Radical Approaches to Alangium and Mitragyna Alkaloids

Total Page:16

File Type:pdf, Size:1020Kb

Radical Approaches to Alangium and Mitragyna Alkaloids Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes. Initial studies explored the radical addition of a range of silicon hydrides to alkenes to afford the corresponding hydrosilylation products. The chemistry of the hydrosilylation products was then explored – it was hoped that a subsequent Peterson olefination or Fleming-Tamao oxidation would afford the corresponding alkene or alcohol. Subsequent investigations looked into the possibility of combining the radical and ionic reactions, to afford alkenes or alcohols, in a one-pot transformation. i Chapter 4 explores the radical cyclisation of various compounds, including unsaturated alpha-haloamides (d and e), xanthates (f), vinyl bromides (g and h). For this, a robust and efficient synthesis of an allyl tetrahydroisoquinoline core (i and j) was developed, following conversion into the desired radical precursors these compounds were treated with tributyltin hydride and a radical initiator. Finally, Chapter 4 investigates the radical cyclisation of some unsaturated phenylselenides (k and l), which resulted in the isolation of the desired target alkaloid (±)-protoemetinol (a) in 4 steps and in 2% overall yield. O O O N O N NH O O O Br X X X X=Cl,d X=Me,g X=H,i X=Br,e X=COCH , h X=Br,j X=SC(S)OEt,f 2 3 O O N R N O O SePh R O R=H,k R=H,m R=Me,l R=Me,a O OH Chapter 5, which builds on previous work within Chapter 4, discusses the cyclisation of vinyl bromides bearing an α,β-unsaturated ester (n and o). This resulted in short 4-step syntheses of both (±)-des-methyl-protoemetinol (m) and (±)-protoemetinol (a) (along with some epimers). Subsequent studies then expanded the synthetic strategy to include the synthesis of a structurally simpler analogue of mitragynine (p). OMe O O Br N N O O N R N H H R=H,n O R=H,m R Mitragynine R=Me,o R=Me,a p OMe O OH MeO2C ii Contents Abstract i Contents iii Acknowledgements vii Declaration viii Abbreviations ix Chapter 1 Introduction 1.1 Radical chemistry 1 1.1.1 - Overview of radical chemistry 1 1.1.2 - General considerations of radical reactions 1 1.1.3 - Overview of intermolecular additions 3 1.1.4 - Overview of radical cyclisations 4 1.1.5 –Organotin radicals in synthesis 7 1.1.5.1 - Additions to carbon-carbon multiple bonds 7 1.1.5.2 - Addition to a carbon–heteroatom double bond 8 1.1.5.3 - Problems associated with tributyltin hydrides 10 1.1.6 - Single Electron Transfer Reactions 11 1.1.6.1 - Nickel mediated reactions 11 1.1.6.2 - Manganese(III) acetate mediated reactions 12 1.1.6.3 - Samarium(II) mediated reactions 13 1.1.6.4 Tetrathiofulvalenes 14 1.1.7 - Alternative hydrides 15 1.1.7.1 - Germanium hydrides 15 1.1.7.2 – Thiols 16 1.1.7.3 – Silanes 17 1.1.7.4 - Silylated cyclohexadienes 18 1.1.7.5 - Tris(trimethylsilyl)silane 19 1.1.7.6 - Organophosphorus hydrides 21 1.2 Alkaloids 25 1.2.1 –Overview of Alangium and Mitragyna alkaloids 25 1.2.2 - Alangium alkaloids 26 1.2.2.1 - Synthesis of Alangium alkaloids and related compounds 26 iii 1.2.2.2 - Iron catalysed cyclisation 27 1.2.2.3 A domino hetero-Diels-Alder reaction 28 1.2.2.4 Catalytic asymmetric allylation 31 1.2.2.5 - [3+3] Annulation followed by acid-catalysed cyclisation 32 1.2.2.6 - Pictet-Spengler and subsequent Strecker reaction 34 1.2.3 The Mitragyna alkaloid mitragynine (86) 35 1.2.3.1 - Synthesis of mitragynine (86) and related compounds 36 1.2.3.2 - First total synthesis of mitragynine (86) 36 1.2.3.3 - Second total synthesis of mitragynine (86) 39 1.2.3.4 - Synthesis of related alkaloids 41 1.2.3.4.1 - Synthesis of (-)-9-methoxymitralactonine (167) 41 1.2.3.4.2 - Synthesis of enantiomer of corynantheidol (183) 43 1.3 Project Aims 44 Chapter 2 - Reactions of phosphorus-centred radicals 2.1 Introduction 46 2.2 Synthesis of 1,7-dienes 48 2.2.1 Synthesis of imines by oxidation 48 2.2.2 Addition of organometallic reagents to imines 49 2.2.3 Addition of organometallic reagents to imine salts 50 2.3 Reaction of phosphorus hydrides 50 2.3.1 Reaction of phosphorus hydrides with 1,7-diene 188 50 2.3.2 Reaction of phosphorus hydrides with a model system 51 2.3.3 Reaction of phosphorus hydrides with test systems 51 2.4 Chemistry of enamines with phosphorus hydrides 53 2.4.1 Preparation of enamines 53 2.4.2 Reactions of enamines with phosphorus hydrides 54 2.5 Preparation and reactions of amide based 1,7-dienes 56 2.6 Conclusions 59 Chapter 3 - Addition Reactions of Silicon-centred Radicals 3.1 Introduction 60 3.2 Reactions of tris(trimethylsilyl)silane 61 3.3 Reactions of alkyl- and aryl-silanes 62 3.3.1 Addition of alkyl- and aryl-silanes at elevated temperature 62 iv 3.3.2 Addition of alkyl- and aryl-silanes at room temperature 64 3.3.3 – Ionic reactions of alkyl- and aryl-silanes 66 3.4 – Reactions of alkoxysilanes 67 3.5 – Reactions of chlorosilanes 67 3.5.1 – Addition of chlorophenylsilane 67 3.5.2 – Addition of trichlorosilane 68 3.6 Conclusion 70 Chapter 4 - Tributyltin hydride mediated cyclisation 4.1 - Synthesis of the allyl-tetrahydroisoquinoline core 72 4.1.1 – Myers approach to an allyl-tetrahydroisoquinoline core 72 4.1.2 – Methylsulfonyl approach to an allyl-tetrahydroisoquinoline core 73 4.1.3 – Phenylsulfonyl approach to an allyl-tetrahydroisoquinoline core 74 4.1.4 – N-Pivaloyl approach to an allyl-tetrahydroisoquinoline core 75 4.1.5 – N-Boc approach to an allyl-tetrahydroisoquinoline core 76 4.2 - Synthesis and reaction of a xanthate or alpha-halo amides 76 4.2.1 - Synthesis of xanthate and alpha-halo amides 77 4.2.2 – Radical reactions of xanthate (294) 79 4.2.3 – Radical reactions of alpha-halo amides (295) and (296) 79 4.3 - Cyclisation of vinyl bromides onto an N-allyl fragment 80 4.3.1 – Synthesis of vinyl bromide (307) 81 4.3.2 – Radical reaction of vinyl bromide (307) 81 4.3.3 – Synthesis of vinyl bromide (317) 83 4.3.4 – Radical reaction of vinyl bromide (307) 84 4.3.5 – Approaches to protoemtinol (88) from ester (318-a) 85 4.4 Formation and reaction of phenylselenides 87 4.4.1 Synthesis of phenylselenides (331) and (332) 87 4.4.2 Radical cyclisation of phenylselenides (331) and (332) 88 4.4.3 Synthesis and cyclisation of phenylselenide (343) 90 4.4.4 Synthesis of an α,β-unsaturated ester with a phenylselenide (349) 92 4.5 Conclusion 93 Chapter 5 - Vinyl bromide approaches to Alangium and Mitragynine alkaloids 5.1 - Approaches to (±)-protoemetinol (88-a) 95 v 5.1.1 – Synthesis and cyclisation of a model vinyl bromide (352) 95 5.1.2 - Synthesis of (±)-des-methyl protoemetinol (342-a) 97 5.1.3 - Synthesis of protoemetinol (88-a) 100 5.1.4 - Conversion of (±)-des-methyl protoemetinol (343-a) into (±)- protoemetinol (88-a) 103 5.1.5 - Alternative conditions for the cyclisation of the vinyl bromides 104 5.2 - Approaches to mitragynine (86) starting from a vinyl bromide 107 5.2.1 - Synthesis of vinyl bromide 395 107 5.2.2 – Radical reactions of vinyl bromide 395 109 5.2.3 –Functionalisation of ester 397 110 5.3 – Conclusion 112 Chapter 6 - Conclusions, Summary and Future Work 6.1 Chapter 2 - Summary, Conclusions and Future Work 114 6.2 Chapter 3 - Summary, Conclusions and Future Work 114 6.3 Chapter 4 – Summary, Conclusions and Future Work 115 6.4 Chapter 5 - Summary, Conclusions and Future Work 117 6.5 Summary of routes to (±)-des-methyl-protoemetinol (342-a) and (±)- protoemetinol (88-a) 120 Chapter 7 - Experimental 7.1 General Experimental 122 7.2 Experimental for chapter 2 124 7.3 Experimental for chapter 3 139 7.4 Experimental for chapter 4 163 7.5 Experimental for chapter 5 201 Chapter 8 – Appendix 226 Appendix - NMRs Appendix - X-ray crystal structure for the dichloromethane salt, 363 Chapter 9 - References 253 vi Acknowledgements Many people have contributed to my years of research at York, all deserve much thanks for their help.
Recommended publications
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • "Alcohol Activation" That Would Be Stereochemically Complementary to That Involving Reaction of an Alcohol with P / S Halides (Notes of Nov 20)
    CHEM 203 Topics Discussed on Nov. 23 Desirability of a method for "alcohol activation" that would be stereochemically complementary to that involving reaction of an alcohol with P / S halides (notes of Nov 20): PBr3 CH S Na 3 overall (inversion of H (inversion) H retention configuration) Br SMe (S)-2-bromobutane (R)-configured pdt. H OH (R)-2-butanol ? (S)-configured pdt. overall H inversion SMe Sulfonyl chlorides: para-toluenesulfonyl ("tosyl") chloride, methanesulfonyl ("mesyl") chloride O O O R S Cl H3C S Cl S Cl O O O A generic sulfonyl methanesulfonyl chloride Toluene para-toluenesulfonyl chloride chloride: R = any ( "mesyl chloride" ) (= methyl benzene) ( "tosyl chloride" ) alkyl group Pyridine: a weakly basic, nucleophilic analog of benzene in which an N atom replaces a CH unit: pyridine N Reaction of primary and secondary alcohols with sulfonyl chlorides in the presence of pyridine: formation of sulfonate esters (= alkyl sulfonates): R1 O R1 O OH + Cl S R N O S R + R2 O R2 N O H Cl a generic primary or an "alkyl sulfonate" secondary alcohol ("tosylate", "mesylate," etc.) note: tertiary alcohols are insufficiently nucleophilic to react with sulfonyl chlorides Presumed mechanism for the formation of sulfonate esters from primary and secondary (but not tertiary) alcohols and sulfonyl chlorides: • slow rate of reaction of an alcohol with sulfonyl chlorides in the presence of generic bases Lecture of Nov. 23 p. 2 • pyridine as a nucleophilic catalyst that greatly accelerates the reaction of an alcohol with a sulfonyl chloride by: (i)
    [Show full text]
  • Studies Directed Towards the Stereoselective Total Synthesis of Miyakolide
    Studies Directed Towards the Stereoselective Total Synthesis of Miyakolide by Jinhua Song Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry at the Massachusetts Institute of Technology February, 1999 @1999 Jinhua Song All rights Reserved The author hereby grants MIT permissions to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author: Department of Chemistry September 25, 1998 Certified by: Professor Satoru Masamune A. C. Cope Professor of Chemistry Thesis Supervisor Accepted by:, ProfessotDietmar Seyferth, Chairman Departmental Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHNOLOGY LrL J This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Timothy M. Swager Chairman Professor Satoru Masamune Thesis Supervisor Professor Rick L. Danheiser , 2 Studies Directed Towards the Stereoselective Total Synthesis of Miyakolide by Jinhua Song Submitted to the Department of Chemistry on September 25, 1998, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry Abstract Presented are the stereoselective syntheses of the A (C18-C28), B (C14-C17), C (C6-C13), D (Cl-C5), C'D' (C1-C13) fragments and the efficient coupling of B and C'D' fragments of the marine natural product miyakolide, a 24-membered polyketide macrolide which exhibits anti-cancer activity. Fragment A was synthesized from the chiral aldehyde 4-4 through the successful application of the newly developed boron mediated anti-selective aldol methodology using the chiral ester 3-4.
    [Show full text]
  • The Synthesis and Applications of N-Alkenyl Aziridines
    The Synthesis and Applications of N-Alkenyl Aziridines by Nicholas A. Afagh A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Chemistry University of Toronto © Copyright by Nicholas A. Afagh 2010 The Synthesis and Applications of N-Alkenyl Aziridines Nicholas A. Afagh Master of Science Department of Chemistry University of Toronto 2010 Abstract N-alkenyl aziridines are a unique class of molecules that do not behave as typical enamines as a result of the inability of the nitrogen atom lone-pair of electrons to delocalize. The attenuated nucleophilicity of these enamines presents opportunities for the selective functionalization and reactivity not available to classical enamines. An operationally simple and mild copper-mediated coupling has been developed that facilitates the preparation of a broad range of N-alkenyl aziridines not available through existing methods. The preparation and reactivity of highly- functionalized N-alkenyl aziridines are reported. Also reported is the application of the chemoselective amine/aldehyde/alkyne (A 3) multicomponent coupling involving amphoteric aziridine aldehydes as the aldehyde component. This coupling allows access to propargyl amines with pendent aziridine functionality. ii Acknowledgments First and foremost, I would like to thank my supervisor, Professor Andrei K. Yudin for his continuous support and encouragement over the past two years. His wealth of knowledge and profound insight into all matters chemistry made for many interesting discussions. In addition, I would like to thank all the members of the Yudin group past and present with whom I have had the distinct pleasure of working alongside and shared many late evenings.
    [Show full text]
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • Chapter 13.Pptx
    Chapter 13: Alcohols and Phenols 13.1 Structure and Properties of Alcohols C C Alkanes Carbon - Carbon Multiple Bonds Carbon-heteroatom single bonds basic O C C C N C N C X O nitro alkane X= F, Cl, Br, I amines Alkenes Alkyl Halide Chapter 23 OH C C H O C O C C O C C Alkynes phenol alcohols ethers epoxide acidic Chapter 14 H H H C S C C C C S S C C S C C H C C sulfides thiols disulfide H H (thioethers) Arenes 253 Nomenclature of alcohols 1. In general, alcohols are named in the same manner as alkanes; replace the -ane suffix for alkanes with an -ol for alcohols CH3CH2CH2CH3 CH3CH2CH2CH2OH OH butane 1-butanol 2-butanol butan-1-ol butan-2-ol 2. Number the carbon chain so that the hydroxyl group gets the lowest number 3. Number the substituents and write the name listing the substituents in alphabetical order. Many alcohols are named using non-systematic nomenclature H C OH 3 OH OH C OH OH HO OH H3C HO H3C benzyl alcohol allyl alcohol tert-butyl alcohol ethylene glycol glycerol (phenylmethanol) (2-propen-1-ol) (2-methyl-2-propanol) (1,2-ethanediol) (1,2,3-propanetriol) 254 127 Alcohols are classified according to the H R C OH C OH H H degree of substitution of the carbon bearing H H 1° carbon the -OH group methanol primary alcohol primary (1°) : one alkyl substituent R R C OH C OH R R secondary (2°) : two alkyl substituents H R 2° carbon 3° carbon tertiary (3°) : three alkyl substituents secondary alcohol tertiary alcohol Physical properties of alcohols – the C-OH bond of alcohols has a significant dipole moment.
    [Show full text]
  • Alfa Olefins Cas N
    OECD SIDS ALFA OLEFINS FOREWORD INTRODUCTION ALFA OLEFINS CAS N°:592-41-6, 111-66-0, 872-05-9, 112-41-4, 1120-36-1 UNEP PUBLICATIONS 1 OECD SIDS ALFA OLEFINS SIDS Initial Assessment Report For 11th SIAM (Orlando, Florida, United States 1/01) Chemical Name: 1-hexene Chemical Name: 1-octene CAS No.: 592-41-6 CAS No.: 111-66-0 Chemical Name: 1-decene Chemical Name: 1-dodecene CAS No.: 872-05-9 CAS No.: 112-41-4 Chemical Name: 1-tetradecene CAS No.: 1120-36-1 Sponsor Country: United States National SIDS Contract Point in Sponsor Country: United States: Dr. Oscar Hernandez Environmental Protection Agency OPPT/RAD (7403) 401 M Street, S.W. Washington, DC 20460 Sponsor Country: Finland (for 1-decene) National SIDS Contact Point in Sponsor Country: Ms. Jaana Heiskanen Finnish Environment Agency Chemicals Division P.O. Box 140 00251 Helsinki HISTORY: SIDS Dossier and Testing Plan were reviewed at the SIDS Review Meeting or in SIDS Review Process on October 1993. The following SIDS Testing Plan was agreed: No testing ( ) Testing (x) Combined reproductive/developmental on 1-hexene, combined repeat dose/reproductive/developmental on 1-tetradecene and acute fish, daphnid and algae on 1- tetradecene. COMMENTS: The following comments were made at SIAM 6 and have been incorporated in this version of the SIAR: 2 UNEP PUBLICATIONS OECD SIDS ALFA OLEFINS 1. The use of QSAR calculations for aquatic toxicity, 2. More quantitative assessment of effects; and 3. Provide more details for each endpoint. The following comments were made at SIAM 6, but were not incorporated into the SIAR for the reasons provided: 1.
    [Show full text]
  • Synthesis and Kinetics of Novel Ionic Liquid Soluble Hydrogen Atom Transfer Reagents
    Synthesis and kinetics of novel ionic liquid soluble hydrogen atom transfer reagents Thomas William Garrard Submitted in total fulfilment of the requirements of the degree Doctor of Philosophy June 2018 School of Chemistry The University of Melbourne Produced on archival quality paper ORCID: 0000-0002-2987-0937 Abstract The use of radical methodologies has been greatly developed in the last 50 years, and in an effort to continue this progress, the reactivity of radical reactions in greener alternative solvents is desired. The work herein describes the synthesis of novel hydrogen atom transfer reagents for use in radical chemistry, along with a comparison of rate constants and Arrhenius parameters. Two tertiary thiol-based hydrogen atom transfer reagents, 3-(6-mercapto-6-methylheptyl)-1,2- dimethyl-3H-imidazolium tetrafluoroborate and 2-methyl-7-(2-methylimidazol-1-yl)heptane-2-thiol, have been synthesised. These are modelled on traditional thiol reagents, with a six-carbon chain with an imidazole ring on one end and tertiary thiol on the other. 3-(6-mercapto-6-methylheptyl)- 1,2-dimethyl-3H-imidazolium tetrafluoroborate comprises of a charged imidazolium ring, while 2- methyl-7-(2-methylimidazol-1-yl)heptane-2-thiol has an uncharged imidazole ring in order to probe the impact of salt formation on radical kinetics. The key step in the synthesis was addition of thioacetic acid across an alkene to generate a tertiary thioester, before deprotection with either LiAlH4 or aqueous NH3. Arrhenius plots were generated to give information on rate constants for H-atom transfer to a primary alkyl radical, the 5-hexenyl radical, in ethylmethylimidazolium bis(trifluoromethane)sulfonimide.
    [Show full text]
  • O/C -O-O-( X, Generally Carried out at a Temperature in the Range of 20 and (B) Mineral Acid Salts of These Compounds
    3,256,288 United States Patent Office Patented June 14, 1966 W 2 -Cl, -Br or -SONH2, with an appropriate imino ether 3,256,288 hydrochloride having the formula -SUBSTITUTED AMNOALKYL-2-ARYLOXY METHYLEBENZRADAZOLE COMPOUNDS E Clarence L. Moyle, Care, and Diomed M. Cher, Mid land, Mich., assignors to The Dow Chemical Company, Midland, Mich., a corporation of Delaware W (III) No Drawing. Fied May 24, 1962, Ser. No. 197,285 wherein in this and succeeding formulas, E is -H, -R, 9 Claims. (C. 260-294.7) -CI, -Br, -OH, -OR or -CONH2 and R' is a lower alkyl group, to produce the desired benzimidazole product This invention is directed to benzimidazole compounds, O and R'OH, NH3 and HCl by-products. The gaseous NH particularly (a) N-substituted benzimidazole compounds and HCl generally evolve from the reaction mixture al having the formula though some of the HC1 may react with NH and remain in the reaction mixture as ammonium chloride salt or may react with the basic benzimidazole product and remain 5 as the hydrochloride salt thereof. / N Y In carrying out the preparation, substantially equimolar proportions of the reactants are employed although either reactant may be employed in excess. The reaction is O/C -o-o-( x, generally carried out at a temperature in the range of 20 and (b) mineral acid salts of these compounds. In this from 60 to 82° C. for a period of from about 20 to 72 and succeeding formulas-NR'R'' is di(lower-alkyl)ami hours. It is preferred that an alcoholic solvent be em no, piperidino, morpholino or pyrrolidino; X is -H, ployed in this process.
    [Show full text]
  • Reductions and Reducing Agents
    REDUCTIONS AND REDUCING AGENTS 1 Reductions and Reducing Agents • Basic definition of reduction: Addition of hydrogen or removal of oxygen • Addition of electrons 9:45 AM 2 Reducible Functional Groups 9:45 AM 3 Categories of Common Reducing Agents 9:45 AM 4 Relative Reactivity of Nucleophiles at the Reducible Functional Groups In the absence of any secondary interactions, the carbonyl compounds exhibit the following order of reactivity at the carbonyl This order may however be reversed in the presence of unique secondary interactions inherent in the molecule; interactions that may 9:45 AM be activated by some property of the reacting partner 5 Common Reducing Agents (Borohydrides) Reduction of Amides to Amines 9:45 AM 6 Common Reducing Agents (Borohydrides) Reduction of Carboxylic Acids to Primary Alcohols O 3 R CO2H + BH3 R O B + 3 H 3 2 Acyloxyborane 9:45 AM 7 Common Reducing Agents (Sodium Borohydride) The reductions with NaBH4 are commonly carried out in EtOH (Serving as a protic solvent) Note that nucleophilic attack occurs from the least hindered face of the 8 carbonyl Common Reducing Agents (Lithium Borohydride) The reductions with LiBH4 are commonly carried out in THF or ether Note that nucleophilic attack occurs from the least hindered face of the 9:45 AM 9 carbonyl. Common Reducing Agents (Borohydrides) The Influence of Metal Cations on Reactivity As a result of the differences in reactivity between sodium borohydride and lithium borohydride, chemoselectivity of reduction can be achieved by a judicious choice of reducing agent. 9:45 AM 10 Common Reducing Agents (Sodium Cyanoborohydride) 9:45 AM 11 Common Reducing Agents (Reductive Amination with Sodium Cyanoborohydride) 9:45 AM 12 Lithium Aluminium Hydride Lithium aluminiumhydride reacts the same way as lithium borohydride.
    [Show full text]
  • Hydrophilic Thin Coating and Method of Manufacturing the Same
    Europaisches Patentamt European Patent Office © Publication number: 0 599 150 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 93118306.5 int. CIA B05D 1/18, C03C 17/30, C08J 7/04 @ Date of filing: 11.11.93 ® Priority: 12.11.92 JP 302124/92 © Applicant: MATSUSHITA ELECTRIC INDUSTRIAL Co., Ltd. @ Date of publication of application: 1006-banchi, Oaza-Kadoma 01.06.94 Bulletin 94/22 Kadoma-shi, Osaka(JP) © Designated Contracting States: @ Inventor: Ohtake, Tadashi DE FR GB Kawakitanaka-machi 30-15 Neyagawa-shi, Osaka 572(JP) Inventor: Mino, Norihisa Senrioka Higashi 4-6-8-806 Settsu-shi, Osaka 566(JP) Inventor: Ogawa, Kazufumi Aoyama 2-3-50 Nara-shi, Nara 630(JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Hydrophilic thin coating and method of manufacturing the same. © The invention relates to a hydrophilic thin film and a method of manufacturing the same in which a hydrophilic thin film 4 is formed by incorporating or fixing molecules comprising hydrophilic groups to a chemically adsorbed film on the surface of a substrate 1 . 7\ oj— Cl O I OH 2 ^4 $ -0— Si — 0 Si — 0 Si- -o- -Si-0- I I I I 0 0 0 0 — > 7> , , , 1 , , r-i-. i ///////////// X FIG . Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 599 150 A1 The invention relates to a hydrophilic thin film and a method of manufacturing the same. More specifically, the invention relates to a hydrophilic thin film and its method of manufacture, in which molecules comprising hydrophilic groups are incorporated or chemically bonded to the surface of a chemically adsorbed film on a substrate surface.
    [Show full text]
  • UNIT 6 ELEMENTS of GROUP 13 Structure 6.1 Introduction Objectives I 6.2 Oailcrence, Extraction and Uses Occurrec - Extraction Uses I 6.3 General Characteristics
    UNIT 6 ELEMENTS OF GROUP 13 structure 6.1 Introduction Objectives I 6.2 Oailcrence, Extraction and Uses Occurrec - Extraction uses i 6.3 General Characteristics I - 6.5 Halides of Bpron anel Aluminium Halides of Boron Halides of Aluminium 6.6 Oxides of Boron and Aluminium I Boric Oxide Aluminium Oxide 6.7 Oxoacids of Boron and Borates 6.8 Borazine 6.9 Complexation Behaviour 6.10 Anomalous Behaviour of Boron 6.11 Summary 6.12 Terminal Questions 6.13- Answers ' -- 6.1 INTRODUCTION In the previous two units, you studied the main features of the chemistry of Group 1 and Group 2 elements, i.e. the alkali and the alkaline earth metals. In this unit you - will study the elements of Group 13, namely, boron, aluminium, gallium, indium and, thallium. While studying the alkali and alkaline earth metals, you have seen that all Zhe elements of these two groups are highly reactive metals and the first element of each group shows some differences from the rest. In Group 13, the differences between the first element and the remaining elements become so pronounced that the first member of the group, i.e. boron is a nonmetal wheieas the rest of the elements are distinctly metallic in nature. In a way, this is the first group of the periodic table in which you observe a marked change in the hature of the elements . down the group. describe the chemistry of hydrides, halides and oxides of boron and aluminium, elucidate the structures of hydrides of boron and aluminium, 6.2 OCCURRENC~,EXTRACTION AND USES Elements bf Group 13 are sufficiently reactive.
    [Show full text]