ll find:

• Reliable tables of thermodynamic properties of substances of wide interest

• A highly professional approach with critical evaluations of the world’s thermochemical

and spectroscopic literature

• A concise and easy-to-use format

This Third Edition presents an extensive set of tables including thermodynamic properties of

more than 1800 substances, expressed in SI units. The notation has been made consistent with current international recommendations.

There is no other reference source of thermodynamic data that satisfies the needs of such a broad

base of users.

Order your 2-volume set of the JANAF THERMOCHEMICAL TABLES today! You’ll get over

1890 pages of valuable information that is crucial to your res earch— in two hardback volumes.

SUBSCRIPTION INF ORMATION

The JANAF THERMOCHEMICAL TABLES, THIRD EDITION is a two- volume supplement of Journal of Physical and Chemical Reference Data.

1896 pages, 2 volumes, hardcover U.S. & Canada $ 130.00 ISBN 0-88318-473-7 All Other Countries $ 156.00

Supplement Number 1 to Volume 14, 1985 (Postage included.

All orders for supplements must be prepaid

Foreign payment must be made in U.S. currency by iniernational money order, UNESCO coupons, U.S. bank draft, or order through your subscription agency. For rates in Japan, contact Maru/en Co., Ltd. Please allow four to six weeks for your copy to be mailed.

For more information, write American Chemical Society, Marketing Communications Department, 1155 Sixteenth Street, NW, Washington, DC 20036. - In a hurry? Call TOLL FREE 800 424-6747 and charge your order!

Published bv the American Chemical Society and the Amencan Institute of Physics lor the National Bureau of Standards

. Government Printing Office: 1987 0-201-490 (60198)

NBSTechnical Publications

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau’s technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau’s scien- tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety ''"des) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications— Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series— Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world’s literature and critically evaluated. Developed under a worldwide pro- gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056. Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and perfor- mance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards— Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re- quirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations. Consumer Information Series— Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today’s technological marketplace. Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402. Order the following NBS publications—FIPS and NBSIR ’s—from the National Technical Information Ser- vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form. U.S. Department of Commerce National Bureau of Standards Gaithersburg, MD 20899

Official Business Penalty for Private Use $300