A Historical Perspective on Problems in Botany Teaching
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolutionary Ecology of Pollination and Reproduction of Tropical Plants
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. V - Evolutionary Ecology af Pollination and Reproduction of Tropical Plants - M. Quesada, F. Rosas, Y. Herrerias-Diego, R. Aguliar, J.A. Lobo and G. Sanchez-Montoya EVOLUTIONARY ECOLOGY OF POLLINATION AND REPRODUCTION OF TROPICAL PLANTS M. Quesada and F. Rosas Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Y. Herrerias-Diego Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México. R. Aguilar IMBIV - UNC - CONICET, C.C. 495,(5000) Córdoba, Argentina J.A. Lobo Escuela de Biología, Universidad de Costa Rica G. Sanchez-Montoya Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Keywords: Pollination, tropical plants, diversity, mating systems, gender, conservation. Contents 1. Introduction 1.1. The Life Cycle of Angiosperms 1.2. Overview of Angiosperm Diversity 2. Degree of specificity of pollination system 3. Diversity of pollination systems 3.1. Beetle Pollination (Cantharophily) 3.2. Lepidoptera 3.2.1. Butterfly Pollination (Psychophily) 3.2.2. Moth Pollination (Phalaenophily) 3.3. Hymenoptera 3.3.1. Bee PollinationUNESCO (Melittophily) – EOLSS 3.3.2. Wasps 3.4. Fly Pollination (Myophily and Sapromyophily) 3.5. Bird Pollination (Ornitophily) 3.6. Bat PollinationSAMPLE (Chiropterophily) CHAPTERS 3.7. Pollination by No-Flying Mammals 3.8. Wind Pollination (Anemophily) 3.9. Water Pollination (Hydrophily) 4. Reproductive systems of angiosperms 4.1. Strategies that Reduce Selfing and/or Promote Cross-Pollination. 4.2. Self Incompatibility Systems 4.2.1. Incidence of Self Incompatibility in Tropical Forest 4.3. The Evolution of Separated Sexes from Hermaphroditism 4.3.1. From Distyly to Dioecy ©Encyclopedia Of. Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. -
Plant Physiology General the Main Light Sensitive Pigment Able to Absorb Solar Energy in Both Plants and Algae Is
Plant Physiology General the main light sensitive pigment able to absorb solar energy in both plants and algae is chlorophyll Photosynthesis this chlorophyll is contained with the chloroplasts probably the most characteristic “thing” that plants plants also have other “accessory pigments”: “do” is photosynthesis carotenoids – mainly yellow, orange almost all plants are autotrophs but usually their colors are masked by an abundance of !use energy from the sun to make sugar and chlorophyll other organic molecules out of simple fall colors are seen as a deciduous plant shuts down nutrients and chlorophyll is broken down and recycled leaving the colors of the other pigments photosynthesis requires carbon dioxide & water reds come from anthocyanins made to protect leaves as they recycle nutrients from the breakdown of chlorophyll CO2 enters through stomata or pores [Application] water is absorbed through roots researchers are studying the structure of the chloroplasts to light improve efficiency in the design of solar collectors CO2 + H2O sugar + O2 chlorophyll (glucose) today (2006) the most efficient solar cells capture only ~17% of solar energy that lands on them, while plant [photosynthesis converts water and carbon dioxide cell capture 30-40% to sugar and oxygen] !these sugars can then be broken down as needed for energy photosynthesis uses several chemical pigment to absorb the energy from sunlight Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 1 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 2 Plant -
BIL 161: Environment and Development: the Effects of Environmental Variables on Seed Germination
BIL 161: Environment and Development: The Effects of Environmental Variables on Seed Germination The seed is more than just a plant waiting to happen. It is a complex marvel of evolution, a miniature life-support system that responds to environmental cues in order to give the embryo nestled within the best chance of survival. I. Characteristics and Classification of Plants Plants share synapomorphies that set them apart from other organisms. 1. true tissues (of types unique to plants) 2. waxy cuticle (to prevent desiccation) 3. stomates (microscopic gas exchange pores on the leaves) 4. apical meristems (permanent embryonic tissue for constant growth) 5. multicellular sex organs (male antheridia and female archegonia) 6. walled spores produced in structures called sporangia 7. embryo development inside the female parent 8. secondary metabolites (alkaloids, tannins, flavonoids, etc.) 9. heteromorphic alternation of generations The most primitive plants do not produce seeds at all, but rather release spores into the environment where they grow into a second life cycle stage, called the gametophyte. In seed plants, the life cycle is highly derived. Seed plants still make spores, but each spore grows into a gametophyte that is little more than a bit of tissue that gives rise to gametes. In the male parts of the plant, each spore develops into a sperm-producing male gametophyte known as pollen. In the female parts of the plant, meiosis occurs inside a structure known as the ovule, which will eventually give rise to the seed. Plants can broadly be classified as follows. A. Bryophytes – non-vascular plants (mosses, liverworts and hornworts) B. -
Plant Physiology
PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant ..................................................................................................... -
Selection on Floral Morphology and Environmental Determinants of Fecundity in a Hawk Moth-Pollinated Violet'
Ecoiog~calMonographs, 63(3), 1993. pp. 25 1-275 LC 1993 by the Ecological Society of America SELECTION ON FLORAL MORPHOLOGY AND ENVIRONMENTAL DETERMINANTS OF FECUNDITY IN A HAWK MOTH-POLLINATED VIOLET' CARLOSM. HERRERA Estacidn Bioldgica de Dofiana, Apartado 1056, E-41080 SeviNa, Spain Abstract. This paper presents the results of a 5-yr field study on the determinants of individual variation in maternal fecundity (seed production) in the narrowly endemic violet Viola cazorlensis (Violaceae), at a southeastern Spanish locality. Flowers of this species are characterized by a very long, thin spur and broad morphological variability, and are pol- linated by a single species of day-flying hawk moth (Macroglossum stellatarum; Lepidop- tera, Sphingidae). The primary aim of this investigation was to answer the question, What are the relative importances, as explanations of individual differences in fecundity, of variability in floral traits and of other fecundity determinants that are of an extrinsic nature, such as microhabitat type and interactions with herbivores? The floral morphology of individual V. cazorlensis plants was characterized by means of both "conventional," linear measurements of the size of flower parts (petals, spur, peduncle), and shape analysis of corolla outline (using thin-plate splines relative warps analysis). Spatial (among substrate types) and temporal (among years) patterns of variation in flower, fruit, and seed production by V. cazorlensis plants are described, with particular emphasis on the comparative effects of floral morphology, herbivory (by mammalian ungulates and two species of lepidopteran larvae), and substrate type (rock cliffs, bare rocks at ground level, and sandy soils), on cumulative seed production at the individual plant level. -
THE AGRONOMY GUIDE Precautions on Pesticide Use About the Guide • Use of Restricted Pesticides Requires Certification
2021–2022 THE AGRONOMY GUIDE Precautions on Pesticide Use About the Guide • Use of restricted pesticides requires certification. The Penn State Agronomy Guide is designed for easy reading • Use pesticides only when necessary. and quick reference. • Use pesticides only at the recommended dosages and timing to keep residues on crops and animals within the In Part I: Crop and Soil Management, the sections on specific limits set by law. crops include information about: • Avoid spray or dust drift to other crops and bee yards. • Varieties • Cover food and water containers in livestock areas. • Nutritional Requirements • Read the label and follow safety precautions listed. • Establishment • Maintain a pesticide use record and inventory. Wear • Harvesting protective masks and clothing if so directed on label. • Special Considerations • Avoid inhaling pesticides. • Never eat or smoke while spraying or dusting. In Part II: Pest Management, the sections on pest control for • Avoid spilling spray materials on skin and clothing. If specific crops include information on: spilled, wash off immediately with soap and water. • Weeds • Wash hands and face and change to clean clothing after • Insects spraying or dusting. Wash spray clothing after each day’s • Diseases use. • Store pesticides in original containers and out of reach The College of Agricultural Sciences strongly recommends of children, pets, and livestock, and away from food that you have a soil test made to determine your lime and fer- and feed; keep in a locked storeroom or cabinet marked tilizer needs before using the suggestions presented through- “Pesticides—Keep Out!” out this book. Success is directly related to correct analysis of • Dispose of empty containers so that they are no longer a your soils. -
Ecology: Definition, Scope and Relationship with Other Sciences
Ecology: Definition, Scope and Relationship with other sciences By Shalinder Kaur Department of Botany P.G.G.C.G. – 11 Chandigarh The word "ecology" ("oekologie") (coined by German scientist Ernst Haeckel,1866) was derived from the Greek ―oikos” meaning "household" and logos meaning "science:" the "study of the household of nature." Ecology is not synonymous with environment, environmentalism, or environmental science. Ecology is closely related to physiology, evolutionary biology, genetics and ethology. An understanding of how biodiversity affects ecological function is an important focus area in ecological studies. Ecology: branch of science that deals with interaction between living organisms with each other and their surroundings. Ecological systems are studied at several different levels from individuals and populations to ecosystems and biosphere level. Ecology is a multi-disciplinary science, drawing on many other branches of science. Applied ecology is the practice of employing ecological principles and understanding to solve real world problems. E.g. calculating fish population, measuring environmental impact from construction or logging, building a case for the conservation of a species, and determining the most effective way to protect a species. In a broader sense, ecology can also mean: Natural environment: using the principles and methods of ecology. Human Ecology: looks at humans and their interactions with the natural environment. Scope of Ecology Ecology can be studied at several levels, from proteins and nucleic acids (in biochemistry and molecular biology), cells (in cellular biology), organisms (in botany, zoology, and other similar disciplines), and finally at the level of populations, communities, and ecosystems — which are the subjects of ecology. Because of its focus on the broadest level of life and on the interrelations between living beings and their environment, ecology draws heavily on other branches of science, such as geology and geography, meteorology, pedology, chemistry, and physics. -
On the Agronomy and Botany of Salak(Salacca Zalacca)
On the agronomy and botany of Salak (Salacca zalacca) CENTRALE LANDBOUWCATALOGUS 0000 0904 4757 Promotoren: Prof. dr. ir. P.C. Struik Hoogleraar ind e gewasfysiologie Prof. dr. ir. M.Flac h Hoogleraar ind etropisch e plantenteelt Samenstelling promotiecommissie: Prof. dr. ir. M.Wesse l (Wageningen Universiteit) Dr. ir. E.W.M. Verheij (Wageningen Universiteit) Prof. dr. ir. L.J.G. van der Maesen (Wageningen Universiteit) Dr. ir. J.S.Siemonsm a (Wageningen Universiteit) , >.'J^' ,'-;'j;> On the agronomy and botany of Salak (Salacca zalacca) SumeruAshar i Proefschrift ter verkrijging van degraa dva n doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman in het openbaar te verdedigen op maandag 2decembe r 2002 des namiddagst e half twee ind e Aula w SumeruAshar i (2002) Onth e agronomy and botany of salak (Salacca zalacca) PhDThesi s Wageningen University - With ref. - With summaries in English,Dutc han d Indonesian ISBN: 90-5808-424-8 Subject heading:agronomy , botany, salak, Salaccazalacca Propositions 1. In East Java, salak has been in cultivation for more than hundred years; it is time that research and extension start to contribute toth e development ofth e crop. This thesis 2. Imperfect pollination is a major cause of low salak yields. The improvement of hand pollination methods shouldtherefor e receive priority. This thesis 3. The pollen source strongly influences the fruit yield of salak, both qualitatively and quantitatively. This thesis 4. Cultural practices in salak production should be improved in such a way that harvesting can be spread more evenly over the year. -
Urban Plant Ecophysiology
4 Urban Plant Ecophysiology Nancy Falxa Sonti* USDA Forest Service, Baltimore, Maryland Introduction understanding and managing the fluxes of heat, water, gases and nutrients that underlie Plants have long been cultivated to improve urban ecosystem science and that help make quality of life in dense human settlements, cities both liveable and sustainable (Alberti, mitigating the environmental stresses of ur- 2005). The past few decades have seen a rise ban living. Urban landscape elements include in research on plant community ecology, but gardens, trees and lawns designed to provide ecophysiological studies have lagged behind, aesthetic and functional benefits to local resi- possibly due to methodological challenges, or dents, as well as urban natural areas that re- due to the recent popularity of other topics in flect the native biome vegetation. Different plant biology (Beyschlag and Ryel, 2007). types of informal green space are typically A systematic approach to urban plant found in interstitial urban areas wherever ecophysiology that is tied to decision making plants find space, light, water and nutrients to can support efforts to improve both liveabil- grow (Rupprecht and Byrne, 2014). A grow- ity and sustainability of cities via plant physi- ing body of literature evaluates the health and ological function. Plants are the foundation of well- being benefits of these diverse types of most nature- based solutions to environmental, intentional and unintentional urban nature, social and economic challenges, and physi- and advocates for their inclusion in sustain- ological function is the engine that drives the able urban design (Konijnendijk et al., 2013; provision of associated ecosystem services. Kowarik, 2018; Threlfall and Kendal, 2018). -
Biological and Practical Importance of Light Microenvironments in a Tree: Participatory Research to Match Teaching and Learning Styles G
Biological and Practical Importance of Light Microenvironments in a Tree: Participatory Research to Match Teaching and Learning Styles G. A. Picchioni,* S. A. Weinbaum, D. L. Daniel, and H. Karaca ABSTRACT usual profit-generating portion of the tree, are driven by the photosynthetic activity of nearby leaves and the importation Productivity and crop quality vary strongly among the diverse light microenvironments within a tree’s canopy. An effective of carbohydrates (Marschner, 1995, p. 131). The level of nat- teaching exercise to convey this biologically and agriculturally ural irradiance within tree canopies is spatially linked to the important principle to plant science students is lacking. We ap- allocation of metabolic resources such as reduced carbon (C) plied a simple participatory learning approach to teach the im- and nitrogen (N) (Flore and Lakso, 1989; Weinbaum et al., portance of light microenvironment in the dense canopy of a ma- 1989). Accordingly, the light microclimate conditions the lo- ture pecan tree [Carya illinoinensis (Wangenh.) K. Koch ‘Sch- calized availability of C and N and determines in large mea- ley’]. Leaves and nuts were sampled along a steep light flux gra- sure the productivity and quality of the tree’s crop within that dient through the canopy, and specific leaf weight (leaf weight per portion of the canopy. Intracanopy light distribution is thus unit leaf area), was used as a simple, proven, and integrative mea- both physiologically and economically important. sure to quantify the incident light gradient. Simple regression At a given level of management, a tree’s quantity and qual- analysis revealed the importance of specific leaf weight (light ex- ity of yield involve a complex interaction between light in- posure) as a predisposing factor controlling nut quality and ni- tensity, relative light distribution, time, space, and the translo- trogen (N) allocation. -
Classification of Botany and Use of Plants
SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life. -
BIO 1500: Plant Physiological Ecology (Previously Known As Plant Ecology)
BIO 1500: Plant Physiological Ecology (previously known as Plant Ecology) Lectures: Tuesdays and Thursdays, 9 – 10:20am (H hour), Smith-Buonanno Hall rm 207 Laboratory: Labs will be held on Thursdays in the Environmental Science Center (greenhouses). One or two lab sections will be available (TBD) Instructor: Prof. Erika Edwards Office: 303 Walter Hall Phone: 863-2081 Email: [email protected] Office hours: Wednesday, 1-3 pm Teaching assistant: Matt Ogburn, [email protected], office hours TBD Course Overview This is an advanced botany course, preferably for students that have taken either BIO43 or BIO44 in addition to BIO20; otherwise permission must be obtained from the instructor. A keen interest in plants is a must. Aims and objectives: The primary aim of BIO 1500 is to examine the role of the environment in shaping the anatomical, physiological, and ecological diversity of vascular plants. Lectures will provide an overview of plant-environment interactions, focusing on anatomical and physiological adaptations of leaves, stems, and roots to different habitats. A comparative, phylogenetic approach will be emphasized. This is a hybrid lecture/seminar course, where classes will consist of both chalkboard lectures by the professor as well as discussions of articles from the primary literature. In addition, BIO 1500 is designed to be a hands-on course, and lectures are viewed mostly as supplements to the semester-long greenhouse project that will provide students with first-hand experience in measuring and interpreting plant functional traits. Students will work on a set of group projects that are designed to test long-standing assumptions about the evolution and adaptive nature of certain plant traits.