Rats, Mice and People: Rodent Biology and Management

Total Page:16

File Type:pdf, Size:1020Kb

Rats, Mice and People: Rodent Biology and Management Rats, mice and people: rodent biology and management Editors: Grant R. Singleton, Lyn A. Hinds, Charles J. Krebs and Dave M. Spratt Australian Centre for International Agricultural Research Canberra 2003 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used, this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains results of original research supported by ACIAR, or deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on developing countries. This book was published to coincide with the 2nd International Conference on Rodent Biology and Management, Canberra, Australia, February 2003. This file forms part of ACIAR Monograph 96, Rats, mice and people: rodent biology and management. The other parts of Monograph 96 can be downloaded from <www.aciar.gov.au>. © Australian Centre for International Agricultural Research 2003 Grant R. Singleton, Lyn A. Hinds, Charles J. Krebs and Dave M. Spratt, 2003. Rats, mice and people: rodent biology and management. ACIAR Monograph No. 96, 564p. ISBN 1 86320 357 5 [electronic version] ISSN 1447-090X [electronic version] Technical editing and production by Clarus Design, Canberra Contents Preface 9 Symposium 1: Disease 11 Disease: health effects on humans, population effects on rodents Michael Begon 13 Interaction between rodent species in agro-forestry habitats in the western Usambara Mountains, north-eastern Tanzania, and its potential for plague transmission to humans R.H. Makundi, B.S. Kilonzo and A.W. Massawe 20 Rodent diseases in Southeast Asia and Australia: inventory of recent surveys Grant R. Singleton, Lee Smythe, Greg Smith, David M. Spratt, Ken Aplin and Abigail L. Smith 25 Developments in fertility control for pest animal management Lyn A. Hinds, Chris M. Hardy, Malcolm A. Lawson and Grant R. Singleton 31 Trypanosome parasites in the invading Rattus rattus and endemic rodents in Madagascar Juha Laakkonen, Jukka T. Lehtonen, Haingotiana Ramiarinjanahary and Patricia C. Wright 37 Characterisation of Leptospira isolates from captive giant African pouched rats, Cricetomys gambianus R. Machang’u, G. Mgode, J. Asenga, G. Mhamphi, R. Hartskeerl, M. Goris, C. Cox, B. Weetjens and R. Verhagen 40 Potential of Trypanosoma evansi as a biocide of rodent pests Neena Singla, V.R. Parshad and L.D. Singla 43 A retrospective analysis of a vole population decline in western Oregon, USA Jerry O. Wolff and W. Daniel Edge 47 Pathogen study of house mice on islands reveals insights into viral persistence in isolated populations Dorian Moro and Malcolm Lawson 51 Helminths of the rice-field rat, Rattus argentiventer N.A. Herawati and Sudarmaji 55 Occurrence and pathomorphological observations of Cysticercus fasciolaris in lesser bandicoot rats in India L.D. Singla, Neena Singla, V.R. Parshad, B.S. Sandhu and J. Singh 57 Symposium 2: Conservation 61 Rodents on islands: a conservation challenge Giovanni Amori and Mick Clout 63 Positive effects of rodents on biota in arid Australian systems Chris R. Dickman 69 Feasibility of non-lethal approaches to protect riparian plants from foraging beavers in North America Dale L. Nolte, Mark W. Lutman, David L. Bergman, Wendy M. Arjo and Kelly R. Perry 75 Balancing rodent management and small mammal conservation in agricultural landscapes: challenges for the present and the future Ken P. Aplin and Grant R. Singleton 80 Conservation and management of hydromyine rodents in Victoria, Australia John H. Seebeck, Barbara A. Wilson and Peter W. Menkhorst 89 The use of small mammal community characteristics as an indicator of ecological disturbance in the Korannaberg Conservancy Nico L. Avenant 95 3 Rats, Mice and People: Rodent Biology and Management Activity range and den trees of the brush-tailed rabbit-rat on Cobourg Peninsula, Northern Territory, Australia Ronald S.C. Firth 99 Rodent outbreaks in the uplands of Laos: analysis of historical patterns and the identity of nuu khii Bounneuang Douangboupha, Ken P. Aplin and Grant R. Singleton 103 How do rodent systematics affect conservation priorities? Giovanni Amori and Spartaco Gippoliti 112 Symposium 3: Behaviour 115 How does rodent behaviour impact on population dynamics? Charles J. Krebs 117 Density-dependence and the socioecology of space use in rodents Jerry O. Wolff 124 Predator odours as reproductive inhibitors for Norway rats Vera V. Voznessenskaya, Sergey V. Naidenko, Natalia Yu. Feoktistova, Georgy J. Krivomazov, Lowell A. Miller and Larry Clark 131 Boreal vole cycles and vole life histories Hannu Ylönen, Jana A. Eccard and Janne Sundell 137 Scent marking in rodents: a reappraisal, problems, and future directions Shawn A. Thomas and Jerry O. Wolff 143 Predator presence affects the reproductive success of prey in outdoor conditions Sergey V. Naidenko, Svetlana V. Naidenko, Larry Clark and Vera V. Voznessenskaya 148 Exploratory behaviour and response to olfactory cues by the Mus musculus species group: implications for the origins of Transcaucasian forms of Mus Elena V. Kotenkova, Alexander V. Ambarian, Andrei S. Kandauro and Natalia N. Meshkova 151 Studies on neophobic behaviour in Norway rats (Rattus norvegicus Berkenhout, 1769) from farms in Germany Swastiko Priyambodo and Hans-Joachim Pelz 155 Monitoring activity patterns and social interactions of small mammals with an automated event-recording system: wild house mice (Mus domesticus) as a case study Duncan R. Sutherland and Grant R. Singleton 159 Predation risk and behaviour during dispersal: implications for population dynamics of rodents Andrea E. Byrom 165 Strategies of aggressive fighting reflect degree of sociality in three species of gerbils Ilya A. Volodin and Michael E. Goltsman 169 The influence of predator odours and overcrowded mouse odours on regulation of oestrous cycles in house mice (Mus musculus) Natalia Yu. Feoktistova, Svetlana V. Naidenko, Anna E. Voznesenskaia, Georgy J. Krivomazov, Larry Clark and Vera V. Voznessenskaya 173 Effectiveness of controlling fecundity and survival on rodents with different life history traits Guiming Wang and Jerry O. Wolff 176 Symposium 4: Management—field 181 Management of rodents in crops: the Pied Piper and his orchestra Herwig Leirs 183 Ecologically based management of rice-field rats on a village scale in West Java: experimental approach and assessment of habitat use Jens Jacob, Sudarmaji and Grant R. Singleton 191 Impact of village-level rodent control practices on rodent populations and rice crops in Vietnam Peter R. Brown, Nguyen Phu Tuan, Grant R. Singleton, Nguyen Van Tuat, Tran Quang Tan and Le Thanh Hoa 197 4 Contents Rodent problems in India and strategies for their management A.M.K. Mohan Rao 203 Habitat manipulation and rodent damage control: reducing rodent damage in Australian macadamia orchards John G. White, John Wilson and Kerrilee Horskins 213 Patterns in rodent pest distribution in a maize cropping system in the Kenyan Rift Valley C.O. Odhiambo and N.O. Oguge 217 Prey selection by barn owls in rice fields in Malaysia Hafidzi, M.N. and Mohd NA’IM 220 Robustness of techniques for estimating rat damage and yield loss in maize fields Loth S. Mulungu, Rhodes H. Makundi and Herwig Leirs 224 Effect of land preparation methods on spatial distribution of rodents in crop fields Apia W. Massawe, Herwig Leirs, Winfrida P. Rwamugira and Rhodes H. Makundi 229 Current approaches towards environmentally benign prevention of vole damage in Europe Hans-Joachim Pelz 233 Overcoming rat infestation in Australian sugarcane crops using an integrated approach that includes new rodenticide technology Michelle Smith, Brendan Dyer, Andrew Brodie, Warren Hunt and Linton Staples 238 Review of recent advances in studies of the ecology of Mastomys natalensis (Smith 1834) (Rodentia: Muridae) in Tanzania, eastern Africa R.H. Makundi and A.W. Massawe 242 Conservation of rodents in tropical forests of Vietnam Nguyen Minh Tam, Pham Duc Tien and Nguyen Phu Tuan 246 Testing a biological control program for rodent management in a maize cropping system in Kenya D.O. Ojwang and N.O. Oguge 251 The effects of Tephrosia vogelii and land preparation methods on mole rat activity in cassava fields, Alfred M. Sichilima, M.S. Zulu and Herwig Leirs 254 Changes in community composition and population dynamics of commensal rodents in farmhouses in the Dongting Lake region of China Zhang Meiwen, Wang Yong and Li Bo 256 Evaluation of thiram and cinnamamide as potential repellents against maize-seed depredation by the multimammate rat, Mastomys natalensis, in Tanzania Vicky Ngowo, J. Lodal, L.S. Mulungu, R.H. Makundi, A.W. Massawe and H. Leirs 260 Composition of rodents and damage estimates on maize farms at Ziway, Ethiopia Afework Bekele, H. Leirs and R. Verhagen 262 MOUSER (Version 1.0): an interactive CD-ROM for managing the impact of house mice in Australia Peter R. Brown, Grant R. Singleton, Geoff A. Norton and David Thompson 264 Observations of bamboo flowering and associated increases in rodent populations in the north-eastern region of India N.P.S. Chauhan 267 Rodent removal with trap–barrier systems in a direct-seeded rice community in the Philippines Mario S. dela Cruz, Ulysses G. Duque, Leonardo V. Marquez, Antonio R. Martin, Ravindra C. Joshi and Emmanuel R. Tiongco 271 The use of the barn owl, Tylo alba, to suppress rat damage in rice fields in Malaysia Hafidzi, M.N. and Mohd. NA’IM 274 Pre- and post-harvest movements of female rice-field rats in West Javanese rice fields Jens Jacob, Dale Nolte, Rudy Hartono, Jusup Subagja and Sudarmaji 277 Comparison of different baits to attract rats to traps in rice fields in Bangladesh Nazira Quraishi Kamal and M. Mofazzel Hossain 281 Pest and non-pest rodents in the upland agricultural landscape of Laos: a progress report Khamouane Khamphoukeo, Bounneuang Douangboupha, Ken P.
Recommended publications
  • BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
    CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry.
    [Show full text]
  • Functional Morphology and Evolution of the Sting Sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Kumpanenko Alexander, Gladun Dmytro, Vilhelmsen Lars Artikel/Article: Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) , 1 1 2 Alexander Kumpanenko* , Dmytro Gladun & Lars Vilhelmsen 1 Institute for Evolutionary Ecology NAS Ukraine, 03143, Kyiv, 37 Lebedeva str., Ukraine; Alexander Kumpanenko* [[email protected]]; Dmytro Gladun [[email protected]] — 2 Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Universitet- sparken 15, DK-2100, Denmark; Lars Vilhelmsen [[email protected]] — * Corresponding author Accepted on June 28, 2019. Published online at www.senckenberg.de/arthropod-systematics on September 17, 2019. Published in print on September 27, 2019. Editors in charge: Christian Schmidt & Klaus-Dieter Klass. Abstract. The sting of the Aculeata or stinging wasps is a modifed ovipositor; its function (killing or paralyzing prey, defense against predators) and the associated anatomical changes are apomorphic for Aculeata. The change in the purpose of the ovipositor/sting from being primarily an egg laying device to being primarily a weapon has resulted in modifcation of its handling that is supported by specifc morphological adaptations. Here, we focus on the sheaths of the sting (3rd valvulae = gonoplacs) in Aculeata, which do not penetrate and envenom the prey but are responsible for cleaning the ovipositor proper and protecting it from damage, identifcation of the substrate for stinging, and, in some taxa, contain glands that produce alarm pheromones.
    [Show full text]
  • Evolutionary Biology of the Genus Rattus: Profile of an Archetypal Rodent Pest
    Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. Heiberg, A.C.; Leirs, H.; Siegismund, Hans Redlef Published in: <em>Rats, Mice and People: Rodent Biology and Management</em> Publication date: 2003 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Heiberg, A. C., Leirs, H., & Siegismund, H. R. (2003). Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. In G. R. Singleton, L. A. Hinds, C. J. Krebs, & D. M. Spratt (Eds.), Rats, Mice and People: Rodent Biology and Management (Vol. 96, pp. 461-464). Download date: 27. Sep. 2021 SYMPOSIUM 7: MANAGEMENT—URBAN RODENTS AND RODENTICIDE RESISTANCE This file forms part of ACIAR Monograph 96, Rats, mice and people: rodent biology and management. The other parts of Monograph 96 can be downloaded from <www.aciar.gov.au>. © Australian Centre for International Agricultural Research 2003 Grant R. Singleton, Lyn A. Hinds, Charles J. Krebs and Dave M. Spratt, 2003. Rats, mice and people: rodent biology and management. ACIAR Monograph No. 96, 564p. ISBN 1 86320 357 5 [electronic version] ISSN 1447-090X [electronic version] Technical editing and production by Clarus Design, Canberra 431 Ecological perspectives on the management of commensal rodents David P. Cowan, Roger J. Quy* and Mark S. Lambert Central Science Laboratory, Sand Hutton, York YO41 1LZ, UNITED KINGDOM *Corresponding author, email: [email protected] Abstract. The need to control Norway rats in the United Kingdom has led to heavy reliance on rodenticides, particu- larly because alternative methods do not reduce rat numbers as quickly or as efficiently.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Calaby References
    Abbott, I.J. (1974). Natural history of Curtis Island, Bass Strait. 5. Birds, with some notes on mammal trapping. Papers and Proceedings of the Royal Society of Tasmania 107: 171–74. General; Rodents; Abbott, I. (1978). Seabird islands No. 56 Michaelmas Island, King George Sound, Western Australia. Corella 2: 26–27. (Records rabbit and Rattus fuscipes). General; Rodents; Lagomorphs; Abbott, I. (1981). Seabird Islands No. 106 Mondrain Island, Archipelago of the Recherche, Western Australia. Corella 5: 60–61. (Records bush-rat and rock-wallaby). General; Rodents; Abbott, I. and Watson, J.R. (1978). The soils, flora, vegetation and vertebrate fauna of Chatham Island, Western Australia. Journal of the Royal Society of Western Australia 60: 65–70. (Only mammal is Rattus fuscipes). General; Rodents; Adams, D.B. (1980). Motivational systems of agonistic behaviour in muroid rodents: a comparative review and neural model. Aggressive Behavior 6: 295–346. Rodents; Ahern, L.D., Brown, P.R., Robertson, P. and Seebeck, J.H. (1985). Application of a taxon priority system to some Victorian vertebrate fauna. Fisheries and Wildlife Service, Victoria, Arthur Rylah Institute of Environmental Research Technical Report No. 32: 1–48. General; Marsupials; Bats; Rodents; Whales; Land Carnivores; Aitken, P. (1968). Observations on Notomys fuscus (Wood Jones) (Muridae-Pseudomyinae) with notes on a new synonym. South Australian Naturalist 43: 37–45. Rodents; Aitken, P.F. (1969). The mammals of the Flinders Ranges. Pp. 255–356 in Corbett, D.W.P. (ed.) The natural history of the Flinders Ranges. Libraries Board of South Australia : Adelaide. (Gives descriptions and notes on the echidna, marsupials, murids, and bats recorded for the Flinders Ranges; also deals with the introduced mammals, including the dingo).
    [Show full text]
  • Retrotransposons
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11284–11289, September 1998 Evolution Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons OLIVIER VERNEAU*†,FRANC¸OIS CATZEFLIS‡, AND ANTHONY V. FURANO*§ *Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830; and ‡Institut des Sciences de l’Evolution, Case Courrier 064, Universite´Montpellier 2, 34095 Montpellier, France Communicated by Herbert Tabor, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, July 24, 1998 (received for review May 22, 1998) ABSTRACT Phylogenies based on the inheritance of This difference stems from the distinct biological properties shared derived characters will be ambiguous when the shared of these elements. L1 elements are prolific, self-replicating characters are not the result of common ancestry. Such mammalian retrotransposons that rapidly generate distinct characters are called homoplasies. Phylogenetic analysis also novel subfamilies consisting mostly of defective (pseudo) can be problematic if the characters have not changed suffi- copies (see legend to Fig. 1). The defective subfamily members ciently, as might be the case for rapid or recent speciations. are retained in the genome and diverge from each other with The latter are of particular interest because evolutionary time at the pseudogene (neutral) rate. The rapid generation of processes may be more accessible the more recent the specia- novel L1 characters keeps pace with speciation, and the tion. The repeated DNA subfamilies generated by the mam- sequence divergence of the various defective subfamily mem- malian L1 (LINE-1) retrotransposon are apparently ho- bers theoretically permits the dating of the speciations (4).
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Management of the Terrestrial Small Mammal and Lizard Communities in the Dune System Of
    Management of the terrestrial small mammal and lizard communities in the dune system of Sturt National Park, Australia: Historic and contemporary effects of pastoralism and fox predation Ulrike Sabine Klöcker (Dipl. – Biol., Rheinische Friedrich-Wilhelms Universität Bonn, Germany) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences The University of New South Wales, Sydney, Australia 2009 Abstract This thesis addressed three issues related to the management and conservation of small terrestrial vertebrates in the arid zone. The study site was an amalgamation of pastoral properties forming the now protected area of Sturt National Park in far-western New South Wales, Australia. Thus firstly, it assessed recovery from disturbance accrued through more than a century of Sheep grazing. Vegetation parameters, Fox, Cat and Rabbit abundance, and the small vertebrate communities were compared, with distance to watering points used as a surrogate for grazing intensity. Secondly, the impacts of small-scale but intensive combined Fox and Rabbit control on small vertebrates were investigated. Thirdly, the ecology of the rare Dusky Hopping Mouse (Notomys fuscus) was used as an exemplar to illustrate and discuss some of the complexities related to the conservation of small terrestrial vertebrates, with a particular focus on desert rodents. Thirty-five years after the removal of livestock and the closure of watering points, areas that were historically heavily disturbed are now nearly indistinguishable from nearby relatively undisturbed areas, despite uncontrolled native herbivore (kangaroo) abundance. Rainfall patterns, rather than grazing history, were responsible for the observed variation between individual sites and may overlay potential residual grazing effects.
    [Show full text]
  • The Last Survivors: Current Status and Conservation of the Non-Volant Land
    1 The Last Survivors: current status and conservation of the non-volant land 2 mammals of the insular Caribbean 3 4 SAMUEL T. TURVEY,* ROSALIND J. KENNERLEY, JOSE M. NUÑEZ-MIÑO, AND RICHARD P. 5 YOUNG 6 7 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY (STT) 8 Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, Channel 9 Islands (RJK, JNM, RPY) 10 11 *Correspondent: [email protected] 12 13 Running header: Status of Caribbean land mammals 14 1 15 The insular Caribbean is among the few oceanic-type island systems colonized by non-volant 16 land mammals. This region also has experienced the world’s highest levels of historical 17 mammal extinctions, with at least 29 species lost since AD 1500. Representatives of only 2 18 land-mammal families (Capromyidae and Solenodontidae) now survive, in Cuba, Hispaniola, 19 Jamaica, and the Bahama Archipelago. The conservation status of Caribbean land mammals 20 is surprisingly poorly understood. The most recent IUCN Red List assessment, from 2008, 21 recognized 15 endemic species, of which 13 were assessed as threatened. We reassessed all 22 available baseline data on the current status of the Caribbean land-mammal fauna within the 23 framework of the IUCN Red List, to determine specific conservation requirements for 24 Caribbean land-mammal species using an evidence-based approach. We recognize only 13 25 surviving species, 1 of which is not formally described and cannot be assessed using IUCN 26 criteria; 3 further species previously considered valid are interpreted as junior synonyms or 27 subspecies.
    [Show full text]
  • Cloud Rats in the Philippines — Preliminary Report on Distribution
    ORYX VOL 27 NO 1 JANUARY 1993 Cloud rats in the Philippines - preliminary report on distribution and status W. L. R. Oliver, C. R. Cox, P. C. Gonzales and L. R. Heaney This paper describes a preliminary field survey of bushy-tailed cloud rats Crateromys spp. and slender-tailed cloud rats Phloeomys in the Philippines in April and May 1990. Brief visits were made to all islands/locations known to support these animals and also to neighbouring areas considered likely to do so. Comparing the results with information from previous surveys suggests that both genera, particularly Crateromys, are more widely distributed than formerly believed, but that some forms are threatened. Three of the four known species of Crateromys are known only from their holotype specimens, one of which awaits description. Another is extinct in its type locality on Ilin Island but may survive on neighbouring Mindoro. These preliminary findings indicate that thorough surveys are required to establish the status of certain species, to investigate the possibility that new species remain undiscovered and to develop conservation plans to reduce the likelihood of further extinctions occurring. The discovery of the Panay species means Introduction that the genus Crateromys is now known from widely separated locations in each of the four There are at least 22 genera and 52 species of principal faunal regions or late Pleistocene murid rodents in the Philippines, of which 16 islands (Luzon, Mindoron, Mindanoan and genera and 44 species are endemic (Heaney et Negros) as defined by Heaney (1986) on the al., 1987). Among the endemic genera are basis of the 120 m bathymetric line (Figure 1).
    [Show full text]
  • Rodent Assemblages in the Mosaic of Habitat Types in the Zambezian Bioregion
    diversity Article Rodent Assemblages in the Mosaic of Habitat Types in the Zambezian Bioregion Vincent R. Nyirenda 1,* , Ngawo Namukonde 1 , Matamyo Simwanda 2 , Darius Phiri 2, Yuji Murayama 3 , Manjula Ranagalage 3,4 and Kaula Milimo 5 1 Department of Zoology and Aquatic Sciences, School of Natural Resources, Copperbelt University, P.O. Box 21692, Kitwe 10101, Zambia; [email protected] 2 Department of Plant and Environmental Sciences, School of Natural Resources, Copperbelt University, P.O. Box 21692, Kitwe 10101, Zambia; [email protected] (M.S.); [email protected] (D.P.) 3 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan; [email protected] (Y.M.); [email protected] (M.R.) 4 Department of Environmental Management, Faculty of Social Sciences and Humanities, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka 5 Department of National Parks and Wildlife, Ministry of Tourism and Arts, Private Bag 1, Chilanga 10100, Zambia; [email protected] * Correspondence: [email protected]; Tel.: +260-977-352035 Received: 12 July 2020; Accepted: 21 September 2020; Published: 23 September 2020 Abstract: Rodent assemblages have ecological importance in ecosystem functioning and protected area management. Our study examines the patterns of assemblages of rodents across four habitat types (i.e., Miombo woodland, Acacia woodland, grasslands and farmlands) in the savanna environment. Capture-mark-recapture (CMR) methods were applied for data collection across the Chembe Bird Sanctuary (CBS) landscape. The Non-metric Multi-Dimensional Scaling (NMDS) was used for exploratory data analysis, followed by Analysis of Variance (ANOVA) and Tukey–Kramer’s Honestly Significant Difference (HSD) post-hoc tests.
    [Show full text]
  • Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia
    Environmental Archaeology The Journal of Human Palaeoecology ISSN: 1461-4103 (Print) 1749-6314 (Online) Journal homepage: http://www.tandfonline.com/loi/yenv20 Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia Wesley Parker, Yurena Yanes, Eduardo Mesa Hernández, Juan Carlos Hernández Marrero, Jorge Pais, Nora Soto Contreras & Donna Surge To cite this article: Wesley Parker, Yurena Yanes, Eduardo Mesa Hernández, Juan Carlos Hernández Marrero, Jorge Pais, Nora Soto Contreras & Donna Surge (2018): Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia, Environmental Archaeology, DOI: 10.1080/14614103.2018.1497821 To link to this article: https://doi.org/10.1080/14614103.2018.1497821 View supplementary material Published online: 22 Jul 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=yenv20 ENVIRONMENTAL ARCHAEOLOGY https://doi.org/10.1080/14614103.2018.1497821 Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia Wesley Parkera, Yurena Yanesa, Eduardo Mesa Hernándezb, Juan Carlos Hernández Marreroc, Jorge Paisd, Nora Soto Contrerasa and Donna Surgee aDepartment of Geology, University of Cincinnati, Cincinnati, OH, USA; bDepartamento de Prehistoria, Antropología e Historia Antigua, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain; cEl Museo Arqueológico de La Gomera, San Sebastián de La Gomera, La Gomera, Canary Islands, Spain; dMuseo Arqueológico Benahoarita, Los Llanos de Aridane, La Palma, Canary Islands, Spain; eDepartment of Geological Sciences, University of North Carolina, Chapel Hill, NC, USA ABSTRACT ARTICLE HISTORY The residents of the Canary Archipelago consumed limpets since the arrival of humans ∼2500 Received 26 February 2018 yrs.
    [Show full text]