Depa1'tment of Physical Chemistry Isl'ael

Total Page:16

File Type:pdf, Size:1020Kb

Depa1'tment of Physical Chemistry Isl'ael .. ANNUAL PROGRESS REPORT C00-3221-67 (For the period September 79 - July 80) Under Contract No. DOE/EV/03221 on THE NATURE OF OXYGEN CONTAINING RADICALS IN RADIATION CHEMISTRY AND PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS Submitted by PROFESSOR GIDON CZAPSKI Depa1'tment of Physical Chemistry The Hebl'eW Univel'sity~ Jerusalem~ Isl'ael IJISTRIBUTIOJI OF THIS DOCUMENT IS UNUMITEJJ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ANNUAL PROGRESS REPORT C00-3221-67 (For the period September 79 - July 80) Und~r Contract No. DOE/EV/03221·· on THE NATURE OF OXYGEN CONTAINING RADICALS IN RADIATION CHEMISTRY AND PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS Submitted by PROFESSOR GIDON CZAPSKI lh~s book was ~repared as an account of work sponsored by an agency of the United States Government :!:~; the ~~•ted Stat~ ~nment nor any agency thereof, nor any of their employees, makes an~ v. 8 P ess ot •mpl•ed. 01 assumes any legal llabiliry or responsibilily for thti accuracy completeness, or usefulness of any information apparatus Product 01 process d'sclosed ' represent~ thm its use v.ould not i~fringe private~ owned ri~ht" Ref~ence herein 10 :nv ~~~~ commerc•al Product, process, or serv•ce by trade name, trademark, manufacturer or otherwise does :,;=~~";itute or imply its endorsemenz. recommendation, or favc:ring by the UniU!C:I necessarily state or refl;~h= ~~~erUe;:i~-;~a7e~=nomepi~iloo": ..o: authors ehxpressedf herein do not . • .... y agency t ereo . .. Department of Physical Cherrristry The Hebrew University~ Jerusalem~ Israel bJs'rRlBUTION OF THIS DOCUMENT IS UNUMIT~ ----------------------------------~ ANNUAL PROGRESS REPORT (December 1979 - July 1980) ON THE NATURE OF OXYGEN CONTAINING RADICALS IN RADIATION CHEMISTRY AND .PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS INSTITUTIONS This research will be carried out at the Department of Physical Chemistry and in the Linear Accelerator Department, The Hebrew University of Jerusalem, Israel. PRQJE.CT ABSIB8CI The proposed research is a continuation of the work donducted under this cnntract and is outlined. During this year, the main emphasis will be given to study further the p~operties of H0 and and OH', mainly in their role in biological 2 o; systems. We will continue to. study and elucidate how o; reacts in biological systems. The toxicity of o; is quite well established but the mechanism is still obscure. One way ·o; is toxic, .was shown .by us and :ot~e.rs, that OH' is .fonned from 3 2 o; through reduction of Fe +, and subsequently the reaction of Fe + with H2o2 (Fenton reaction). This mechanism is sometimes, unjustifiably, called the "Haber Weiss Reaction". 3 We will study if reduction of Fe + comple~es·by o; in biological systems does catalyze .the Haber Weiss reaction and if OH' is formed in .this mechanism. The role of oxygen, radiosensitizers in radiation damage of bacteriophages and cells will be further studied, .as well as,on E. Coli and En~ymes. Usin~ different mutants, such as ones with repair deficiencies, or others which are deficient in glutathione -these will help to elucidate the role of o; and 02 toxicity. ._ 2 - We. w~:11· trY.· to. ~~~cidate the formation and role of OH', o; and o2 in these sys­ tems as w~ll. ·a·~ ·the. l'E;!lative contribution of endogenous and exogenous damage, and the role of direct and indirect radiation damage to cells. As there is some doubt how and if SOD protects cel.ls from irradiation as litera- ture results show lots of conflict, we will try to clear this point, in studies with E. coli mutants, and adding SOD endogenously and exogenously. • . We also intend to study if SOD (super oxide dismutase) does react only with o; or also with biological peroxides (R0:2) and Hydropero,xides (RO;H). Further .studies of and 0 with various cytochromes .• and Hemoglobins is planned. o; 2 - 3 - RESEARCH PROPOSED O-RIGINALLY AND SUMMARY OF ACHIEVEMENTS DURING THE PREVIOUS YEARS The research project proposed originally was to investigate the physical and chemical properties of Ozonide and Hydro-peroxy radical mainly in aqueous solutions. We will summarize the results of the problems suggested and studied during the previous years by us . .., 1. OZONIDE ION We established the spectrum of this species as well as the decay and formation kinetics of the ozonide. The reaction mechanism and kinetics o; with other solutes were measured and shown to follow by the dissociation of 0~. · 2. HYDRO-PEROXY RADICAL We determined the properties of this species. It was shown that it exists as H0 2 and o; with pK - 4.85. The additional form of the radical H2o/ proposed, seems to be ruled out in solutions down to pH = 0. The decay scheme of the radical was well established, including the separate rate co~stants for the reactions H0 + H0 , H0 + and + The optical spectrum of H0 and were 2 2 2 o; o; o;. 2 o; determined. 3. COMPLEXES OF H0 WITH CATIONS 2 It was shown that H0 2 forms complexes with many cations yielding Ml-I0 2. These species are much more stable than the free radical, and they have typical ESR signa~s. It was found that these complexes undergo readily exchange reactions of the following type. 4. ESR DETECTION WITH IN SITU PHOTOLYSIS USING MODULATED LIGHT In this method radicals were generated in situ in an ESR cavity by photolysis. -5 The light source was modulated and square pulses with pulse length of 10 sec I were obtained with 'frequencies of 5Hz-4KHz. By this method, radicals reach .. /4 ·-4- concentrations at the end.of pulses which were as low as 1o"9M and decay till the next pulse. Using a wave from educator, one can average the ESR signal over many p~lses and good signal/noise is obtained although of the very low concen­ tration obtained by this method. In order to prevent depletion, the solutions being changed in the cavity by a slow flow system. This method was used to follow the decay kinetics of several complexes, such as Th-H0 2. The method has the advantage to follow reactions of Th-H0 2 at low concentrations, where 2nd order recombination is neglible while with usual techniques one can not prevent the 2nd order decay, as in these methods much higher concentrations of Th-H0 2.are formed. 5. ·EQUILIBRIA CONSTANfS OF MH0 2 COMPLEXES We further studied the equilib~ia of MH0 2 complexes (1) We determinated a few more values of such equilibrium constants with various methods. We also extended the study of the exchange reaction. M + M'H0 (2) 2 and varified and determined some new equilibria constants for this kind of exchange. 6. RATE AND MECHANISM OF COMPLEX FORMATION AND EXCHANGE REACTIONS We determined the rate of formation of MH0 through reaction (1) and the 2 4 6 exchange rates (reaction 2)·. for various cations, such as Th +, u +, etc. The result indicates that these rates are very fast, and the exchange mechanism (2) may go on either directly (2) or more probably through dissociation of MH0 2(1). 3 2 7. COMPLEXES OF Fe + AND Cu + WITH H0 2 . 2+ 3+ . We continued to establish the existence of complexes of Cu and Fe w1th Ho ' . Such complexes could be of interest, in view of the biological role of 2 3 2+ Fe + and Cu compounds in reactions with H0 2 in such systems. ; ./5 . 2+ Concerning the existence ·of CuH0 2 we got good kinetic evid~~ce, although this comlpex is short lived and therefore its concentration was too low to record its optical or ESR spectra. 8. OPTICAL SPECTRA OF MH0 2 While the existence of MH0 2 complexes were established and its ESR spectra recorded previously, their optical. spe.ctra were not known. Using the P\llse radiolysis we were able to observe the optical spectra of ThHo;: UHO~+ and study these species by absorption spectroscopy. 9. The radical OH formed in photolysis of H2o2 or in radiolysis of aqueous solution was well established for years. It was believed that the same radical 3 2 2 may be formed by reacting H2o2 with Ti +, Fe +, or Cr +. Nevertheless, many experimental results indicated, that OH is not formed in all these cases and we explained th~ reasons that earlier studies seemed to contradict this finding. 4+ We were also able to generate H0 2 from Ce and H2o2 and from excess of H2o2 with either Ti3+, Fe2+ or Cr 2+. The importance of these studies is in the ability to generate H0 2 and OH chemically. 10. USE OF FLOW METHODS FOR KINECTIC AND MECHANISTIC STUDIES The use of mixtures .. of Ti3+ and H o in flow systems was widely employed 2 2 in studies of radicals by ESR method. The method is based on f,lowing H2o2 with ·some solute ··RH and mixing it with Ti 3+ in front of and ESR cavity.
Recommended publications
  • A Study of Organosilicon Free Radicals Jay Stephen Curtice Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 A study of organosilicon free radicals Jay Stephen Curtice Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Curtice, Jay Stephen, "A study of organosilicon free radicals " (1954). Retrospective Theses and Dissertations. 13411. https://lib.dr.iastate.edu/rtd/13411 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A STUDY OF ORGANOSILICON FREE RADICALS by Jay Stephen Curtice A Dissertation Sul»nitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Organic Chemistry Approved; Signature was redacted for privacy. Signature was redacted for privacy. In CJiiarge of Major Work Signature was redacted for privacy. Head of Major DepartMnt Signature was redacted for privacy. Dean of Graduate College Iowa State College 195^ UMI Number: DP12662 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Synthesis of Phosphine-Functionalized Metal
    DISS. ETH NO. 23507 Understanding and improving gold-catalyzed formic acid decomposition for application in the SCR process A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MANASA SRIDHAR M. Sc. in Chemical Engineering, University of Cincinnati born on 12.12.1987 citizen of India accepted on the recommendation of Prof. Dr. Jeroen A. van Bokhoven, examiner Prof. Dr. Oliver Kröcher, co-examiner Prof. Dr. Christoph Müller, co-examiner 2016 “anything can happen, in spite of what you’re pretty sure should happen.” Richard Feynman Table of content Abstract .............................................................................................................................. II die Zusammenfassung ..................................................................................................... VI Chapter 1 Introduction .......................................................................................................... 1 Chapter 2 Methods ............................................................................................................ 15 Chapter 3 Unique selectivity of Au/TiO2 for ammonium formate decomposition under SCR- relevant conditions ............................................................................................................. 25 Chapter 4 Effect of ammonia on the decomposition of ammonium formate and formic acid on Au/TiO2 .............................................................................................................................
    [Show full text]
  • Hydrogen Sulfide Inhibits Oxidative Stress in Lungs from Allergic Mice in Vivo
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector European Journal of Pharmacology 698 (2013) 463–469 Contents lists available at SciVerse ScienceDirect European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar Immunopharmacology and Inflammation Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo Leticia R. Benetti a,1, Daiana Campos a,1, Sonia A. Gurgueira b, Anibal E. Vercesi b, Cristiane E.V. Guedes a, Kleber L. Santos a, John L. Wallace c, Simone A. Teixeira d, Juliana Florenzano d, Soraia K.P. Costa d, Marcelo N. Muscara´ d, Heloisa H.A. Ferreira a,n a Laboratory of Inflammation Research, Sao~ Francisco University, Braganc-a Paulista, Sao~ Paulo 12 916 900, Brazil b Laboratory of Bioenergetics, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Sao~ Paulo 12 916 900, Brazil c Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada d Department. of Pharmacology, Institute of Biomedical Sciences, University of Sao~ Paulo, Sao~ Paulo 12 916 900, Brazil article info abstract Article history: Recent studies show that endogenous hydrogen sulfide (H2S) plays an anti-inflammatory role in the Received 20 August 2012 pathogenesis of airway inflammation. This study investigated whether exogenous H2S may counteract Received in revised form oxidative stress-mediated lung damage in allergic mice. Female BALB/c mice previously sensitized
    [Show full text]
  • Vibrational-Rotational Spectroscopy for Planetary Atmospheres
    NASA-CP-2223-VOL-1 _i\; 19820017167 . NASA Conference Publication 2223 Vi brational-Rotational Spectroscopy for Planetary Atmospheres Volume! Proceedings ofa workshop held at Annapolis, Maryland March 17-19,1980 NI\S/\ NASA Conference Publication 2223 VibrationaI-Rotational Spectroscopyfor PlanetaryAtmospheres Volume I Edited by Michael J. Mumma Goddard Space Flight Center Kenneth Fox University of Tennessee John Hornstein Computer Sciences Corporation Proceedings of a workshop held at Annapolis, Maryland March 17-19, 1980 N/_A NationalAeronautics and SpaceAdministration ScientificandTechnical InformationBranch 1982 PREFACE In the last part of the 1970's we experienced a dramatic and exciting explosion of our knowledge about the other planets in our Solar System as NASA's Pioneer, Voyager and Viking spacecraft swept past Jupiter and Saturn, orbited Venus and Mars, and entered the atmospheres of Venus and Mars. For the first time we obtained comprehensive information on the composition and dynamics of these varied atmospheres. New observations resulted in new demands for supporting laboratory studies. Data were needed for a variety of molecular species to better understand the spectra observed from the spacecraft, to interpret atmospheric structure measurements, to aid in greenhouse and cloud physics calculations, and to plan the next generation of experiments which would build upon the findings of this generation of exploration. It was in this exciting and hopeful atmosphere that some 75 physicists, chemists and planetary astronomers gathered in Annapolis to exchange their current findings and identify their needs as individuals and as a group. The interaction was fruitful. New ideas were spawned and our knowledge of the structure of things large and small, of planets and of molecules, was expanded.
    [Show full text]
  • Aerobic Addition of Secondary Phosphine Oxides to Vinyl Sulfides: a Shortcut to 1-Hydroxy-2-(Organosulfanyl)Ethyl- (Diorganyl)Phosphine Oxides
    Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl- (diorganyl)phosphine oxides Svetlana F. Malysheva1, Alexander V. Artem’ev1, Nina K. Gusarova1, Nataliya A. Belogorlova1, Alexander I. Albanov1, C. W. Liu2 and Boris A. Trofimov*1 Letter Open Access Address: Beilstein J. Org. Chem. 2015, 11, 1985–1990. 1A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, doi:10.3762/bjoc.11.214 Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation and 2Department of Chemistry, National Dong Received: 20 May 2015 Hwa University, Hualien 97401, Taiwan Accepted: 21 September 2015 Published: 23 October 2015 Email: Boris A. Trofimov* - [email protected] Associate Editor: P. R. Hanson * Corresponding author © 2015 Malysheva et al; licensee Beilstein-Institut. License and terms: see end of document. Keywords: addition; green method; phosphine oxides; regioselectivity; vinyl sulfides Abstract Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides) under aerobic and solvent-free conditions (80 °C, air, 7–30 h) to afford 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides in 70–93% yields. Findings Tertiary phosphines and phosphine chalcogenides are impor- achieved by using radical initiators [13-15], Brønsted/Lewis tant organophosphorus compounds that are widely used in acids [16,17] and bases [18-20] as well as transition metal cata- industry, organic synthesis, polymer science, medicinal and lysts [21-23]. Also, examples of the microwave-assisted [24,25] coordination chemistry [1-4]. Therefore, the synthesis of these and photoinduced [26] addition are described. compounds has attracted a great interest and numerous syn- thetic methods have been developed [5-7].
    [Show full text]
  • Microhydration and the Enhanced Acidity of Free Radicals
    molecules Article Microhydration and the Enhanced Acidity of Free Radicals John C. Walton EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, UK; [email protected]; Tel.: +44-(0)1334-463864 Received: 31 January 2018; Accepted: 14 February 2018; Published: 14 February 2018 Abstract: Recent theoretical research employing a continuum solvent model predicted that radical centers would enhance the acidity (RED-shift) of certain proton-donor molecules. Microhydration studies employing a DFT method are reported here with the aim of establishing the effect of the solvent micro-structure on the acidity of radicals with and without RED-shifts. Microhydration cluster structures were obtained for carboxyl, carboxy-ethynyl, carboxy-methyl, and hydroperoxyl radicals. The numbers of water molecules needed to induce spontaneous ionization were determined. The hydration clusters formed primarily round the CO2 units of the carboxylate-containing radicals. Only 4 or 5 water molecules were needed to induce ionization of carboxyl and carboxy-ethynyl radicals, thus corroborating their large RED-shifts. Keywords: free radicals; acidity; DFT computations; hydration 1. Introduction A transient-free radical is necessarily reactive at the site (X) of its unpaired electron (upe). In addition, a free radical with a structure containing a proton donor group may undergo ionic dissociation to a radical anion and a proton: • • − + XH2WAH! XH2WA + H in which W is a connector or spacer group, and A is the site of the departing proton. Effectively, the free radicals in this category can function as Br'nsted acids. More than 40 years ago, Hayon and Simic drew attention to the fact that free radicals could be more acidic than parent compounds [1].
    [Show full text]
  • Quasi-Classical Trajectory Study of the CN + NH3 Reaction Based on a Global Potential Energy Surface
    molecules Article Quasi-Classical Trajectory Study of the CN + NH3 Reaction Based on a Global Potential Energy Surface Joaquin Espinosa-Garcia *, Cipriano Rangel , Moises Garcia-Chamorro and Jose C. Corchado Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain; [email protected] (C.R.); [email protected] (M.G.-C.); [email protected] (J.C.C.) * Correspondence: [email protected] Abstract: Based on a combination of valence-bond and molecular mechanics functions which were fitted to high-level ab initio calculations, we constructed an analytical full-dimensional potential energy surface, named PES-2020, for the hydrogen abstraction title reaction for the first time. This surface is symmetrical with respect to the permutation of the three hydrogens in ammonia, it presents numerical gradients and it improves the description presented by previous theoretical studies. In order to analyze its quality and accuracy, stringent tests were performed, exhaustive kinetics and dynamics studies were carried out using quasi-classical trajectory calculations, and the results were compared with the available experimental evidence. Firstly, the properties (geometry, vibrational frequency and energy) of all stationary points were found to reasonably reproduce the ab initio information used as input; due to the complicated topology with deep wells in the entrance and exit channels and a “submerged” transition state, the description of the intermediate complexes was poorer, although it was adequate to reasonably simulate the kinetics and dynamics Citation: Espinosa-Garcia, J.; Rangel, of the title reaction. Secondly, in the kinetics study, the rate constants simulated the experimental C.; Garcia-Chamorro, M.; Corchado, data in the wide temperature range of 25–700 K, improving the description presented by previous J.C.
    [Show full text]
  • Free Radical Mediated Cellulose Degradation
    ISBN 91-7283-447-1 ISRN KTH/KKE-03/1-SE ISSN 0349-6465 TRITA-KKE-0301 ================================================================== Free Radical Mediated Cellulose Degradation Erik E Johansson Doctoral Thesis Department of Chemistry Nuclear Chemistry Royal Institute of Technology ================================================================== Stockholm, Sweden 2003 Abstract This thesis addresses the mechanisms involved in cellulose degradation in general and Totally Chlorine Free (TCF) bleaching of pulp in particular. The thesis shows that the cellulose degradation during high consistency ozone bleaching is explained by free radical chain reactions. By simulation, it has been shown that the number, weight and viscosity average of liner polymer chain length can be used to calculate the number of random scissions in a linear polymer of any molecular weight distribution, provided that there is a calibrated Mark- Houwink equation. A model describing partial degradation of molecular weight distributions of linear polymers measured with viscometry was developed and verified experimentally. The model predicts viscometric measurement of chemical cellulose degradation by a rapidly reacting reagent to be strongly dependent on cellulose accessibility. The role of free radical reactions in cellulose degradation was studied by varying the amount of ferrous ions and ozone added to the cotton linters. The result was compared to the results obtained from cellulose of lower crystallinity (cellulose beads) by measuring average chain length. When a ferryl ion reacted with cotton linters in the presence of ozone, the very formation of one glycosidic radical was more significant to degradation than the final step of forming one oxidised glycoside. The inefficient degradation observed of the oxidation step is explainable by the amount of accessible glycosides being too small to influence viscometry.
    [Show full text]
  • Water As a Reaction Medium for Clean Chemical Processes
    Clean Techn Environ Policy (2005) 7: 62–69 DOI 10.1007/s10098-004-0262-y ERRATUM Wu Wei Æ Charlene C. K. Keh Æ Chao-Jun Li Rajender S. Varma Water as a reaction medium for clean chemical processes Published online: 30 November 2004 Ó Springer-Verlag 2004 Abstract Solvent usage is often an integral part of (Anastas and Warner 1998). The studies of green manufacturing process, whether it is chemical or another chemistry have led to the development of cleaner and industrial sector. Thus, this unavoidable choice of a relatively benign chemical processes with many new specific solvent for a desired manufacturing process can technologies being developed each year. Among them, have profound economical, environmental, and societal there is a large proportion of effort that has been de- implications. Some of the impacts are long lasting voted to the use of non-traditional solvent for chemical especially from an environmental perspective, which has synthesis. These unconventional media include sol- been well documented in the scientific literature. The ventless (Cherouvier et al. 2001; Tanaka 2003; Togo pressing need to develop alternative solvents for manu- and Hirai 2003; Varma 1999; Varma 2000a; Varma facturing processes originates, in part, from these 2000b; Varma 2001), water (Chan and Issac 1996; Li implications and constitutes an essential strategy under 1993; Li 1996; Li 2002; Li and Chan 1997; Li and an emerging field of green chemistry. Whereas there Chan 1999), supercritical CO2 (Devetta et al. 1999; have been excellent advances in developing several Ishii and Oi 1998; Jessop and Leitner 1999; Matruda alternative ‘‘clean’’ solvents, it is unlikely that the one et al.
    [Show full text]
  • Arxiv:1510.07052V1 [Astro-Ph.EP] 23 Oct 2015 99 Lae Ta.20,Adrfrne Therein)
    A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres P. B. Rimmer1 and Ch Helling School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, United Kingdom ABSTRACT There are many open questions about prebiotic chemistry in both planetary and exoplane- tary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon and oxygen chemistry accurately within a temperature range between 100 K and 30000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmo- spheric chemistry models for HD209458b, Jupiter and the present-day Earth using a simple 1D photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting (1993) for CO2, H2, CO and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed. Subject headings: astrobiology — atmospheric effects — molecular processes — planetary systems 1. Introduction The input energy source and the initial chem- istry have been varied across these different ex- The potential connection between a focused periments.
    [Show full text]
  • Compilation of Chemical Kinetic Data for Combustion Chemistry. Part 2. Non-Aromatic C, H, O, N, and S Containing Compounds
    v NBS PUBLICATIONS r A111D2 TBOmi NAT'L INST OF STANDARDS & TECH R.I.C. All 102730091 Westley, Francls/Compllatlon of chemical 2 QC100 .11573 NO. 73 V2;1987 C.2 NBS-PUB-C NSRDS-NBS 73, Part U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards 1 BB he National Bureau of Standards was established by an act of Congress on March 3, 1901. The Bureau’s overall M goal is to strengthen and advance the nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research to assure international competidveness and leadership of U.S. industry, science arid technology. NBS work involves development and transfer of measurements, standards and related science and technology, in support of continually improving U.S. productivity, product quality and reliability, innovation and underlying science and engineering. The Bureau’s technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering. The National Measurement Laboratory Provides the national system of physical and chemical measurement; • Basic Standards 2 coordinates the system with measurement systems of other nations and • Radiation Research furnishes essential services leading to accurate and uniform physical and • Chemical Physics chemical measurement throughout the Nation’s scientific community, • Analytical Chemistry industry, and commerce; provides advisory and research
    [Show full text]
  • The “Decisive” Role for Secondary Coordination Sphere Nucleophiles on Hydrogen Atom Transfer (HAT) Reactions: Does It Exist
    The “Decisive” Role for Secondary Coordination Sphere Nucleophiles on Hydrogen Atom Transfer (HAT) Reactions: Does it Exist and What is its Origin? Yumiao Ma*a and Yishan Li b a. BSJ Institute, Haidian, Beijing, People’s Republic of China, 100084 b. Department of Chemistry, Tsinghua University, Haidian, Beijing, People’s Republic of China, 100084 [email protected] Abstract: Although it has been reported that some radical reactions are possibly promoted by external ions, the origin of this phenomenon is unclear. In this work, several hydrogen atom transfer (HAT) reactions in the presence of anions were studied by density functional theory (DFT) calculations, electronic structure analysis and other methods, and it is concluded that both the electrostatic interaction and polarization of the transition state (TS) by the electric field generated by anions play a fundamental role in the TS stabilization effect, whereas the “charge shift bonding” that was previously presumed to be a major contributor is ruled out. Although the stabilization toward TSs in terms of electronic energy (and thus enthalpy) is significant, it should be noted that the effect is almost completely cancelled by entropy and solvation, and further cancelled by the formation of stable resting states. Thus there is still a long way for this effect to be used in actual catalysis. Introduction The “electrostatic catalysis” or “salt effect” is a long-standing and well-established concept. Early in 1990s, the catalytic effect of ions that seem inert at the first glance toward organic chemical transformations has been studied by Craig Wilcox1-3. Later on, the promotion of cobalt-carbon bond dissociation by a nearby charge was found in a biochemistry-related Vitamin B complex4.
    [Show full text]