UC San Francisco Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Depa1'tment of Physical Chemistry Isl'ael
.. ANNUAL PROGRESS REPORT C00-3221-67 (For the period September 79 - July 80) Under Contract No. DOE/EV/03221 on THE NATURE OF OXYGEN CONTAINING RADICALS IN RADIATION CHEMISTRY AND PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS Submitted by PROFESSOR GIDON CZAPSKI Depa1'tment of Physical Chemistry The Hebl'eW Univel'sity~ Jerusalem~ Isl'ael IJISTRIBUTIOJI OF THIS DOCUMENT IS UNUMITEJJ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ANNUAL PROGRESS REPORT C00-3221-67 (For the period September 79 - July 80) Und~r Contract No. DOE/EV/03221·· on THE NATURE OF OXYGEN CONTAINING RADICALS IN RADIATION CHEMISTRY AND PHOTOCHEMISTRY OF AQUEOUS SOLUTIONS Submitted by PROFESSOR GIDON CZAPSKI lh~s book was ~repared as an account of work sponsored by an agency of the United States Government :!:~; the ~~•ted Stat~ ~nment nor any agency thereof, nor any of their employees, makes an~ v. -
Radical Approaches to Alangium and Mitragyna Alkaloids
Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes. -
Synthesis and Kinetics of Novel Ionic Liquid Soluble Hydrogen Atom Transfer Reagents
Synthesis and kinetics of novel ionic liquid soluble hydrogen atom transfer reagents Thomas William Garrard Submitted in total fulfilment of the requirements of the degree Doctor of Philosophy June 2018 School of Chemistry The University of Melbourne Produced on archival quality paper ORCID: 0000-0002-2987-0937 Abstract The use of radical methodologies has been greatly developed in the last 50 years, and in an effort to continue this progress, the reactivity of radical reactions in greener alternative solvents is desired. The work herein describes the synthesis of novel hydrogen atom transfer reagents for use in radical chemistry, along with a comparison of rate constants and Arrhenius parameters. Two tertiary thiol-based hydrogen atom transfer reagents, 3-(6-mercapto-6-methylheptyl)-1,2- dimethyl-3H-imidazolium tetrafluoroborate and 2-methyl-7-(2-methylimidazol-1-yl)heptane-2-thiol, have been synthesised. These are modelled on traditional thiol reagents, with a six-carbon chain with an imidazole ring on one end and tertiary thiol on the other. 3-(6-mercapto-6-methylheptyl)- 1,2-dimethyl-3H-imidazolium tetrafluoroborate comprises of a charged imidazolium ring, while 2- methyl-7-(2-methylimidazol-1-yl)heptane-2-thiol has an uncharged imidazole ring in order to probe the impact of salt formation on radical kinetics. The key step in the synthesis was addition of thioacetic acid across an alkene to generate a tertiary thioester, before deprotection with either LiAlH4 or aqueous NH3. Arrhenius plots were generated to give information on rate constants for H-atom transfer to a primary alkyl radical, the 5-hexenyl radical, in ethylmethylimidazolium bis(trifluoromethane)sulfonimide. -
O/C -O-O-( X, Generally Carried out at a Temperature in the Range of 20 and (B) Mineral Acid Salts of These Compounds
3,256,288 United States Patent Office Patented June 14, 1966 W 2 -Cl, -Br or -SONH2, with an appropriate imino ether 3,256,288 hydrochloride having the formula -SUBSTITUTED AMNOALKYL-2-ARYLOXY METHYLEBENZRADAZOLE COMPOUNDS E Clarence L. Moyle, Care, and Diomed M. Cher, Mid land, Mich., assignors to The Dow Chemical Company, Midland, Mich., a corporation of Delaware W (III) No Drawing. Fied May 24, 1962, Ser. No. 197,285 wherein in this and succeeding formulas, E is -H, -R, 9 Claims. (C. 260-294.7) -CI, -Br, -OH, -OR or -CONH2 and R' is a lower alkyl group, to produce the desired benzimidazole product This invention is directed to benzimidazole compounds, O and R'OH, NH3 and HCl by-products. The gaseous NH particularly (a) N-substituted benzimidazole compounds and HCl generally evolve from the reaction mixture al having the formula though some of the HC1 may react with NH and remain in the reaction mixture as ammonium chloride salt or may react with the basic benzimidazole product and remain 5 as the hydrochloride salt thereof. / N Y In carrying out the preparation, substantially equimolar proportions of the reactants are employed although either reactant may be employed in excess. The reaction is O/C -o-o-( x, generally carried out at a temperature in the range of 20 and (b) mineral acid salts of these compounds. In this from 60 to 82° C. for a period of from about 20 to 72 and succeeding formulas-NR'R'' is di(lower-alkyl)ami hours. It is preferred that an alcoholic solvent be em no, piperidino, morpholino or pyrrolidino; X is -H, ployed in this process. -
A Study of Organosilicon Free Radicals Jay Stephen Curtice Iowa State College
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 A study of organosilicon free radicals Jay Stephen Curtice Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Curtice, Jay Stephen, "A study of organosilicon free radicals " (1954). Retrospective Theses and Dissertations. 13411. https://lib.dr.iastate.edu/rtd/13411 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A STUDY OF ORGANOSILICON FREE RADICALS by Jay Stephen Curtice A Dissertation Sul»nitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Organic Chemistry Approved; Signature was redacted for privacy. Signature was redacted for privacy. In CJiiarge of Major Work Signature was redacted for privacy. Head of Major DepartMnt Signature was redacted for privacy. Dean of Graduate College Iowa State College 195^ UMI Number: DP12662 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Synthesis of Phosphine-Functionalized Metal
DISS. ETH NO. 23507 Understanding and improving gold-catalyzed formic acid decomposition for application in the SCR process A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MANASA SRIDHAR M. Sc. in Chemical Engineering, University of Cincinnati born on 12.12.1987 citizen of India accepted on the recommendation of Prof. Dr. Jeroen A. van Bokhoven, examiner Prof. Dr. Oliver Kröcher, co-examiner Prof. Dr. Christoph Müller, co-examiner 2016 “anything can happen, in spite of what you’re pretty sure should happen.” Richard Feynman Table of content Abstract .............................................................................................................................. II die Zusammenfassung ..................................................................................................... VI Chapter 1 Introduction .......................................................................................................... 1 Chapter 2 Methods ............................................................................................................ 15 Chapter 3 Unique selectivity of Au/TiO2 for ammonium formate decomposition under SCR- relevant conditions ............................................................................................................. 25 Chapter 4 Effect of ammonia on the decomposition of ammonium formate and formic acid on Au/TiO2 ............................................................................................................................. -
Hydrogen Sulfide Inhibits Oxidative Stress in Lungs from Allergic Mice in Vivo
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector European Journal of Pharmacology 698 (2013) 463–469 Contents lists available at SciVerse ScienceDirect European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar Immunopharmacology and Inflammation Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo Leticia R. Benetti a,1, Daiana Campos a,1, Sonia A. Gurgueira b, Anibal E. Vercesi b, Cristiane E.V. Guedes a, Kleber L. Santos a, John L. Wallace c, Simone A. Teixeira d, Juliana Florenzano d, Soraia K.P. Costa d, Marcelo N. Muscara´ d, Heloisa H.A. Ferreira a,n a Laboratory of Inflammation Research, Sao~ Francisco University, Braganc-a Paulista, Sao~ Paulo 12 916 900, Brazil b Laboratory of Bioenergetics, Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Sao~ Paulo 12 916 900, Brazil c Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada d Department. of Pharmacology, Institute of Biomedical Sciences, University of Sao~ Paulo, Sao~ Paulo 12 916 900, Brazil article info abstract Article history: Recent studies show that endogenous hydrogen sulfide (H2S) plays an anti-inflammatory role in the Received 20 August 2012 pathogenesis of airway inflammation. This study investigated whether exogenous H2S may counteract Received in revised form oxidative stress-mediated lung damage in allergic mice. Female BALB/c mice previously sensitized -
Radical Cyclization in Heterocycle Synthesis. 12.1) Sulfanyl Radical
February 2001 Chem. Pharm. Bull. 49(2) 213—224 (2001) 213 Radical Cyclization in Heterocycle Synthesis. 12.1) Sulfanyl Radical Addition–Addition–Cyclization (SRAAC) of Unbranched Diynes and Its Application to the Synthesis of A-Ring Fragment of 1a,25-Dihydroxyvitamin D3 Okiko MIYATA, Emi NAKAJIMA, and Takeaki NAITO* Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658–8558, Japan. Received September 25, 2000; accepted October 24, 2000 Sulfanyl radical addition–addition–cyclization (SRAAC) of unbranched diynes proceeded smoothly to give cyclized exo-olefins, while the sulfanyl radical addition–cyclization–addition (SRACA) of diynes having a quater- nary carbon gave cyclized endo-olefins. This method was successfully applied to the synthesis of A-ring fragment of 1a,25-dihydroxyvitamin D3. Key words sulfanyl radical; addition–addition–cyclization; diyne; alkylidenecyclopentane; alkylidenecyclohexane; vitamin D Radical cyclization is a useful method for the preparation ther a quaternary carbon or a heteroatom, sulfanyl radical ad- of various cyclic compounds.1) Recently, this method in dition–cyclization–addition (SRACA) occurred to give endo- 5 5 which carbon centered radical species are generated by the olefin 3. In the case of longer carbon chain, 1 (n 2, X CH2, addition reaction of a radical to a multiple bond has drawn C(COOMe)2) gave exo-olefin 2 as the major product, while 1 5 5 the attention of synthetic chemists because of its several ad- (n 2, X NSO2Ar) gave a complex mixture. Synthetic util- vantages, such as readily available starting substrate and for- ity of newly found SRAAC has been proved by a novel syn- mation of functionalized products. -
[(4-Chlorophenyl) Sulfanyl] Ethoxy- 3-Methoxy-5-[5-(3,4,5-Trimethoxyphenyl)-2-Furyl]Benzonitrile
Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2015, 7(3):242-247 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Synthesis and antibacterial activity of 2-2-[(4-chlorophenyl) sulfanyl] ethoxy- 3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)-2-furyl]benzonitrile P. Veerabhadra Swamy*a,b , K. B. Chandrasekhar c and Pullaiah China Kambhampati a aLaxai Avanti Life Sciences, Lab#9, ICICI Knowledge park, Shameerpet, Turkapally Village, Hyderabad bDepartment of Chemistry, Jawaharlal Nehru Technological University, Hyderabad, Hyderabad, Telengana, India cDepartment of Chemistry, Jawaharlal Nehru Technological University, Anantapur, Anantapuramu, A.P., India _____________________________________________________________________________________________ ABSTRACT The present paper describes the synthesis and of (2-(4-chlorophenylthio)ethoxy)-3-methoxy-5-(5-(3,4,5- trimethoxyphenyl)furan-2-yl)benzonitrile from commercially available vanillin and 3,4,5-trimethoxy acetophenone as starting materials utilizing green reagents and solvents. The antibacterial test results indicated that the title compound displayed excellent activity against both Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria: (Escherichia Coli and Pseudomonas aeruginosa). Keywords: Antibacterial activity, Furan, 3,4,5-trimethoxy acetophenone, vanillin, synthesis _____________________________________________________________________________________________ INTRODUCTION Furan derivatives -
United States Patent (19) 11) Patent Number: 4,731,479 Bod Et Al
United States Patent (19) 11) Patent Number: 4,731,479 Bod et al. 45 Date of Patent: Mar. 15, 1988 (54) N-SULFAMYL-3-HALOPROPIONAMIDINES Attorney, Agent, or Firm-Karl F. Ross; Herbert Dubno; 75 Inventors: Péter Bod, Gyömrö; Kálmán Jonathan Myers Harsányi, Budapest; Eva Againée (57) ABSTRACT Csongor, Budapest; Erik Bogsch, Budapest; Eva Fekecs, Budapest; The invention relates to new propionamidine deriva Ferenc Trischler, Budapest; György tives of formula (I) Domány, Budapest; István Szabadkai, Budapest; Béla Hegedis, Budapest, NH2HX (I) all of Hungary x^-sn-so- NH2 73) Assignee: Richter Gedeon Vegyeszeti Gyar Rt., Budapest, Hungary wherein (21) Appl. No.: 905,833 X is halogen, and to a process for their preparation. According to the 22 Filed: Sep. 10, 1986 invention compounds of the formula (I) are prepared by 30 Foreign Application Priority Data reacting a 3-halopropionitrile of the formula (III) Sep. 11, 1985 HU) Hungary .............................. 3423/85 51) Int. Cl." ............................................ CO7C 143/72 (III) 52 U.S.C. ...................................................... 564/79 58 Field of Search .......................................... 564/79 wherein (56) References Cited X is as defined above, U.S. PATENT DOCUMENTS with sulfamide of the formula (II) 3,121,084 2/1964 Winberg................................ 564/79 (II) FOREIGN PATENT DOCUMENTS 905408 12/1986 Belgium. NH-i-NH. O OTHER PUBLICATIONS Wagner et al, "Synthetic Organic Chemistry', (1953), in the presence of a hydrogen halide. p. 635. Compounds of the formula (I) are useful intermediates Richter, "Text Book of Organic Chemistry,” (1952), p. 216. in the preparation of famotidine. Primary Examiner-Anton H. Sutto 1 Claim, No Drawings 4,731,479 1. -
Vibrational-Rotational Spectroscopy for Planetary Atmospheres
NASA-CP-2223-VOL-1 _i\; 19820017167 . NASA Conference Publication 2223 Vi brational-Rotational Spectroscopy for Planetary Atmospheres Volume! Proceedings ofa workshop held at Annapolis, Maryland March 17-19,1980 NI\S/\ NASA Conference Publication 2223 VibrationaI-Rotational Spectroscopyfor PlanetaryAtmospheres Volume I Edited by Michael J. Mumma Goddard Space Flight Center Kenneth Fox University of Tennessee John Hornstein Computer Sciences Corporation Proceedings of a workshop held at Annapolis, Maryland March 17-19, 1980 N/_A NationalAeronautics and SpaceAdministration ScientificandTechnical InformationBranch 1982 PREFACE In the last part of the 1970's we experienced a dramatic and exciting explosion of our knowledge about the other planets in our Solar System as NASA's Pioneer, Voyager and Viking spacecraft swept past Jupiter and Saturn, orbited Venus and Mars, and entered the atmospheres of Venus and Mars. For the first time we obtained comprehensive information on the composition and dynamics of these varied atmospheres. New observations resulted in new demands for supporting laboratory studies. Data were needed for a variety of molecular species to better understand the spectra observed from the spacecraft, to interpret atmospheric structure measurements, to aid in greenhouse and cloud physics calculations, and to plan the next generation of experiments which would build upon the findings of this generation of exploration. It was in this exciting and hopeful atmosphere that some 75 physicists, chemists and planetary astronomers gathered in Annapolis to exchange their current findings and identify their needs as individuals and as a group. The interaction was fruitful. New ideas were spawned and our knowledge of the structure of things large and small, of planets and of molecules, was expanded. -
Aerobic Addition of Secondary Phosphine Oxides to Vinyl Sulfides: a Shortcut to 1-Hydroxy-2-(Organosulfanyl)Ethyl- (Diorganyl)Phosphine Oxides
Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl- (diorganyl)phosphine oxides Svetlana F. Malysheva1, Alexander V. Artem’ev1, Nina K. Gusarova1, Nataliya A. Belogorlova1, Alexander I. Albanov1, C. W. Liu2 and Boris A. Trofimov*1 Letter Open Access Address: Beilstein J. Org. Chem. 2015, 11, 1985–1990. 1A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, doi:10.3762/bjoc.11.214 Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation and 2Department of Chemistry, National Dong Received: 20 May 2015 Hwa University, Hualien 97401, Taiwan Accepted: 21 September 2015 Published: 23 October 2015 Email: Boris A. Trofimov* - [email protected] Associate Editor: P. R. Hanson * Corresponding author © 2015 Malysheva et al; licensee Beilstein-Institut. License and terms: see end of document. Keywords: addition; green method; phosphine oxides; regioselectivity; vinyl sulfides Abstract Secondary phosphine oxides react with vinyl sulfides (both alkyl- and aryl-substituted sulfides) under aerobic and solvent-free conditions (80 °C, air, 7–30 h) to afford 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides in 70–93% yields. Findings Tertiary phosphines and phosphine chalcogenides are impor- achieved by using radical initiators [13-15], Brønsted/Lewis tant organophosphorus compounds that are widely used in acids [16,17] and bases [18-20] as well as transition metal cata- industry, organic synthesis, polymer science, medicinal and lysts [21-23]. Also, examples of the microwave-assisted [24,25] coordination chemistry [1-4]. Therefore, the synthesis of these and photoinduced [26] addition are described. compounds has attracted a great interest and numerous syn- thetic methods have been developed [5-7].