Plant Physiology General the Main Light Sensitive Pigment Able to Absorb Solar Energy in Both Plants and Algae Is

Total Page:16

File Type:pdf, Size:1020Kb

Plant Physiology General the Main Light Sensitive Pigment Able to Absorb Solar Energy in Both Plants and Algae Is Plant Physiology General the main light sensitive pigment able to absorb solar energy in both plants and algae is chlorophyll Photosynthesis this chlorophyll is contained with the chloroplasts probably the most characteristic “thing” that plants plants also have other “accessory pigments”: “do” is photosynthesis carotenoids – mainly yellow, orange almost all plants are autotrophs but usually their colors are masked by an abundance of !use energy from the sun to make sugar and chlorophyll other organic molecules out of simple fall colors are seen as a deciduous plant shuts down nutrients and chlorophyll is broken down and recycled leaving the colors of the other pigments photosynthesis requires carbon dioxide & water reds come from anthocyanins made to protect leaves as they recycle nutrients from the breakdown of chlorophyll CO2 enters through stomata or pores [Application] water is absorbed through roots researchers are studying the structure of the chloroplasts to light improve efficiency in the design of solar collectors CO2 + H2O sugar + O2 chlorophyll (glucose) today (2006) the most efficient solar cells capture only ~17% of solar energy that lands on them, while plant [photosynthesis converts water and carbon dioxide cell capture 30-40% to sugar and oxygen] !these sugars can then be broken down as needed for energy photosynthesis uses several chemical pigment to absorb the energy from sunlight Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 1 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 2 Plant Nutrition heterotrophs must eat a variety of organic compounds to build cells and to break down for energy since plants produce their own organics they require in most cases; Nitrogen & Phosphorus are most relatively few simple inorganic nutrients likely to limit plant growth (hardest to get nutrients), like most living organisms plants need some form all fertilizers contain: N, P and K, in various concentrations of Carbon, Hydrogen, Oxygen & Nitrogen [Application] carbon, hydrogen and oxygen come from the air in the form of CO2 H2O & O2 agriculture & gardening plants, mostly nonnative species, are nitrogen & most other nutrients such as Phosphorus and selected for fast, lush growth Potassium comes from the soil: need many more nutrients (and water) than native plants van Helmont (1600’s) took tub with 200 lbs of must supplement with fertilizers soil and planted a 5 lb willow tree in it after 5 years: eg. Nitrogen the willow weighed 164 lbs the soil weighed 2 oz in most plants, Nitrogen is absorbed as inorganic minerals from the soil much of global climate change is being caused by increasing amounts of CO2 in the atmosphere however some plants are able to get their nitrogen in other ways: many oil and coal companies have touted the beneficial effects of CO2 on plant growth some plants can grow in N-poor soil using a eg. bristlecone pines and other native species have symbiosis with N-fixing bacteria that can shown enhanced growth over the past 50 extract N from the atmospshere and convert it years to a more useable form what they ignore is that many other native species do not benefit from increasing CO2 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 3 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 4 and in general weedy plants grow much better than do native plants with enhanced carbon dioxide levels some plants are carnivorous and get their they are therefore (at least partially) nitrogen from digesting insects and other heterotrophic animals a few of these have completely given up ! tend to grow nitrogen poor soil photosynthesis over 500 species have been described eg. parasitic plants ! N America has the most diverse 3000 species of parasitic plants carnivorous plant fauna largest group are the mistletoes (~800 sp) most prefer damp boggy soils mostly tropical and subtropics but also includes: attract insects through color, smell, nectar indian paintbrush (a hemiparasite) a few plants not considered to be sandalwoods “carnivorous” may still be able to get at dodders (eg. Cuscuta sp.) of the morning glory family broomrapes and figworts least some nutrition from them: rafflesia eg. petunias - covered with sticky hairs roots grow into host plant eg. potato, tobacco, rhododendron and teasel produce poisons that kill insects and may extract water, minerals and nutrients from absorb some nutrition from them vascular system of host eg. a rare Brazilian plant produces underground leaves that trap, kill and absorb roundworms some have given up photosynthesis altogether and get all their organics from Heterotrophic Plants their host a few plants get at least some of their organic eg. dodder, coral root orchid, broom rape, molecules in other ways than photosynthesis eg. pants parasitic on fungi Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 5 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 6 some plant roots parasitize the abundant eg. aspens tend to grow in large interconnected colonies fungi that grow in and on the forest floor and typically all members of the colony begin to show fall colors at the same time some of these have also completely lost the ability to do photosynthesis but some diseases can also spread directly from tree to tree through these root grafts eg. snow plant also produces its own heat that can actually eg. oak wilt often spread this way melt snow a common method to control oak wilt is to trench Root Grafts around an infected tree one other way that perennial plants might get access ! breaks any root grafts with other trees to both organic and inorganic foods are through Halophytes root grafts so far we’ve talked about how plants get nutrients and as roots grow they encounter roots of other plants minerals when they are in short supply can be same or different species under some situations plants have to deal with the may grow together to form graft opposite problem root grafts are known for over 160 species of trees ! too many minerals and salts in the soil eg. birch, maple, oaks, aspen if soil contains too many minerals; ie. is too salty the nutrients can pass between them plant may be unable to absorb water effectively may be of advantage for a plant growing in poor soil that is connected to a plant nearby growing in good soil or near a ! salty soil can actually suck the water out of the creek or pond plant by osmosis (“water follows salts”) hormones can also be exchanged most plants are fairly sensitive to high concentrations of salts in soil sometimes events like flowering or autumn colors in deciduous plants are coordinated eg. too much fertilizer can kill a plant Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 7 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 8 ! aerobic respiration eg. farmland that is continually irrigated becomes less fertile as salts and minerals build up from evaporation since plants are much less active than animals they =soil salinization have a very low O2 requirement; millions of acres of farmland have been removed from 1-2% is sufficient to maintain aerobic respiration cultivation because of salinization !some O2 diffuses across cuticle and closed especially in dry climates stomata of leaves and herbaceous stems but a few plants can grow in high salt concentrations !in roots, well drained soil usually has enough air equivalent to the saltiness of sea water ~3% salt spaces to provide oxygen for roots these plants are called halophytes !when soil is saturated with water cells can use anaerobic respiration temporarily eg. many plants of the sea shore and salt marshes but cant grow and do normal metabolism halophytes have special cellular adaptations that until the soil drains prevent them from taking up salt if soil remains flooded too long they will die or !cypress & mangrove trees have adapted to living in continuously saturated soil by producing allow them to secrete excess salt pneumatophores (“cypress knees”) which eg. trichomes (leaf hairs) act like snorkels to bring O2 to the roots Oxygen for Respiration in addition to needing oxygen atoms to build organic molecules plants also need oxygen molecules (O2) to break down organic molecules for energy Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 9 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 10 Transport in Plants ! in one direction only most plants are large enough that they need some way to be able to move materials around the driving force of water movement in the xylem only the smallest plants lack a transport is the “pull” of transpiration system the key to transpiration is the stomata of the leaves transport in plants is not like fluid transport in animals as water is evaporated from the stomata In most animals fluids are circulated in the body, usually using a muscular pump to push them along !tension is produced Plants have no “muscle” cells – they have no pumps to resembling the “sucking” on a straw push fluids around !cohesion of water molecules “pulls” more water plants mainly use passive physical processes such up the plant to replace it as diffusion and osmosis to move things around water must form an unbroken column of water There are two major transport systems found in most molecules for process to work plants: a single bubble destroys the flow and stops xylem transpiration phloem eg. cut flowers, cut christmas trees A. Xylem Transport dissolved minerals are carried passively by the xylem is generally made of larger thicker-walled
Recommended publications
  • BIL 161: Environment and Development: the Effects of Environmental Variables on Seed Germination
    BIL 161: Environment and Development: The Effects of Environmental Variables on Seed Germination The seed is more than just a plant waiting to happen. It is a complex marvel of evolution, a miniature life-support system that responds to environmental cues in order to give the embryo nestled within the best chance of survival. I. Characteristics and Classification of Plants Plants share synapomorphies that set them apart from other organisms. 1. true tissues (of types unique to plants) 2. waxy cuticle (to prevent desiccation) 3. stomates (microscopic gas exchange pores on the leaves) 4. apical meristems (permanent embryonic tissue for constant growth) 5. multicellular sex organs (male antheridia and female archegonia) 6. walled spores produced in structures called sporangia 7. embryo development inside the female parent 8. secondary metabolites (alkaloids, tannins, flavonoids, etc.) 9. heteromorphic alternation of generations The most primitive plants do not produce seeds at all, but rather release spores into the environment where they grow into a second life cycle stage, called the gametophyte. In seed plants, the life cycle is highly derived. Seed plants still make spores, but each spore grows into a gametophyte that is little more than a bit of tissue that gives rise to gametes. In the male parts of the plant, each spore develops into a sperm-producing male gametophyte known as pollen. In the female parts of the plant, meiosis occurs inside a structure known as the ovule, which will eventually give rise to the seed. Plants can broadly be classified as follows. A. Bryophytes – non-vascular plants (mosses, liverworts and hornworts) B.
    [Show full text]
  • Plant Physiology
    PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant .....................................................................................................
    [Show full text]
  • Plant Physiology and Biochemistry
    BSCBO- 303 B.Sc. III YEAR Plant Physiology and Biochemistry DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY PLANT PHYSIOLOGY AND BIOCHEMISTRY BSCBO-303 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Prof. Y. S. Rawat Prof. C.M. Sharma Department of Botany Department of Botany DSB Campus, Kumoun University HNB Garhwal Central University, Nainital Srinagar Prof. R.C. Dubey Prof. P.D.Pant Head, Department of Botany Director I/C, School of Sciences Gurukul Kangri University Uttarakhand Open University Haridwar Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital UTTARAKHAND OPEN UNIVERSITY Page 1 PLANT PHYSIOLOGY AND BIOCHEMISTRY BSCBO-303 Unit Written By: Unit No. 1. Dr. Urmila Rana 1 & 2 Asst. Professor, Department of Botany, Pauri Campus, H.N.B. Garhwal University, Pauri, Uttarakhand 2. Dr. Shweta Kukreti 3 Asst. Professor, Department of Botany, Pauri Campus, H.N.B. Garhwal University, Pauri, Uttarakhand 3- Dr. Nishesh Sharma 4 Asst. Professor, Department of Biotechnology, Uttaranchal College of Applied and Life Science Uttaranchal University, Dehradun 4. Dr. Deepika Upadhyay 5 & 6 Asst. Professor, Department of Microbiology Chinmaya Degree College, BHEL, Haridwar 5- Dr. Manish Belwal 7 & 8 Asst Prof., Department of Botany Govt.
    [Show full text]
  • Introduction to Plant Physiology
    Chapter 1: Introduction to Plant Physiology Plant is source of food, fodder, fibers, clothing, shelter fuel, medicine, and oxygen. This all resources are the products of plant physiology. The basic and main process in plant, photosynthesis is responsible for the supply of all the above-mentioned resources. Figure 1: Different plant science areas studied under plant physiology. Definition: Plant physiology deals with the various metabolic process and pathways in plant. Practically it is heart of the botany, which study different functions performed by the plant. It deals with the study of organization and operation of all the physiological, biochemical and enzymological processes in plant. Importance of plant physiology: Plant metabolism is mainly anabolism and catabolism. Breaking and joining different biomolecules. Studying this aspect of plant provides the explanation the several question about the plant. Example: How plants utilize solar energy? SACP Dept. of Botany BO232 Plant Physiology How they obtain and distribute water and nutrients? How plants grow and develop? How they respond to the environment? How they produce flowers and seed? How seed germinate and form new plants? Answers of above questions helps to understand different process and acquired knowledge helps to improve productivity and yield of the crop. Need for the Study of Plant Physiology: • It is important branch of botany, understanding the plant physiology helps interlink other branches of botany. Understanding different physiological process such as Seed germination, Growth and development, Photosynthesis, Absorption of water and minerals, Ascent of sap, Translocation of solutes, Transpiration, Photorespiration, Respiration, Photoperiodism, Vernalization, Flowering, Ripening of fruits, Senescence and Death of plant gives huge knowledge and this knowledge finds wide application in every branch of botany.
    [Show full text]
  • 1 BOTANY, PLANT PHYSIOLOGY and PLANT GROWTH Lesson 9: PLANT NUTRITION Segment One – Nutrient Listing Plants Need 17 Elements
    BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH Lesson 9: PLANT NUTRITION Segment One – Nutrient Listing Plants need 17 elements for normal growth. Carbon, oxygen, and hydrogen are found in air and water. Nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur are found in the soil. The above nine elements are used in relatively large amounts by the plant and are called macronutrients. There are eight other elements that are used in much smaller amounts and are called micronutrients or trace elements. The micronutrients, which are found in the soil, are listed in the table below. All 17 elements, both macronutrients and micronutrients, are essential for plant growth. MACRONUTRIENTS Found in air and water carbon C oxygen O hydrogen H Primary Elements nitrogen N phosphorus P potassium K Secondary Elements calcium Ca magnesium Mg sulfur S MICRONUTRIENTS iron Fe manganese Mn copper Cu zinc Zn boron B molybdenum Mo chlorine Cl cobalt Co The terms primary, secondary, and micronutrients actually refer to the amount of these elements needed by the plants rather than their relative importance. All 17 elements are essential; this is an important concept when learning plant nutrition. The term “essential” means if even ONE nutrient is missing, you have a critical situation. The plant will stop growing, and will die eventually. Think of all 17 elements as a chain of 17 links; if you lose one link in the chain, it has no power. 1 Seldom do you need to be concerned about the supply of carbon, oxygen, and hydrogen, even though large amounts of each are used in plant growth and development.
    [Show full text]
  • Historical Review
    1 Historical Review INTRODUCTION This chapter presents a brief historical review of progress in the field of plant water relations because the authors feel that it is impossible to fully understand the present without some knowledge of the past. As the Danish philosopher Kierkegaarde wrote, "Life can only be understood backward, but it can only be lived forward," and this also is true of science. The present generation needs to be reminded that some generally accepted concepts have their origin in ideas of 17th or 18th century writers and although others were suggested many decades ago, they were neglected until recently. As might be expected, the importance of water to plant growth was recog- nized by prehistoric farmers because irrigation systems already existed in Egypt, Babylonia (modern Iraq), and China at the beginning of recorded history, and the first European explorers found extensive irrigation systems in both North and South America. However, irrigation was not used extensively in agriculture in the United States until after the middle of the 19th century and little research on plant water relations occurred until the 20th century. Early Research Although plant water relations appear to have been the first area of plant physiology to be studied, progress was slow from Aristotle who died in 322 B.C. to the middle of the 19th century. According to Aristotle, plants absorbed their food ready for use from the soil, and plant nutrition was controlled by a soul or vital principle that ailowed plants to absorb only those substances useful in 2 1. Historical Review growth. This idea only began to be questioned in the 17th century by Jung, van Helmont, Mariotte, and others, and it ~ersistedinto the 19th century.
    [Show full text]
  • Evolution of the Life Cycle in Land Plants
    Journal of Systematics and Evolution 50 (3): 171–194 (2012) doi: 10.1111/j.1759-6831.2012.00188.x Review Evolution of the life cycle in land plants ∗ 1Yin-Long QIU 1Alexander B. TAYLOR 2Hilary A. McMANUS 1(Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA) 2(Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA) Abstract All sexually reproducing eukaryotes have a life cycle consisting of a haploid and a diploid phase, marked by meiosis and syngamy (fertilization). Each phase is adapted to certain environmental conditions. In land plants, the recently reconstructed phylogeny indicates that the life cycle has evolved from a condition with a dominant free-living haploid gametophyte to one with a dominant free-living diploid sporophyte. The latter condition allows plants to produce more genotypic diversity by harnessing the diversity-generating power of meiosis and fertilization, and is selectively favored as more solar energy is fixed and fed into the biosystem on earth and the environment becomes more heterogeneous entropically. Liverworts occupy an important position for understanding the origin of the diploid generation in the life cycle of land plants. Hornworts and lycophytes represent critical extant transitional groups in the change from the gametophyte to the sporophyte as the independent free-living generation. Seed plants, with the most elaborate sporophyte and the most reduced gametophyte (except the megagametophyte in many gymnosperms), have the best developed sexual reproduction system that can be matched only by mammals among eukaryotes: an ancient and stable sex determination mechanism (heterospory) that enhances outcrossing, a highly bimodal and skewed distribution of sperm and egg numbers, a male-driven mutation system, female specialization in mutation selection and nourishment of the offspring, and well developed internal fertilization.
    [Show full text]
  • Department of Plant Sciences and Plant Pathology
    disease. Additional projects pertain projects involve soil-borne diseases Department of Graduate to biocontrol of plant diseases and of cereals, the genetic basis for Programs biocontrol of weeds using plant disease resistance in fi eld crops, Plant Sciences and Plant Pathology pathogens and/or their toxins. cereal leaf spots, virus diseases Master of Science Degrees of cereals and potatoes, bacterial Unique, hands-on study programs for students interested in landscape design, and the biology, genetics and biochemistry of plants Plant Sciences Option Doctor of diseases and the biochemistry and The department conducts research Philosophy Degrees molecular genetics of plant disease. programs in: cereal quality; Plant Sciences - Plant Additional current research projects cropping systems/specialty crops; Pathology Option pertain to the biocontrol of plant and molecular and conventional Many research projects are problem- diseases and the biocontrol of approaches to plant improvement. oriented and pertain to major weeds using plant pathogens and/or Faculty have expertise in plant pathological problems in the their toxins. Department research molecular genetics, plant breeding state. Currently active research projects employ modern molecular and genetics, cereal quality, biological and biotechnological cytogenetics, biochemistry, plant The department conducts techniques as well as traditional physiology and agronomy. research programs in: cereal plant pathology techniques. quality; cropping systems/ Plant Pathology Option specialty crops; molecular and Plant Sciences - Plant Most research projects in this option conventional approaches to Genetics Option are problem-oriented and pertain to plant improvement. Faculty The department offers advanced major plant pathological problems in have expertise in molecular study leading to a Ph.D. degree the state.
    [Show full text]
  • A Balance Between the Activities of Chloroplasts and Mitochondria Is Crucial for Optimal Plant Growth
    antioxidants Article A Balance between the Activities of Chloroplasts and Mitochondria Is Crucial for Optimal Plant Growth Zhou Xu 1 , Renshan Zhang 1 , Meijing Yang 1, Yee-Song Law 1 , Feng Sun 1 , Ngai Lung Hon 2, Sai Ming Ngai 2,3 and Boon Leong Lim 1,3,* 1 School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; [email protected] (Z.X.); [email protected] (R.Z.); [email protected] (M.Y.); [email protected] (Y.-S.L.); [email protected] (F.S.) 2 School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; [email protected] (N.L.H.); [email protected] (S.M.N.) 3 State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China * Correspondence: [email protected]; Tel.: +852-22990826 Abstract: Energy metabolism in plant cells requires a balance between the activities of chloroplasts and mitochondria, as they are the producers and consumers of carbohydrates and reducing equiva- lents, respectively. Recently, we showed that the overexpression of Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), a phosphatase dually anchored on the outer membranes of chloroplasts and mitochondria, can boost the plant growth and seed yield of Arabidopsis thaliana by coordinating the activities of both organelles. However, when AtPAP2 is solely overexpressed in chloroplasts, the growth-promoting effects are less optimal, indicating that active mitochondria are required for dissipating excess reducing equivalents from chloroplasts to maintain the optimal growth of plants. It Citation: Xu, Z.; Zhang, R.; Yang, M.; is even more detrimental to plant productivity when AtPAP2 is solely overexpressed in mitochondria.
    [Show full text]
  • BOTANY, PLANT PHYSIOLOGY and PLANT GROWTH Lesson 8: ENVIRONMENTAL FACTORS
    BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH Lesson 8: ENVIRONMENTAL FACTORS The environment limits plant growth and distribution. If any one environmental factor is less than ideal, it will become a limiting factor in plant growth. Limiting factors are also responsible for the geography of plant distribution. For example, only plants adapted to limited amounts of water can live in deserts. Most plant problems are caused by environmental stress, either directly or indirectly. Therefore, it is important to understand the environmental aspects that affect plant growth. These factors are light, temperature, water, humidity and nutrition. In the subsequent lesson, we will discuss nutrition. Segment One - Effect of Light on Plant Growth Light has three principal characteristics that affect plant growth. These are light quantity, light quality and light duration. • Light quantity refers to the intensity or concentration of sunlight and varies with the season of the year. The maximum is present in the summer and the minimum in winter. The more sunlight a plant receives, up to a point, the better capacity it has to produce plant food through photosynthesis. As the sunlight quantity decreases, the photosynthetic process decreases. Light quantity can be decreased in a garden or greenhouse by using shadecloth above the plants. It can be increased by surrounding plants with reflective material, white backgrounds or supplemental lights. • Light quality refers to the color or wavelength reaching the plant surface. Sunlight can be broken up by a prism into respective colors of red, orange, yellow, green, blue, indigo and violet. On a rainy day, raindrops act as tiny prisms and break the sunlight into these colors, producing a rainbow.
    [Show full text]
  • Sybsc Botany II Sem-I Plant Physiology
    SYBSc Botany II Sem-I Plant Physiology Chapter-I: INTRODUCTION TO PLANT PHYSIOLOGY Introduction: Plant physiology is an interdisciplinary science. Its main aim is to get a complete and thorough Knowledge of all phenomenon occurring in plants. The Dictionary meaning of Plant physiology is the science of properties and function of plants as organism in normal condition. Definition- “Plant physiology is defined as the science which deals with the function of cells, tissues, organs of plants as a whole” The plant physiology is concerned with process and functions,the response of plant to change environment and the growth and development that result from response.plant process include ion absorption ,Sap movement ,photosynthesis ,respiration ,metabolism ,plant growth ,growth regulators ,process of flowering etc. plant structure, process and function are correlated which is basis of study of plant physiology. 1.1 Importance of Plant Physiology Plant metabolism mainly catabolism and anabolism is studied under plant physiology which is concerned with every aspects of plant life and provide explanation to several question about the plant.How the use solar energy ?How the obtained and distribute water and nutrients? How they produce flowers fruits and seed etc. Today it has become an important branch for conservation and protection of biodiversity, sustainable development, and and improvement in crops productivity under changing climatic condition. 1.2 Scope and Application of Plant Physiology The scope of plant physiology is well known and each and every aspect of plant and animal life it has vast scope and application in various disciplines of basic and applied science .is cover the studies right from gene level to organism level and concern with genotypic and phenotypic expression of plants.the fundamentals principals and laws of plant physiology are equally important and applicable to all unicellular and multicellular organism of either eukaryotic to prokaryotic nature.
    [Show full text]
  • Plant Hormone Conjugation
    Plant Molecular Biology 26: 1459-1481, 1994. © 1994 Kluwer Academic Publishers. Printed in Belgium. 1459 Plant hormone conjugation Gtlnther Sembdner*, Rainer Atzorn and Gernot Schneider Institut far Pflanzenbiochemie, Weinberg 3, D-06018 Halle, Germany (* author for correspondence) Received and accepted 11 October 1994 Key words: plant hormone, conjugation, auxin, cytokinin, gibberellin, abscisic acid, jasmonate, brassinolide Introduction (including structural elucidation, synthesis etc.) and, more recently, their biochemistry (including Plant hormones are an unusual group of second- enzymes for conjugate formation or hydrolysis), ary plant constituents playing a regulatory role in and their genetical background. However, the plant growth and development. The regulating most important biological question concerning the properties appear in course of the biosynthetic physiological relevance of plant hormone conju- pathways and are followed by deactivation via gation can so far be answered in only a few cases catabolic processes. All these metabolic steps are (see Conjugation of auxins). There is evidence in principle irreversible, except for some processes that conjugates might act as reversible deactivated such as the formation of ester, glucoside and storage forms, important in hormone 'homeosta- amide conjugates, where the free parent com- sis' (i.e. regulation of physiologically active hor- pound can be liberated by enzymatic hydrolysis. mone levels). In other cases, conjugation might For each class of the plant hormones so-called accompany or introduce irreversible deactivation. 'bound' hormones have been found. In the early The difficulty in investigating these topics is, in literature this term was applied to hormones part, a consequence of inadequate analytical bound to other low-molecular-weight substances methodology.
    [Show full text]