Chapter 13.Pptx

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 13.Pptx Chapter 13: Alcohols and Phenols 13.1 Structure and Properties of Alcohols C C Alkanes Carbon - Carbon Multiple Bonds Carbon-heteroatom single bonds basic O C C C N C N C X O nitro alkane X= F, Cl, Br, I amines Alkenes Alkyl Halide Chapter 23 OH C C H O C O C C O C C Alkynes phenol alcohols ethers epoxide acidic Chapter 14 H H H C S C C C C S S C C S C C H C C sulfides thiols disulfide H H (thioethers) Arenes 253 Nomenclature of alcohols 1. In general, alcohols are named in the same manner as alkanes; replace the -ane suffix for alkanes with an -ol for alcohols CH3CH2CH2CH3 CH3CH2CH2CH2OH OH butane 1-butanol 2-butanol butan-1-ol butan-2-ol 2. Number the carbon chain so that the hydroxyl group gets the lowest number 3. Number the substituents and write the name listing the substituents in alphabetical order. Many alcohols are named using non-systematic nomenclature H C OH 3 OH OH C OH OH HO OH H3C HO H3C benzyl alcohol allyl alcohol tert-butyl alcohol ethylene glycol glycerol (phenylmethanol) (2-propen-1-ol) (2-methyl-2-propanol) (1,2-ethanediol) (1,2,3-propanetriol) 254 127 Alcohols are classified according to the H R C OH C OH H H degree of substitution of the carbon bearing H H 1° carbon the -OH group methanol primary alcohol primary (1°) : one alkyl substituent R R C OH C OH R R secondary (2°) : two alkyl substituents H R 2° carbon 3° carbon tertiary (3°) : three alkyl substituents secondary alcohol tertiary alcohol Physical properties of alcohols – the C-OH bond of alcohols has a significant dipole moment. δ+ H H - - H δ+ δ δ+ δ C Cl C O H H H H µ = 1.9 µ = 1.7 255 Like water, alcohols can form hydrogen bonds: a non-covalent interaction between a hydrogen atom (δ+) involved in a polar covalent bond, with the lone pair of a heteroatom (usually O or N), which is also involved in a polar covalent bond (δ-) O H N H C O C O δ+ δ- δ- δ+ δ- δ+ O H N H C O H H O O H R H H R R O δ O δ δ O δ H O δ H δ H H H H H H H δ δ O δ O Oδ δ O O O δ H H H H R R H H H R O O O H H H H O O H H Hydrogen-bonds are broken when the H H O alcohol reaches its bp, which requires H additional energy 256 128 H2O CH3CH2CH2CH3 CH3CH2CH2CH2Cl CH3CH2CH2CH2OH MW=18 MW=58 MW=92.5 MW=74 bp= 100° C bp= 0° C bp= 77° C bp= 116° C CH3CH3 CH3CH2Cl CH3CH2OH MW= 30.1 MW= 64.5 MW=60 bp = -89° C bp= 12° C bp= 78° C 13.2 Acidity of Alcohols and Phenols – + R–OH + H2O RO + H3O Increasing stability of the conjugate base R R C N R O X R R R pKa = 50 – 60 35 – 40 15 – 18 -10 – 3 257 Factors affecting the acidity of alcohols and phenols pKa ~ 16 H O + H3CH2C O H + 2 H3CH2C O H3O pKa ~ 10 + O H + H2O O H3O Inductive effects – an atom’s (or group of atoms) ability to polarize a bond through electronegativity differences (σ-bonds) CH3CH2OH FCH2CH2OH F2CHCH2OH F3CCH2OH (F3C)3COH pKa ~ 16.0 14.4 13.3 12.4 5.4 F3C Electron-withdrawing groups make an δ+ C O alcohol a stronger acid by stabilizing F3C F3C the conjugate base (alkoxide) A benzene ring is generally considered electron withdrawing and stabilizes the negative charge through inductive effects 258 129 Resonance effect: the benzene ring stabilizes the the phenoxide ion by resonance delocalization of the negative charge Substituents on the phenol can effect acidity – Electron-donating substituents make a phenol less acidic by destabilizing the phenoxide ion (resonance effect). Electron-withdrawing substituents make a phenol more acidic by stabilizing the phenoxide ion through delocalization of the negative charge and through inductive effects. X OH X= -NO2 -Br -Cl -H -CH3 -OCH3 -NH2 pKa ~ 7.2 9.3 9.4 10 10.3 10.2 10.5 259 The influence of a substituent on phenol acidity is also dependent on its position relative to the -OH X OH OH X pKa X= -Cl 9.4 9.1 -NO2 7.2 8.4 -OCH3 10.2 9.6 -CH3 10.3 10.1 Reagents for deprotonating an alcohol – alcohols and phenols are deprotonated to alkoxides with a strong base such as sodium hydride (NaH). 260 130 13.3 Preparation of Alcohols via Substitution or Addition Substitution Reactions (Chapter 7) Addition Reactions (Chapter 9) Hydration of alkenes (Chapter 6) 1. Acid-catalyzed hydration (Chapter 9.4) 2. Oxymercuration – demercuration (Chapter 9.5) 3. Hydroboration – oxidation (Chapter 9.6) 261 13.4 Preparation of Alcohols via Reduction Oxidation State of Carbon (-4 – +4): C is a group IV element H H H H H H H C H H C C H C C H C C C H H H H H H C H H H OH Cl H H H O H O H H C H H C H H C C OH H C C H H C C C H H H H H H H H 262 131 Reduction of ketone and aldehydes to alcohols – adds the equivalent of H2 across the π-bond of the carbonyl (C=O) to yield an alcohol. H O reduction [H] O aldehyde (R or R´= H) → 1° alcohol C C R R' R H ketone (R and R´≠ H) → 2° alcohol R' Catalytic hydrogenation is not typically used for the reduction of ketones or aldehydes to alcohols. Metal hydride reagents: equivalent to H:– (hydride) sodium borohydride lithium aluminium hydride (NaBH4) (LiAlH4) H H Na+ H B H Li+ H Al H H H B H Al H electronegativity 2.0 2.1 1.5 2.1 263 NaBH4 reduces aldehydes to primary alcohols O H H NaBH O2N 4 O N H 2 OH HOCH2CH3 NaBH4 reduces ketones to secondary alcohols H OH O NaBH4 HOCH2CH3 ketones 2° alcohols NaBH4 does not react with esters or carboxylic acids O HO H NaBH4 H CH CO H3CH2CO 3 2 HOCH2CH3 O O 264 132 Lithium Aluminium Hydride (LiAlH4, LAH) - much more reactive than NaBH4. Incompatible with protic solvents (alcohols, H2O). LiAlH4 (in ether) reduces aldehydes, carboxylic acids, and esters to 1° alcohols and ketones to 2° alcohols. O H OH 1) LiAlH4, ether + 2) H3O or H2O O H H 1) LiAlH4, ether H OH + 2) H3O or H2O Carboxylic Acids and esters are reduced to 1° alcohols by LiAlH4 (but not NaBH4 or catalytic hydrogenation). O O H H 1) LiAlH , ether 1) LiAlH4, ether 4 OH OCH3 OH + + 2) H3O or H2O 2) H3O or H2O ester 1° alcohol carboxylic acid 265 13.5 Preparation of Diols (Chapters 9.9 & 9.10) – Vicinal diols have hydroxyl groups on adjacent carbons (1,2-diols, vic-diols, glycols). OH 1) RCO3H H H + OH 2) H3O OsO4 OH chapter 9.9 chapter 9.10 OH H H anti syn other diols O O OH O O OR OH H 13.6 Preparation of Alcohols via Grignard Reagents Mg(0) R-X R-MgX (Grignard reagent) THF + – δ– + – δ δ δ C MgX+ C X C MgX alkyl halide = carbanion = nucleophile 266 electrophile reacts with electrophiles 133 R-X can be an alkyl, vinyl, or aryl halide (chloride, bromide, or iodide) Br MgBr Mg(0), ether Mg(0), ether Mg(0), ether MgBr Br MgBr Br Solvent: diethyl ether (Et2O) or tetrahydrofuran (THF) H CH C CH CH 3 2 O 2 3 O diethyl ether (Et O) tetrahydrofuran (THF) 2 Grignard reagents react with aldehydes, ketones, and esters to afford alcohols MgX MgX δ - + O O ether O H3O OH δ + R: C C C C R R 267 Grignard reagents react with . formaldehyde (H2C=O) to give primary alcohols Br 0 1) H2C=O Mg , ether MgBr + 2) H3O OH aldehydes to give secondary alcohols O OH Br Mg0, ether MgBr 1) H + 2) H3O ketones to give tertiary alcohols OH H H 0 H H O Mg , ether 1) C C C C + H Br H MgBr 2) H3O esters to give tertiary alcohols O C OH OCH2CH3 0 2 Mg , ether 1) C CH 2 H C-Br 2 H C-MgBr 3 3 3 CH3 + 2) H3O 268 134 Tertiary alcohols from esters and Grignard reagents - mechanism: O 1) THF OH + C 2) then H3O + C OCH2CH3 2 H3C-MgBr CH3 CH3 Organolithium Reagents – can generally be used interchangeably with Grignard reagents 2 Li(0) R-X R-Li + LiX diethyl ether - + δ δ _ very strong bases C Li C very strong nucleophiles 269 13.7 Protection of Alcohols – Grignard Reagents are highly basic; therefore the solvent or reactant can not contain functional groups that are acidic or electrophilic. These are incompatible with the formation and/or reactivity of the Grignard reagent. 0 _ Mg + H3O HO Br HO MgBr O H HO H _ BrMg Other incompatible groups: -CO2H, -OH, -SH, NH2, CONHR (amides) Reactive functional groups: aldehydes, ketones, esters, amides, halides, -NO2, -SO2R, nitriles Protecting group: Temporarily convert a functional group that is incompatible with a set of reaction conditions into a new functional group (with the protecting group) that is compatible with the reaction.
Recommended publications
  • Alcohols Combined 1405
    ALCOHOLS COMBINED 1405 Formulas: Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1405, Issue 1 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS: (1) n-butyl alcohol (4) n-propyl alcohol (7) cyclohexanol (2) sec-butyl alcohol (5) allyl alcohol (8) isoamyl alcohol (3) isobutyl alcohol (6) diacetone alcohol (9) methyl isobutyl carbinol SYNONYMS: See Table 3. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (Coconut shell charcoal, 100 mg/50 mg) ANALYTE: Compounds above FLOW RATE: 0.01 to 0.2 L/min DESORPTION: 1 mL 5% 2-propanol in CS2 Compounds: (1-3 ) (4-9) VOL-MIN: 2 L 1 L INJECTION -MAX: 10 L 10 L VOLUME: 1 µL SHIPMENT: Routine TEMPERATURE -INJECTION: 220 °C SAMPLE -DETECTOR: 250 - 300 °C STABILITY: See Evaluation of Method. -COLUMN: 35 °C (7 minutes), to 60 °C at 5 °C/minute, hold 5 minutes, up to BLANKS: 2 to 10 field blanks per set 120 °C at 10 °C /minute, hold 3 minutes. CARRIER GAS: He, 4 mL/min ACCURACY COLUMN: Capillary, fused silica, 30 m x 0.32-mm RANGE STUDIED: Not studied [1, 2]. ID; 0.5 µm film polyethylene glycol, DB- wax or equivalent BIAS: Not determined CALIBRATION: Solutions of analyte in eluent (internal OVERALL standard optional) PRECISION (Ö ): Not determined rT RANGE: See EVALUATION OF METHOD. ACCURACY: Not determined ESTIMATED LOD: 1 µg each analyte per sample PRECISION: See EVALUATION OF METHOD. APPLICABILITY: This method may be used to determine two or more of the specified analytes simultaneously.
    [Show full text]
  • A New Approach to Prepare Polyethylene Glycol Allyl Glycidyl Ether
    E3S Web of Conferences 267, 02004 (2021) https://doi.org/10.1051/e3sconf/202126702004 ICESCE 2021 A new approach to prepare Polyethylene Glycol Allyl Glycidyl Ether Huizhen Wang1*, Ruiyang Xie1, Mingjun Chen1*, Weihao Deng1, Kaixin Zhang2, Jiaqin Liu1 1School of Science, Xihua University, Chengdu 610039, China; 2Chengdu Jingyiqiang Environmental Protection Technology Co., Ltd. Abstract. The polyethylene glycol allyl glycidyl ether (PGAGE) is an important intermediate for preparing silicone softener that can be synthesized from allyl alcohol polyoxyethylene ether and epichlorohydrin (ECH). The performance parameters including the concentration of ECH, initial boron trifluoride diethyl etherate (BFEE) as well as CaCl2 quality were investigated respectively. The optimum process parameters which can get high capping and low by-product rate are as follows: the ECH concentration is 2.0 M, the initial BFEE concentration is 1.65mM, and the CaCl2 dosage is 1.65g/L. Under these conditions, the maximal yield can be improved to 91.36%, the percent of capping rate is higher than 98.16%, the residual concentration of F- is only 0.63 mg/L. concentrated basic solution, in which the total yield was between 90%~91% by Matsuoka et al. [10] also use the 1 Introduction two-step reaction to synthesize AGE based on the reaction Polyethylene glycol allyl glycidyl ether (PGAGE) and the of allyl alcohol with ECH using BFEE as the catalyst. allyl polyoxyethylene ether (APEG), tethering with both Their results demonstrated that the yield reaches 82% alkene and epoxy groups, are widely used as fabric under the following condition: n (ECH) : n (allyl alcohol): finishing agent [1-2] , reactive diluent [3] , cross-linking (catalysis) = 1: (1~3) : (0.01~0.002).
    [Show full text]
  • Radical Approaches to Alangium and Mitragyna Alkaloids
    Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes.
    [Show full text]
  • Reductions and Reducing Agents
    REDUCTIONS AND REDUCING AGENTS 1 Reductions and Reducing Agents • Basic definition of reduction: Addition of hydrogen or removal of oxygen • Addition of electrons 9:45 AM 2 Reducible Functional Groups 9:45 AM 3 Categories of Common Reducing Agents 9:45 AM 4 Relative Reactivity of Nucleophiles at the Reducible Functional Groups In the absence of any secondary interactions, the carbonyl compounds exhibit the following order of reactivity at the carbonyl This order may however be reversed in the presence of unique secondary interactions inherent in the molecule; interactions that may 9:45 AM be activated by some property of the reacting partner 5 Common Reducing Agents (Borohydrides) Reduction of Amides to Amines 9:45 AM 6 Common Reducing Agents (Borohydrides) Reduction of Carboxylic Acids to Primary Alcohols O 3 R CO2H + BH3 R O B + 3 H 3 2 Acyloxyborane 9:45 AM 7 Common Reducing Agents (Sodium Borohydride) The reductions with NaBH4 are commonly carried out in EtOH (Serving as a protic solvent) Note that nucleophilic attack occurs from the least hindered face of the 8 carbonyl Common Reducing Agents (Lithium Borohydride) The reductions with LiBH4 are commonly carried out in THF or ether Note that nucleophilic attack occurs from the least hindered face of the 9:45 AM 9 carbonyl. Common Reducing Agents (Borohydrides) The Influence of Metal Cations on Reactivity As a result of the differences in reactivity between sodium borohydride and lithium borohydride, chemoselectivity of reduction can be achieved by a judicious choice of reducing agent. 9:45 AM 10 Common Reducing Agents (Sodium Cyanoborohydride) 9:45 AM 11 Common Reducing Agents (Reductive Amination with Sodium Cyanoborohydride) 9:45 AM 12 Lithium Aluminium Hydride Lithium aluminiumhydride reacts the same way as lithium borohydride.
    [Show full text]
  • UNIT 6 ELEMENTS of GROUP 13 Structure 6.1 Introduction Objectives I 6.2 Oailcrence, Extraction and Uses Occurrec - Extraction Uses I 6.3 General Characteristics
    UNIT 6 ELEMENTS OF GROUP 13 structure 6.1 Introduction Objectives I 6.2 Oailcrence, Extraction and Uses Occurrec - Extraction uses i 6.3 General Characteristics I - 6.5 Halides of Bpron anel Aluminium Halides of Boron Halides of Aluminium 6.6 Oxides of Boron and Aluminium I Boric Oxide Aluminium Oxide 6.7 Oxoacids of Boron and Borates 6.8 Borazine 6.9 Complexation Behaviour 6.10 Anomalous Behaviour of Boron 6.11 Summary 6.12 Terminal Questions 6.13- Answers ' -- 6.1 INTRODUCTION In the previous two units, you studied the main features of the chemistry of Group 1 and Group 2 elements, i.e. the alkali and the alkaline earth metals. In this unit you - will study the elements of Group 13, namely, boron, aluminium, gallium, indium and, thallium. While studying the alkali and alkaline earth metals, you have seen that all Zhe elements of these two groups are highly reactive metals and the first element of each group shows some differences from the rest. In Group 13, the differences between the first element and the remaining elements become so pronounced that the first member of the group, i.e. boron is a nonmetal wheieas the rest of the elements are distinctly metallic in nature. In a way, this is the first group of the periodic table in which you observe a marked change in the hature of the elements . down the group. describe the chemistry of hydrides, halides and oxides of boron and aluminium, elucidate the structures of hydrides of boron and aluminium, 6.2 OCCURRENC~,EXTRACTION AND USES Elements bf Group 13 are sufficiently reactive.
    [Show full text]
  • Title Selective Reduction of Acrolein to Allyl Alcohol by a Vapor Phase
    Selective Reduction of Acrolein to Allyl Alcohol by a Vapor Title Phase Hydrogen Transfer Reaction Author(s) Kunichika, Sango; Oka, Shinzaburo; Sakai, Mutsuji Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(3): 215-220 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76125 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Selective Reduction of Acrolein to Allyl Alcohol by a Vapor Phase Hydrogen Transfer Reaction Sango KUNICHIKA,Shinzaburo OKA and Mutsuji SAKAI* (KunichikaLaboratory) (ReceivedJune 15, 1966) Selectivereduction of acroleinto ally! alcoholhas been achievedby a vapor phase hydrogen transferreaction using isopropyl alcohol as a hydrogendonor. It was foundthat the preferredcatalyst was 50 weight% zinc oxide-magnesiumoxide catalyst prepared by calcininga mixtureof zincnitrate and magnesiumoxide at 500°C. The optimumconditions were found to be as follows;reaction tem- perature,near 200°C,total feed rate, 45 moles/1.of catalyst/hr.,feed ratio of isopropylalcohol per acrolein,10 moles. Under theseconditions, the yieldsof allyl alcoholof 80-65% at 80-90% conversion of acroleinwere obtained. INTRODUCTION Acrolein has two reactive functional groups, one is carbonyl group and the other is carbon-carbon double bond. Selective reduction of acrolein to allyl alcohol has been studied by several investigators. The reaction was generally carried out by the following two methods: (1) the Meerwein-Ponndorf-Verley reduction1-3), (2) vapor phase hydrogen transfer reaction with various metal oxide catalysts using an alcohol as a hydrogen donor4-11> The liquid phase reaction has some technical difficulties owing to the polymeri- zation of acrolein especially at high conversion. Therefore, in the present work, the more promising vapor phase reaction has been studied to find an effective catalyst and favorable reaction conditions.
    [Show full text]
  • Hydrogen Transmutation of Nickel in Glow Discharge
    International Journal of Materials Science ISSN 0973-4589 Volume 12, Number 3 (2017), pp. 405-409 © Research India Publications http://www.ripublication.com Hydrogen Transmutation of Nickel in Glow Discharge Vladimir K. Nevolin National Research University of Electronic Technology (MIET), Moscow, Russia. Abstract Background: The possibility of the existence of subatomic hydrogen states was theoretically predicted previously. Objectives: Prove that the transmutation of elements is possible in specially prepared conditions for hydrogen. Methodology: By comparing the mass spectra of deposits on silicon substrates and target electrodes, it is shown that a change in the composition is observed in a magnetron Argon. Results: An increase in the concentration of 62 60 the nickel isotope 28 Ni and a decrease in the isotope concentration 28 Ni are shown. Conclusion: These results confirm the results obtained earlier in the heat generator Rossi, who worked more than a year, found an increase in the 62 isotope 28 Ni due to a decrease in the proportion of other isotopes. Keywords: transmutation, isotopes of nickel, glow discharge, argon, hydrogen INTRODUCION It is considered that the cold transmutation of elements (cold nuclear reactions) has been experimentally demonstrated [1]. On the basis of this phenomenon, energy generators are created in which long-term release of thermal energy in excess of expended energy is observed [2]. From many experimental studies it can be seen that hydrogen, which plays a pivotal role in the reaction zone, may be delivered through a variety of chemical compounds; for example, using lithium aluminium hydride LiAlH4. An analysis of the products of nuclear reactions suggests the possibility of many simultaneous nuclear fusion and decomposition reactions [3].
    [Show full text]
  • WO 2015/177807 Al 26 November 2015 (26.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/177807 Al 26 November 2015 (26.11.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 403/14 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/IN20 15/000066 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 3 February 2015 (03.02.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 1709/MUM/2014 22 May 2014 (22.05.2014) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: WANBURY LTD. [IN/IN]; BSEL tech park, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, B wing, 10th floor, sector 30A, opp.
    [Show full text]
  • Conversion of Glycerol Into Allyl Alcohol Over Potassium-Supported Zirconia-Iron Oxide Catalyst
    Title Conversion of glycerol into allyl alcohol over potassium-supported zirconia-iron oxide catalyst Author(s) Konaka, Aya; Tago, Teruoki; Yoshikawa, Takuya; Nakamura, Ayaka; Masuda, Takao Applied catalysis b-environmental, 146, 267-273 Citation https://doi.org/10.1016/j.apcatb.2013.03.007 Issue Date 2014-03 Doc URL http://hdl.handle.net/2115/54715 Type article (author version) File Information Manuscript_Glycerol to Allyl Alcohol .pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Conversion of Glycerol into Allyl Alcohol over Potassium-Supported Zirconia-Iron Oxide Catalyst Aya Konaka, Teruoki Tago*, Takuya Yoshikawa, Ayaka Nakamura, and Takao Masuda Research Group of Chemical Engineering, Division of Chemical Process Engineering, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido, Japan 060-8628 * Corresponding author should be addressed E-mail: [email protected] Tel: +81-11-706-6551 Fax: +81-11-706-6552 1 Abstract The catalytic conversion of glycerol was performed with iron oxide-based catalysts for production of allyl alcohol using a fixed-bed flow reactor at 623 K under atmospheric pressure. The glycerol dehydration proceeds on acid sites of catalysts while the allyl alcohol production is assumed to be catalyzed by non-acidic sites of catalysts through a hydrogen transfer mechanism. Different alkali metals, including Na, K, Rb, and Cs were supported on ZrO2-FeOX and all of them gave impressively higher allyl alcohol yield and suppressed glycerol dehydration due to the reduced catalyst acidic property. K-supported ZrO2-FeOX (K/ZrO2-FeOX) was chosen for further studies, and allyl alcohol yield remarkably increased up to 27 mol%-C at the K content of 3-5 mol%.
    [Show full text]
  • United States Patent (19) (11) Patent Number: 4,968,451 Scheibel Et Al
    United States Patent (19) (11) Patent Number: 4,968,451 Scheibel et al. 45) Date of Patent: Nov. 6, 1990 (54) SOIL RELEASE AGENTS HAVING ALLYL-DERVED SULFONATED END CAPS FOREIGN PATENT DOCUMENTS 155710 9/1985 European Pat. Off. (75) Inventors: Jeffrey J. Scheibel; Eugene P. 180356 5/1986 European Pat. Off. Gosselink, both of Cincinnati, Ohio 1475798 6/1977 United Kingdom . (73) Assignee: The Procter & Gamble Company, OTHER PUBLICATIONS Cincinnati, Ohio S. C. Bright, C. E. Stubbs and L. Thompson, J. Appl. (21) Appl. No.: 474,709 Chem. Biotechnol, 1975, vol. 25, pp. 901-912. 22) Filed: Jan. 29, 1990 Norton et al., J. Org. Chem, vol. 33, No. 11, pp. 4158-4165 (1967). Related U.S. Application Data Primary Examiner-A. Lionel Clingman (63) Continuation of Ser. No. 237,598, Aug. 26, 1988, aban Attorney, Agent, or Firm-Leonard W. Lewis; Jerry J. doned. Yetter (51 Int, C. .................... CO7C 309/05; C08G 63/68; 57 ABSTRACT C11D 3/37 (52) U.S. C. ............................... 252/549; 252/174.19; The present invention relates to novel soil release 252/539; 252/558; 252/DIG. 15 agents, which are particular sulfonated linear tere (58) Field of Search ......................................... 252/549 phthalate ester oligomers (S.T.E. oligomers). The S.T.E. oligomers are especially suitable for formulation (56 References Cited into laundry products such as laundry detergents or U.S. PATENT DOCUMENTS fabric conditioners. Thus formulated, they provide ef. 3,821,169 6/1974 Duddey et al. ..................... 528/293 fective soil release treatments for fabrics laundered in 4,156,073 5/1979 Login .............
    [Show full text]
  • Lithium Aluminium Hydride.Pdf
    SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 5.0 Revision Date 03/12/2011 Print Date 09/12/2011 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Aluminium lithium hydride Product Number : 531502 Brand : Aldrich Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Water Reactive, Target Organ Effect, Toxic by ingestion, Corrosive Target Organs Kidney, Liver, Central nervous system GHS Classification Substances, which in contact with water, emit flammable gases (Category 1) Acute toxicity, Oral (Category 3) Skin corrosion (Category 1B) Serious eye damage (Category 1) GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H260 In contact with water releases flammable gases which may ignite spontaneously. H301 Toxic if swallowed. H314 Causes severe skin burns and eye damage. Precautionary statement(s) P223 Keep away from any possible contact with water, because of violent reaction and possible flash fire. P231 + P232 Handle under inert gas. Protect from moisture. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a POISON CENTER or doctor/ physician. P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction. P422 Store contents under inert gas.
    [Show full text]
  • Azidocinnamates in Heterocyclic Synthesis
    AZIDOCINNAMATES IN HETEROCYCLIC SYNTHESIS A THESIS PRESENTED BY DEIRDRE M.B. HICKEY B.SC. FOR THE DEGREE OF DOCTOR OF PHILOSOPHY j UNIVERSITY OF LONDON Hofmann Laboratory, Department of Chemistry, Imperial College of Science and Technology, London, SW7 2AY. October, 1982. To my parents, Paddy and Thevese 3 with love and gratitude. ACKNOWLEDGEMENTS I thank Professor C.W. Rees for his enthusiastic supervision during the course of this work and my co-supervisor, Dr. C.J. Moody for his constant help and encouragement. I am grateful to Mr. P. Sulsh for technical help, to Mr. D. Neuhaus and Mr. R. Sheppard for Bruker n.m.r. spectra, to Mr. K. Jones for the analytical service, to Mr. J. Bilton, Mrs. Lee, and Mr. N. Davies for the mass spectroscopy service, and to Mr. D. Everitt in the Stores. Miss Moira Shanahan has expertly typed this thesis and I am grateful for her patience and perserverance. I thank Mr. Michael Casey for proof-reading this thesis and for his help and friendship for many years. Dr. Brian Bell I thank for his help and continued support during the production of this thesis. My colleagues on the seventh floor I will warmly remember for their friendship and comradeship. Finally, grateful acknowledgement is made to the Department of Chemistry, Imperial College for a research assistantship. iv ABSTRACT The reactions of various types of nitrenes to give heterocyclic products is reviewed. A series of vinyl azides, mostly ort/zo-substituted azidocinnamates, was prepared and their decomposition reactions studied. The thermal decomposition of ortho-alkyl azidocinnamates gave 2,4- disubstituted indoles, 1,3-disubstituted isoquinolines, 1,3-disubstituted -1,2-dihydroisoquinolines, and enamines, the amounts of each varying with the ortho-group and the conditions used, iodine having a marked effect on the product ratios.
    [Show full text]