Drosophila Central Nervous System Glia

Total Page:16

File Type:pdf, Size:1020Kb

Drosophila Central Nervous System Glia Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Drosophila Central Nervous System Glia Marc R. Freeman Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605 Correspondence: [email protected] Molecular genetic approaches in small model organisms like Drosophila have helped to elucidate fundamental principles of neuronal cell biology. Much less is understood about glial cells, although interest in using invertebrate preparations to define their in vivo functions has increased significantly in recent years. This review focuses on our current understanding of the three major neuron-associated glial cell types found in the Drosophila central nervous system (CNS)—astrocytes, cortex glia, and ensheathing glia. Together, these cells act like mammalian astrocytes: they surround neuronal cell bodies and proximal neurites, are coupled to the vasculature, and associate closely with synapses. Exciting recent work has shown essential roles for these CNS glial cells in neural circuit formation, function, plasticity, and pathology. As we gain a more firm molecular and cellular understanding of how Drosophila CNS glial cells interact with neurons, it is be- coming clear they share significant molecular and functional attributes with mammalian astrocytes. nvertebrate preparations have contributed with which invertebrates were used to dissect Ienormously to our understanding of funda- fundamental aspects of the cell biology of the mental principles of nervous system biology, neuron, interest in the potential of small genetic including the chemical and electrophysiologi- model organisms to contribute to unraveling cal basis of the action potential, synaptic vesi- the mysteries of glial cells has grown signifi- cle release, neural cell fate specification, and cantly. This article will provide a brief over- axon pathfinding. This is largely thanks to view of Drosophila glial cell biology, then focus the high experimental accessibility, ease of cul- on fly glial cell subtypes that are tightly asso- ture, rapid growth, and the panoply of molecu- ciated with neurons in the central nervous sys- lar genetic tools with which to manipulate indi- tem (CNS)—astrocytes, ensheathing glia, and vidual cells in vivo in organisms like Drosophila cortex glia. A growing body of work argues and Caenorhabditis elegans. The focus of many strongly that these glia share a range morpho- neuroscientists has shifted in recent years to- logical and functional features with mammalian ward careful exploration of how glial cells par- astrocytes, and recent molecular studies indi- ticipate in nervous system development, neural cate that conservation of basic glial cell biology circuit function and plasticity, and neurolog- extends, perhaps not surprisingly, to the molec- ical disease. Based on the remarkable success ular level. Editors: Ben A. Barres, Marc R. Freeman, and Beth Stevens Additional Perspectives on Glia available at www.cshperspectives.org Copyright # 2015 Cold Spring Harbor Laboratory Press; all rights reserved Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a020552 1 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press M.R. Freeman OVERVIEW OF Drosophila NERVOUS superficial layer of neuronal cell bodies in the SYSTEM HISTOLOGY cortex; whether they make any contact with neurites has not been carefully studied, but In total, the adult fly brain and thoracic gan- seems unlikely. Deeper in the CNS, a number glion (the fly equivalent of the mammalian spi- of specialized glial subtypes—cortex glia, en- nal cord) houses 200,000–300,000 neurons. sheathing glia, and astrocytes—associate closely Drosophila neurons are quite similar in terms with neurons. These will be the focus of this of electrophysiological properties to mamma- review and discussed in detail below, along lian neurons. They fire proper Naþ/Kþ-based with a comparison of these cells to their mam- action potentials; they use highly conserved malian counterparts. mechanisms for synaptic vesicle release of con- Drosophila also have a number of glial served neurotransmitters, such as g-aminobu- subtypes outside of the CNS that ensheath, tyric acid (GABA), glutamate, and acetylcholine, support, and modulate the development and and neuromodulators, such as biogenic amines function of peripheral sensory neurons, and and neuropeptides; and they modulate a diverse motorneuron axons and terminals (Fig. 1A– behavioral repertoire that can be studied in the C) (Freeman 2012; Stork et al. 2012). Peripheral intact organism that shows both electrophysio- nerves are covered by the PG- and SPG-based logical and behavioral plasticity. The histology BBB similar to the CNS, but additionally house of the adult Drosophila nervous system is rela- a population of glia termed wrapping glia that tively complex. The brain houses multiple ana- ensheath motor and sensory axons and whose tomically distinct brain lobes, which are con- histology is very similar to that of mammalian nected to one another by fasciculated nerves. Remak bundles (Leiserson et al. 2000; Becker- The CNS can be subdivided into two histolog- vordersandforth et al. 2008; Stork et al. 2008). ical regions: the neuronal cell cortex, where all At the neuromuscular junction, SPGs extend CNS neuronal cell bodies reside; and the neuro- processes that interact with motorneuron pil, to which axons and dendrites project and synaptic contacts on muscles (Fig. 1B) where form neural circuits (Fig. 1A, top). they perform many key functions, including re- As in mammals, glial cells in Drosophila are cycling neurotransmitters (Rival et al. 2004; characterized in large part by their morphol- Danjo et al. 2011), sculpting growing presyn- ogy and association with neurons (Fig. 1A, bot- aptic morphology by engulfing shed axonal/ tom). The precise number of glia in the fly synaptic debris during development (Fuentes- nervous remains unclear, but likely represents Medel et al. 2009), and secreting transforming 5%–10% of the total population of cells within growth factor (TGF)-b molecules that modu- the CNS. The outermost layer of cells associated late retrograde muscle ! presynapse signaling with the surface of the CNS is composed of a and thereby neuromuscular junction (NMJ) subset of glia termed perineural glia (PG), growth (Fuentes-Medel et al. 2012) and regu- which together with macrophages are thought lating synaptic physiology by secreting Wnts to secrete a dense carbohydrate-rich lamella that that modulate postsynaptic glutamate recep- covers the CNS and peripheral nerves and acts tor clustering (Kerr et al. 2014). Finally, exter- as a chemical and physical barrier for the CNS nal sensory organ neurons responsible for (Carlson et al. 2000; Leiserson et al. 2000). The receiving mechanical, chemical, or other stimuli PG layer is discontinuous, with small gaps, but from the environment are closely associated below this is a layer of subperineural glial cells with socket glial cells, sheath glial cells that (SPGs), which show a flattened morphology, wrap the neuronal dendrite and cell body, and cover the entire CNS surface, and establish a an axon-associated glial cell (Fig. 1C). The biol- blood–brain barrier (BBB) by forming pleated ogy of these sensory organ precursors will likely septate junctions with one another (Auld et al. be very similar to C. elegans glia (Shaham 2006), 1995; Baumgartner et al. 1996; Schwabe et al. but their functions have not been studied exten- 2005). SPGs make contact with only the most sively. 2 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a020552 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Drosophila CNS Glia CNS NMJ ABWrapping Subperineurial Neuropil MN Neuronal Muscle cell cell cortex IN C Peripheral sensory organs Cross section (glial subtypes) Dendrite Shaft (cuticle) Astrocyte Ensheathing Wrapping Socket Sheath cell cell Sensory neuron Glia (axonal) Perineurial Cell body (cortex) Subperineurial Figure 1. Subtypes, positions, and morphology of Drosophila glia. (A) Overview of the Drosophila larval central nervous system (CNS). The neuronal cell cortex (gray) houses all neuronal and most glial cell bodies. CNS synaptic contacts between neurons are found within the neuropil (light gray). Interneurons (IN) (blue) main- tain all projections within the neuropil: motorneurons (MN) (red) extend axon terminals into the peripheral muscle field. (Bottom) cross-sectional view of glial subtypes (green). Morphological arrangement in the adult brain is similar. See text for details. (B) Glia at the Drosophila larval neuromuscular junction (NMJ). MN terminals (red) penetrate the muscle; subperineurial glia (light green) enter the space between the MN and muscle. (C) Sensory organs in Drosophila contain at least three glial types: the socket cell, sheath cell, and an axon-associated glial cell. (From Freeman 2012; reprinted, with permission, from the author.) CNS GLIAL SUBTYPES CLOSELY neuronal cell bodies, ensheathing glia surround ASSOCIATED WITH NEURONS and compartmentalize the neuropil and nerves as they project out of the CNS, and astrocytes Glial cells that are directly associated with neu- densely infiltrate the synaptic neuropil. The re- rons likely mediate
Recommended publications
  • Chapter 2 Test Review
    Unit III, Modules 9-13 Test Review • See also the Unit III notes and pages 76-122 • About 45 m.c., plus two essays; one on brain functioning, the other review concepts from previous units. • Some practice questions are embedded in this presentation • Other practice questions are available at the textbook website and in the textbook after each module. Neuron Order of a transmission: dendrite, cell body, axon, synapse (see arrow below) Neural Communication Neurons, 80 Neural Communication • (a)Dendrite – the bushy, branching extensions of a neuron that receive messages and conduct impulses toward the (b)cell body • (c)Axon – the extension of a neuron, ending in branching terminal fibers, through which messages are sent to other neurons or to muscles or glands • Myelin [MY-uh-lin] Sheath – a layer of fatty cells segmentally encasing the fibers of many neurons – makes possible vastly greater transmission speed of neutral impulses, – Damage to can lead to Multiple sclerosis Neural Communication • Action Potential – a neural impulse; a brief electrical charge that travels down an axon; DEPOLARIZED – generated by the movement of positively charges atoms in and out of channels in the axon’s membrane • Threshold – the level of stimulation required to trigger a neural impulse Action Potential A neural impulse. A brief electrical charge that travels down an axon and is generated by the movement of positively charged atoms in and out of channels in the axon’s membrane. Practice question • Multiple sclerosis is a disease that is most directly associated with the degeneration of: a. the myelin sheath. b. the pituitary gland.
    [Show full text]
  • Signaling by Sensory Receptors
    Signaling by Sensory Receptors David Julius1 and Jeremy Nathans2 1Department of Physiology, University of California School of Medicine, San Francisco, California 94158 2Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland 21205 Correspondence: [email protected] and [email protected] SUMMARY Sensory systems detect small molecules, mechanical perturbations, or radiation via the activa- tion of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled recep- tors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR- based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illus- trate the integration of diverse modulatory signals at the receptor, as seen in the thermosen- sory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous exam- ples in which gene duplication and sequence divergence have created novel sensory specific- ities. This is the evolutionary basis for the observed diversity in temperature- and ligand- dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche.
    [Show full text]
  • Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
    List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Primary Processes in Sensory Cells: Current Advances
    J Comp Physiol A (2009) 195:1–19 DOI 10.1007/s00359-008-0389-0 REVIEW Primary processes in sensory cells: current advances Stephan Frings Received: 14 September 2008 / Revised: 25 October 2008 / Accepted: 25 October 2008 / Published online: 15 November 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com Abstract In the course of evolution, the strong and unre- INAD Inactivation no after-potential D mitting selective pressure on sensory performance has MEC Mechanosensitive channel-related protein driven the acuity of sensory organs to its physical limits. As OHC Outer hair cell a consequence, the study of primary sensory processes ORN Olfactory receptor neuron illustrates impressively how far a physiological function PDE Phosphodiesterase can be improved if the survival of a species depends on it. PDZ Domain postsynaptic density/discs-large/zonula Sensory cells that detect single-photons, single molecules, occludens domain mechanical motions on a nanometer scale, or incredibly TRP Channel transient receptor potential channel small Xuctuations of electromagnetic Welds have fascinated VNO Vomeronasal organ physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent develop- Introduction ments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfac- Sensory cells provide the central nervous system with vital tion, as well as the analysis of light polarization and the ori- information about the body and its environment. Each sen- entation in the Earth’s magnetic Weld. The data are screened sory cell detects speciWc stimuli using highly specialized for common transduction strategies and common transduc- structures which operate as sensors for adequate stimuli.
    [Show full text]
  • Are Astrocytes Executive Cells Within the Central Nervous System? ¿Son Los Astrocitos Células Ejecutivas Dentro Del Sistema Nervioso Central? Roberto E
    DOI: 10.1590/0004-282X20160101 VIEW AND REVIEW Are astrocytes executive cells within the central nervous system? ¿Son los astrocitos células ejecutivas dentro del Sistema Nervioso Central? Roberto E. Sica1, Roberto Caccuri1, Cecilia Quarracino1, Francisco Capani1 ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. Keywords: astrocytes; physiology; central nervous system; neurodegenerative diseases. RESUMEN Evidencias experimentales sugieren que los astrocitos desempeñan un rol crucial en la fisiología del sistema nervioso central (SNC) modulando la actividad y plasticidad sináptica. En base a lo actualmente conocido creemos que los astrocitos participan, en pie de igualdad con las neuronas, en los procesos de información del SNC. Además, observaciones experimentales y humanas encontraron que algunas de las enfermedades degenerativas primarias del SNC: la demencia fronto-temporal; las enfermedades de Parkinson, de Alzheimer, y de Huntington, las ataxias cerebelosas primarias y la esclerosis lateral amiotrófica, que afectan solo a los humanos, pueden deberse a astroglíopatía.
    [Show full text]
  • Specialized Cilia in Mammalian Sensory Systems
    Cells 2015, 4, 500-519; doi:10.3390/cells4030500 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Specialized Cilia in Mammalian Sensory Systems Nathalie Falk, Marlene Lösl, Nadja Schröder and Andreas Gießl * Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; E-Mails: [email protected] (N.F.); [email protected] (M.L.); [email protected] (A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-9131-85-28055; Fax: +49-9131-85-28060. Academic Editors: Gang Dong and William Tsang Received: 18 May 2015 / Accepted: 9 September 2015 / Published: 11 September 2015 Abstract: Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS
    Chapter 36 | Sensory Systems 1109 36 | SENSORY SYSTEMS Figure 36.1 This shark uses its senses of sight, vibration (lateral-line system), and smell to hunt, but it also relies on its ability to sense the electric fields of prey, a sense not present in most land animals. (credit: modification of work by Hermanus Backpackers Hostel, South Africa) Chapter Outline 36.1: Sensory Processes 36.2: Somatosensation 36.3: Taste and Smell 36.4: Hearing and Vestibular Sensation 36.5: Vision Introduction In more advanced animals, the senses are constantly at work, making the animal aware of stimuli—such as light, or sound, or the presence of a chemical substance in the external environment—and monitoring information about the organism’s internal environment. All bilaterally symmetric animals have a sensory system, and the development of any species’ sensory system has been driven by natural selection; thus, sensory systems differ among species according to the demands of their environments. The shark, unlike most fish predators, is electrosensitive—that is, sensitive to electrical fields produced by other animals in its environment. While it is helpful to this underwater predator, electrosensitivity is a sense not found in most land animals. 36.1 | Sensory Processes By the end of this section, you will be able to do the following: • Identify the general and special senses in humans • Describe three important steps in sensory perception • Explain the concept of just-noticeable difference in sensory perception Senses provide information about the body and its environment. Humans have five special senses: olfaction (smell), gustation (taste), equilibrium (balance and body position), vision, and hearing.
    [Show full text]
  • Fundamentals of Nervous System and Nervous Tissue
    Fundamentals of Nervous System and Nervous Tissue Chapter 12 Nervous System The nervous system is the main system to communicate and coordinate body activities by sending electrical impulses. Nervous system forms a communication network in whole body. Endocrine system communicates through chemical messengers – hormones. 12 pairs of Cranial nerves arise from brain Brain (Part of PNS) Central NS 31 pairs of spinal nerves arise from spinal Spinal nerve cord nerve cord (Part of PNS) Somatic sensory Afferent Division Visceral sensory Peripheral NS Somatic NS Efferent Division Sympathetic Autonomic NS Parasympathetic Neuron A neuron has a cell body. Many smaller branched appendages are called Dendrites. Dendrites bring in information (nerve impulse) to the cell body. A single longer appendage is called Axon. It takes information away from cell body. It branches at the end into terminal knobs. A terminal knob secretes a chemical called Neurotransmitter in the gap to the next neuron or muscle membrane. 3-types of neurons (on basis of function) Specialized nerve cells are called Neurons. Sensory neurons bring information from sense organs like eyes to CNS. Sensory = Affrent. Somatic Sensory = coming from body wall - skin, muscles and joints; Visceral Sensroy = coming from internal organs - viscera Motor neurons take information from CNS to effectors like muscles or glands. Motor = Effrent. Somatic Motor – going to skeletal muscles and Visceral Motor – going to smooth or cardiac muscles. Inter-neurons receive information from sensory neurons and
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury
    cells Review Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury Håkan Aldskogius * and Elena N. Kozlova Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial Citation: Aldskogius, H.; Kozlova, neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response E.N.
    [Show full text]