History Department Botany
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The-Minnesota-Seaside-Station-Near-Port-Renfrew.Pdf
The Minnesota Seaside Station near Port Renfrew, British Columbia: A Photo Essay Erik A. Moore and Rebecca Toov* n 1898, University of Minnesota botanist Josephine Tilden, her sixty-year-old mother, and a field guide landed their canoe on Vancouver Island at the mouth of the Strait of Juan de Fuca. This Iconcluded one journey – involving three thousand kilometres of travel westward from Minneapolis – and began another that filled a decade of Tilden’s life and that continues to echo in the present. Inspired by the unique flora and fauna of her landing place, Tilden secured a deed for four acres (1.6 hectares) along the coast at what came to be known as Botanical Beach in order to serve as the Minnesota Seaside Station (Figure 1). Born in Davenport, Iowa, and raised in Minneapolis, Minnesota, Josephine Tilden attended the University of Minnesota and completed her undergraduate degree in botany in 1895. She continued her graduate studies there, in the field of phycological botany, and was soon ap- pointed to a faculty position (the first woman to hold such a post in the sciences) and became professor of botany in 1910. With the support of her department chair Conway MacMillan and others, Tilden’s research laboratory became the site of the Minnesota Seaside Station, a place for conducting morphological and physiological work upon the plants and animals of the west coast of North America. It was inaugurated in 1901, when some thirty people, including Tilden, MacMillan, departmental colleagues, and a researcher from Tokyo, spent the summer there.1 * Special thanks to this issue’s guest editors, Alan D. -
THE AGRONOMY GUIDE Precautions on Pesticide Use About the Guide • Use of Restricted Pesticides Requires Certification
2021–2022 THE AGRONOMY GUIDE Precautions on Pesticide Use About the Guide • Use of restricted pesticides requires certification. The Penn State Agronomy Guide is designed for easy reading • Use pesticides only when necessary. and quick reference. • Use pesticides only at the recommended dosages and timing to keep residues on crops and animals within the In Part I: Crop and Soil Management, the sections on specific limits set by law. crops include information about: • Avoid spray or dust drift to other crops and bee yards. • Varieties • Cover food and water containers in livestock areas. • Nutritional Requirements • Read the label and follow safety precautions listed. • Establishment • Maintain a pesticide use record and inventory. Wear • Harvesting protective masks and clothing if so directed on label. • Special Considerations • Avoid inhaling pesticides. • Never eat or smoke while spraying or dusting. In Part II: Pest Management, the sections on pest control for • Avoid spilling spray materials on skin and clothing. If specific crops include information on: spilled, wash off immediately with soap and water. • Weeds • Wash hands and face and change to clean clothing after • Insects spraying or dusting. Wash spray clothing after each day’s • Diseases use. • Store pesticides in original containers and out of reach The College of Agricultural Sciences strongly recommends of children, pets, and livestock, and away from food that you have a soil test made to determine your lime and fer- and feed; keep in a locked storeroom or cabinet marked tilizer needs before using the suggestions presented through- “Pesticides—Keep Out!” out this book. Success is directly related to correct analysis of • Dispose of empty containers so that they are no longer a your soils. -
On the Agronomy and Botany of Salak(Salacca Zalacca)
On the agronomy and botany of Salak (Salacca zalacca) CENTRALE LANDBOUWCATALOGUS 0000 0904 4757 Promotoren: Prof. dr. ir. P.C. Struik Hoogleraar ind e gewasfysiologie Prof. dr. ir. M.Flac h Hoogleraar ind etropisch e plantenteelt Samenstelling promotiecommissie: Prof. dr. ir. M.Wesse l (Wageningen Universiteit) Dr. ir. E.W.M. Verheij (Wageningen Universiteit) Prof. dr. ir. L.J.G. van der Maesen (Wageningen Universiteit) Dr. ir. J.S.Siemonsm a (Wageningen Universiteit) , >.'J^' ,'-;'j;> On the agronomy and botany of Salak (Salacca zalacca) SumeruAshar i Proefschrift ter verkrijging van degraa dva n doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman in het openbaar te verdedigen op maandag 2decembe r 2002 des namiddagst e half twee ind e Aula w SumeruAshar i (2002) Onth e agronomy and botany of salak (Salacca zalacca) PhDThesi s Wageningen University - With ref. - With summaries in English,Dutc han d Indonesian ISBN: 90-5808-424-8 Subject heading:agronomy , botany, salak, Salaccazalacca Propositions 1. In East Java, salak has been in cultivation for more than hundred years; it is time that research and extension start to contribute toth e development ofth e crop. This thesis 2. Imperfect pollination is a major cause of low salak yields. The improvement of hand pollination methods shouldtherefor e receive priority. This thesis 3. The pollen source strongly influences the fruit yield of salak, both qualitatively and quantitatively. This thesis 4. Cultural practices in salak production should be improved in such a way that harvesting can be spread more evenly over the year. -
Biological and Practical Importance of Light Microenvironments in a Tree: Participatory Research to Match Teaching and Learning Styles G
Biological and Practical Importance of Light Microenvironments in a Tree: Participatory Research to Match Teaching and Learning Styles G. A. Picchioni,* S. A. Weinbaum, D. L. Daniel, and H. Karaca ABSTRACT usual profit-generating portion of the tree, are driven by the photosynthetic activity of nearby leaves and the importation Productivity and crop quality vary strongly among the diverse light microenvironments within a tree’s canopy. An effective of carbohydrates (Marschner, 1995, p. 131). The level of nat- teaching exercise to convey this biologically and agriculturally ural irradiance within tree canopies is spatially linked to the important principle to plant science students is lacking. We ap- allocation of metabolic resources such as reduced carbon (C) plied a simple participatory learning approach to teach the im- and nitrogen (N) (Flore and Lakso, 1989; Weinbaum et al., portance of light microenvironment in the dense canopy of a ma- 1989). Accordingly, the light microclimate conditions the lo- ture pecan tree [Carya illinoinensis (Wangenh.) K. Koch ‘Sch- calized availability of C and N and determines in large mea- ley’]. Leaves and nuts were sampled along a steep light flux gra- sure the productivity and quality of the tree’s crop within that dient through the canopy, and specific leaf weight (leaf weight per portion of the canopy. Intracanopy light distribution is thus unit leaf area), was used as a simple, proven, and integrative mea- both physiologically and economically important. sure to quantify the incident light gradient. Simple regression At a given level of management, a tree’s quantity and qual- analysis revealed the importance of specific leaf weight (light ex- ity of yield involve a complex interaction between light in- posure) as a predisposing factor controlling nut quality and ni- tensity, relative light distribution, time, space, and the translo- trogen (N) allocation. -
Classification of Botany and Use of Plants
SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life. -
Basic Qualifications Standards
BASIC QUALIFICATIONS STANDARDS GS-454 RANGE MANAGEMENT SPECIALIST GS-5/above Basic Requirements: NOTE: At least 12 semester hours of the 42 must be in upper level courses (300 and 400 level) A. Degree: range management or a related discipline, which includes at least 42 semester hours in a combination of the plant, animal and soil sciences and natural resources management as follows: Range Management. At least 18 semester hours of course work in range management, including courses in such areas as basic principles of range management; range plants; range ecology; range inventories and studies; range improvement; and ranch or rangeland planning. Directly Related Plant, Animal and Soil Sciences. At least 15 semester hours of directly related courses in the plant, animal and soil sciences, including at least one course in each of these three scientific areas, i.e., plant, animal and soil sciences. Courses in such areas as plant taxonomy; plant physiology; plant ecology; animal nutrition; livestock production; and soil morphology or soil classification are acceptable. (NOTE: Of the 15 semester hours, we require at least 3 semester hours must be in each of the three scientific areas noted above) Related Resource Management Studies. At least 9 semester hours of course work in related resource management subject, including courses in such areas as wildlife management; watershed management; natural resource or agricultural economics; forestry; agronomy; forages; and outdoor recreation management. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- GS-457 SOIL CONSERVATION GS-5/above Basic Requirements:NOTE: At least 12 semester hours of the 30 must be in upper level courses (300 and 400 level) Course work in the fields noted below should be in the Biological or Physical Sciences (not social sciences) A. -
Agronomy Spotlight Corn Pollination Affected by Heat and Drought
Agronomy Spotlight /////////////////// Corn Pollination Affected by Heat and Drought High Temperature Versus Drought Stress High-temperature damage to corn typically coincides with drought stress. It is difficult to separate the effects of drought and heat stress. However, high temperatures alone are not believed to severely stress corn pollination when there is adequate soil moisture.1 Effects of Heat on Pollen Shed An individual tassel can shed pollen for a week with peak shed occurring on the second or third day.2 Hot temperatures along with dry weather can hasten pollen shed. Each tassel produces millions of pollen grains providing adequate pollen in most Figure 1. Drought stressed plant during conditions.3 Pollen production may be reduced pollination showing rolled leaves. by continuous hot weather occurring a few days before and during pollination as photosynthesis may not be efficient and carbohydrate production Effects of Heat on Silking can be reduced.4 Severe drought stress, as indicated by rolling Pollen shed from anthers is called dehiscence leaves (Figure 1) and wilting of the corn plant, and occurs when there is a drop in humidity affects pollination primarily by its impact on silk as temperatures begin to rise.4 Typically, pollen elongation. Silks begin elongating from the ovules, shed begins in the early to mid-morning when or potential kernels, of the ear shoot about seven temperatures are not as extreme and a second days before silks are visible outside the husk ‘flush’ of pollen shed sometimes occurs in the later tips.3 The silks from the butt of the ear elongate afternoon with cooler temperatures. -
Agronomy and Crop Physiology of Fibre Hemp. a Literature Review HMG Van
•/./• ' Agronomyan dcro pphysiolog yo f fibrehemp .A literatur erevie w H.M.G.va nde rWer f CABORepor t14 2 March199 1 Centerfo rAgrobiologica lResearc h (CABO-DLO) P.O.Bo x 14,670 0A AWageningen ,Th eNetherland s AGRONOMYan dCRO PPHYSIOLOG Yo fFIBR EHEMP ,A LITERATUR EREVIE W H.M.G.va nde rWerf ,Februar y1991 . Contents. 1Objective s ofthi sliteratur e review 2 2Th ehem pplan t 2. 1 Originan d importance 3 2.2 Varieties 4 2. 3 Sexexpressio n 4 2. 4 Anatomy ofth este m 4 2.5 Lengthan ddiamete ro fth e stem 6 3Cultura l practiceso fth ehem pcro p 3. 1 Soilrequirement san dfertilizatio n 7 3. 2 Sowingdat ean ddept h 8 3.3 Sowing rate,plan tdensit yan dro wwidt h 8 3.4 Weeds 9 3.5 Diseasesan dpest s 10 3.6 Harvest timing 10 3.7 Yield componentsan dyiel dleve l 11 4 Discussionan dconclusion s 12 L Objectiveso fthi sliteratur ereview . Withinth eframewor ko fth eNationa l HempResearc hProgramme ,researc h isconducte d toinvestigat e thepotentia l ofhem pa sa sourc eo ffibr e forth epape r industry inth eNetherlands .Thi sprogramm e startedo n January 1,199 0an dshoul d reacha conclusio no nth eeconomi c feasabilityo fhem pfo rfibr eb yth een do f1992 .Majo r subjectso f research inth eprogra mare : -Breeding -Soil-bornedisease s -Cropphysiolog yan dagronom y -Harvesting andconservatio n -Pulpan dpape rtechnolog y -Economyan dlogistic s Researcho ncro pphysiolog y isbein gcarrie d outwithi na researc h projecta tCABO ,researc ho nagronom ywithi na join tLUW-PAG Vproject . -
Agronomy Courses
Agronomy Courses Undergraduate Level/Lower-Division Courses AGRY 10500 - Crop Production Credit Hours: 3.00. Fundamental principles of crop production and distribution. Emphasis is placed on applying technological advances in agronomy to active crop-production situations, including basic soils, agricultural meteorology, and crop physiology and breeding. Typically offered Fall Spring. AGRY 12000 - Water And Food Security Credit Hours: 3.00. General science introduction to global and regional water resources issues, especially with respect to food security. It will address the role of water in agriculture throughout the world and agriculture's impact on water resources. Students will focus first on developing the scientific underpinnings of water supply and crop water use. With this background, they will explore key issues relating to water scarcity and balancing agricultural and urban demands for water, water quality and soil salinization, water footprints of food and the use of virtual water embedded in food to offset national water deficits, regulation and roles science and policy in solving water problems. Typically offered Fall Spring. AGRY 12300 - Genetics And Society Credit Hours: 3.00. Introduction to the broad impacts that genetics and genomics have on society, from medicine, genetic testing and DNA evidence to agriculture, genetically modified crops and synthetic life. Background information is provided on a weekly topic followed by extensive in-class discussion. Typically offered Fall. AGRY 12500 - Environmental Science And Conservation Credit Hours: 3.00. (EAPS 12500, FNR 12500, NRES 12500) Introduction to environmental science and conservation includes topics in ecological principles, conservation and natural resource management, human impacts on the environment, toxic waste disposal, climate change, energy, air and water pollution, environmental geology and geologic hazards. -
Agronomy Notes
AGRONOMY NOTES Vol. 31:3 March 2007 DATES TO REMEMBER April 12 - Winter annual forage/wildlife food plot field day– N. FL REC, Live Oak, FL May 1 - Twilight field day – N. FL REC, Live Oak, FL May 2-4 - Florida beef cattle short course, Gainesville, FL May 25 - 75th Anniversary and field day, Brooksville REC, Brooksville, FL May 30-June 1 - Southern pasture & forage crop improvement conference, Tallahassee, FL June 5 - Beef forage field day – N. FL REC, Marianna, FL June 25-27 - Southern conservation tillage conference – N. FL REC, Quincy, FL IN THIS ISSUE FORAGE Fertilization of Bahiagrass Pastures.........................................................................2 Agrotain - Fertilizer Additive – Potential for Pasture Fertilization .........................2 WEED CONTROL Frost and Tropical Soda Apple ................................................................................2 Journey Herbicide for Bermudagrass Hay Fields ....................................................3 MISCELLANEOUS 29th Annual Southern Conservation Tillage Conference .........................................3 Get Seed for Crops Early .........................................................................................3 Kill Cover Crops Early in Conservation Tillage Plantings......................................4 Lime and Calcium Materials....................................................................................4 Soil Compaction and Root Restriction ....................................................................4 Use Good Rotations.................................................................................................5 -
Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops . -
Analysing the New Zealand Macroalgal Flora Using
A peer-reviewed open-access journal PhytoKeys 30: 1–21 (2013)Analysing the New Zealand macroalgal flora using herbarium data 1 doi: 10.3897/phytokeys.30.5889 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research Insights from natural history collections: analysing the New Zealand macroalgal flora using herbarium data Wendy A. Nelson1,2, Jennifer Dalen3, Kate F. Neill1 1 National Institute of Water and Atmospheric Research, Private Bag 14-901, Wellington 6241, New Zealand 2 School of Biological Sciences, University of Auckland, Private Bag 92-019, Auckland 1142, New Zealand 3 Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington 6011, New Zealand Corresponding author: Wendy A. Nelson ([email protected]) Academic editor: Ken Karol | Received 2 July 2013 | Accepted 22 November 2013 | Published 26 November 2013 Citation: Nelson WA, Dalen J, Neill KF (2013) Insights from natural history collections: analysing the New Zealand macroalgal flora using herbarium data. PhytoKeys 30: 1–21. doi: 10.3897/phytokeys.30.5889 Abstract Herbaria and natural history collections (NHC) are critical to the practice of taxonomy and have potential to serve as sources of data for biodiversity and conservation. They are the repositories of vital reference specimens, enabling species to be studied and their distribution in space and time to be documented and analysed, as well as enabling the development of hypotheses about species relationships. The herbarium of the Museum of New Zealand Te Papa Tongarewa (WELT) contains scientifically and historically sig- nificant marine macroalgal collections, including type specimens, primarily of New Zealand species, as well as valuable exsiccatae from New Zealand and Australia.