On the Reticular Tissue and Lattice=Fibers Occurring in the Milk=Spots of Omentum

Total Page:16

File Type:pdf, Size:1020Kb

On the Reticular Tissue and Lattice=Fibers Occurring in the Milk=Spots of Omentum On the Reticular Tissue and Lattice=fibers occurring in the Milk=spots of Omentum. By Dr. Yukio Hamazaki. From the Pathological Department of Okayama Medical College (Director: Prof. Oto Tam ura). 2 Figures (Plate III) and 3 Text Figures. Ranvier and Weide n reic h regarded the omentum as a flattened- out lymph gland and the abdominal cavity as its lymph sinus. The latter, furthermore, theoretically emphasized that the omentum is nothing but a sheet of reticular tissue, the "taches laiteuses" correspond- ing to the secondary nodules. Lately, Kiy ono agreed with the above view, though lie pointed out that the histiocytic cells in the milk-spots do not form reticular tissue, unlike those in the lymph glands. At the Fifteenth Pathological Congress of Japan (1925) I reported that the milk-spots in the rat, cattle, and pig are provided with a certain kind of reticular tissue. The purpose of the present paper is to settle this problem using specific stainings for the reticular fibers and for the lattice-fibers ("Gitterfasern" of v. Kupffer), which may be in an intiniate relation with them. Material and methods. The material was obtained from the cattle, pig , dog, cat, rabbit, guinea-pig, rat, mouse, chicken and human subject. As the control the organs containing reticular tissue, i. e., lymph glands , spleen and thymus gland were also examined. The material fixed with 10% solution of lormalin was studied as stretched specimens and as sections . For reticulum-staining the eosin-methyl blue method modified by the author was used: 1. Sections are stained for 30 minutes in 1% solution of eosin (a few drops of glacial acetic acid is added to 100 cc of the solution) . Then they are washed with distilled water . 34 Yukio Hamazaki, 2. They are rinsed in 1% solution of phosphomolybdic acid for a few seconds and washed with distilled water. 3. They are stained with 0.1% solution of methylblue for five minute's and then washed with distilled water. 4. They are differentiated and dehydrated in 95% alcohol, keeping them in constant motion, so as to obtain uniform decolorization. 5. Finally they are mounted in balsam, passing through absolute alcohol and xylol. In sections thus treated, reticular fibers are stained green, the nuc- lei of the reticular cells violet-red, those of the wandering histiocytes violet and cytoplasm blue. The nuclei of lymphocytes are stained red, the erythrocytes orange-red. The lattice-fibers were studied with the Bielschow sk y-Maresch 's impregration method. In some cases of rat material vital staining with lithium-carmine was performed prior to eosin-methylblue method and the Bielscho w sky's method to make clear the relations of the histiocytes and reticulum. Experiments. As is well known, the "Wiles laiteuses," are best developed in the omentum of rat. In this paper the reticular and lattice-fibers of this form, especially in its follicular milk-spots, will he dealt with. Reticular fibers. Rat. Inthe stretched specimens one can clearly see that many connective tissue fibers supporting the net-trabecules of the omentum go into the milk-spots. The fibers ramify into several branches, thus dividing the milk-spots into many lobales. Since the milk-spots of rat are crowded with many cell-elements, it is very hard to make out the relations of the collagenous fibers to the reticular ones or to the cells. In horizontal sections, one can distinguish three layers in the milk- spots. The outer layer is composed of many wandering histiocytes, mast- cells and some lymphocytes, polymorphonuclear leucocytes. In this region the reticular cells are scattered over in a small number and the fiber-elements are poorly developed. The reticular cells are either spindle- shaped or stellate. The meshes are relatively large, measuring about 17p in diameter and accommodating many wandering cells mentioned above. The cell-body of the wandering histiocyte in the meshes contains a On the Reticular Tissueand Lattice-fibersoccurring in the Milk-spotsof Omentum. 35 delicate net-apparatus consisting of very fine fibrils. Each cell is con- nected with the neighboring ones by means of fibril-bridges which arise from the net-apparatus. The mast-cells also have fine net-apparatus in the cytoplasm, though they produce no fibril-bridges. In the intermediate layer the reticular cells with round or oval nuclei (about 62) are present in large numbers. They are triangular or stellate in shape. The cytoplasmic processes with fiber-element are gentrally short and form small reticular meshes (about 15/2 in diameter) and accordingly they can accommodate only few wandering cells. The wandering cells mainly consist of lymphocytes and histiocytes. In this area the fibril-bridges between the histiocytes are not so well developed as compared with those of the outer layer. The reticulum in this region resemble very much that of the splenic pulp (red pulp) or of the lymph- sinus. In the inner layer the reticular cells with flattened or triangular nuclei (about 6p) are present in a relatively small number, but time fibers are numerous, long and tortuous forming reticular meshes of somewhat polygonal shape (about 30p in diameter). The meshes are filled with many lymphocytes. The reticular fibers are connected with the adventitial fibers of blood-vessels, which are chiefly distributed in the intermediate layer. The reticulum in this layer closely resemble that of the splenic nodule (white pulp). The vital staining with lithium-carmine was followed after fixation by eosin-methylblue to investigate the relations of the histiocytes and the reticulum. Lately, Fahr studied on the lymph glands at the hilus of the liver and he recognized very many epithelioid cells are developing from the reticular cells. He inferred that these epithelioid cells belong to the histiocytes of Ascho ff and K iy o o. In my material the change process of the reticular cells into wandering histiocytes could be clearly brought out. The stellate cells of the reticulum shorten their processes, become more and more spherical and finally set themselves free from .the reticulum. The color of carmine-granules turn into blue-violet by methylblue. A small number of such granules are present in the reticular cells. The granules increase in number as the cells become more spherical and detatched from the reticulum. (Fig. 1, Plate III) . Guinea-pig and mouse. The milk-spots of these two forms are similarly constructed as those of the rat but the cell-elements, especially the lymphocytes , are less than in the rat. Cattle and pig. 36 Yukio Hamazaki, In the milk-spots of the cattle the reticular cells are mostly stellate in shape. The cytoplasmic processes of the superficially disposed cells are relatively short, but in the deeper part of the milk-spots such processes become gradually long and slender, forming a medium-sized meshes. Iii the cytoplasmic processes many tortuous and anastomosing fibrils can be detected, but they show little tendency to form the true reticular fibers, unlike those of the rat. In the reticular meshes some large and small mononuclear wandering cells, lymphocytes and eosi- nophils are situated. These pectures resemble very much the sinus- reticulum of lymph glands. In the milk-spots of pig, however, the fiber- elements are somewhat well developed. Chicken. The milk-spots of chicken are chiefly developed in the superficial part of the mesentery. The subserous connective tissue buried under the milk-spots') send off many collagenous fibers into them and the fibers are divided into several branches anastomosing with the reticular fibers. The reticular fibers reach the outer-layer of the milk-spots where they branch into fine fibrils and become connected with the net-apparatus in the cytoplasm of the large mononuclear wandering cells. The reticular meshes are relatively large sized and lodge various kinds of wandering cells. Man and (log. The milk-spots of man are divided into several lobules by sinusoid spaces whose branches go into the central part of the lobules. The spaces conmunicate with the perivascular lymph-spaces. The wall of the sinusoid space is composed of endothelioid cells, the appearances of which are quite similar to the reticular cells. Some of their processes are wedged into the cell-elements of the milk-spots. In the parenchyma the reticular cells are scattered over in a small number and their fine fibers surrounding each wandering cells are connected with the collagen- ous fibers which come from the subserous connective tissue. The reticulum in the milk-spots of dog resemble that of man, but the sinusoid space can not so clearly be made out. The solitary milk-spots developed on the peritoneal surface are composed of large mononuclear wandering cells as in the outer layer of the milk-spots of rat. Each wandering cell sends out fine fibrils which anastomo,se with those of neighboring cells. Some of these fibrils are fused to form reticular fibers. Rabbit and cat. The milk-spots are mainly composed of large mononuclear cells. Many connective tissue fibers go into the milk-spots from the net On the ReticularTissue and Lattice-fibersoccurring in the Milk-spotsof Omentum. 37 trabeoules of the omentum and so the reticular . fibers are hardly differentiated from the collagenous fibers. Lattice•fibers. In the milk-spots of rat impregnated with the Bi el s c ho wsk y- Mar es ch's method the wandering histiocytes of the outer layer stain themselves in a light brownish color and their nuclei in a deep brown. The cell-boundaries of the histiocytes are somewhat clearly made out. In the deeper area, however, cell-bodies are generally stained diffusely in a light gray and their boundaries being blurred. The nucleus of the reticular cell (histiocytic cell) is colored deep gray, while that of lympho- cyte black.
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • The 4 Types of Tissues: Connective
    The 4 Types of Tissues: connective Connective Tissue General structure of CT cells are dispersed in a matrix matrix = a large amount of extracellular material produced by the CT cells and plays a major role in the functioning matrix component = ground substance often crisscrossed by protein fibers ground substance usually fluid, but it can also be mineralized and solid (bones) CTs = vast variety of forms, but typically 3 characteristic components: cells, large amounts of amorphous ground substance, and protein fibers. Connective Tissue GROUND SUBSTANCE In connective tissue, the ground substance is an amorphous gel-like substance surrounding the cells. In a tissue, cells are surrounded and supported by an extracellular matrix. Ground substance traditionally does not include fibers (collagen and elastic fibers), but does include all the other components of the extracellular matrix . The components of the ground substance vary depending on the tissue. Ground substance is primarily composed of water, glycosaminoglycans (most notably hyaluronan ), proteoglycans, and glycoproteins. Usually it is not visible on slides, because it is lost during the preparation process. Connective Tissue Functions of Connective Tissues Support and connect other tissues Protection (fibrous capsules and bones that protect delicate organs and, of course, the skeletal system). Transport of fluid, nutrients, waste, and chemical messengers is ensured by specialized fluid connective tissues, such as blood and lymph. Adipose cells store surplus energy in the form of fat and contribute to the thermal insulation of the body. Embryonic Connective Tissue All connective tissues derive from the mesodermal layer of the embryo . The first connective tissue to develop in the embryo is mesenchyme , the stem cell line from which all connective tissues are later derived.
    [Show full text]
  • Connective Tissues (C.T.)
    Lecture 3: Connective tissues (C.T.) - Colours index : Red : important Grey : doctors notes Pink : Girls slides Objectives : 1. Enumerate the general characteristics of C.T. 2. Classify C.T. Into C.T. Proper (C.T.P.) and special types of C.T. 3. Describe components of C.T.P. 4. Classify C.T.P. and know the distribution and function of each type Definition and components of C.T. 1.It is one of the 4 basic tissues. 2.it is Mesodermal* in origin. Function of C.T 1. Supports, binds and connects other tissue and organs. 2. Provides structural (fix organ position) and metabolic support. General characteristics of C.T : 1. It is formed of widely separated, few cells with abundant extracellular matrix. 2. Most of C.T. Are vascular (have blood vessel). Components of C.T : 1. Cells: different types. 2. Fibers: collagenous, elastic & reticular. 3. Matrix: the intercellular substance = extracellular matrix, where cells and fibers are embedded. *Mesodermal: (the middle layer of an embryo in early development, between endoderm and ectoderm) “Referring to embryology” ;) Types of C.T. (Depending on matrix) - Soft = C.T. Proper - Rigid (firm,rubbery) = Cartilage - Hard (solid) = Bone - Fluid = Blood Components of C.T. Proper ● Cells ● Fibers ● Matrix Cells: 1. Fibroblasts 2. Macrophages 3. Mast cells 4. Plasma cells 5. Adipose cells 6. Leucocytes (اﻟﺧﻼﯾﺎ اﻟﻣﻛوﻧﺔ ﻟﻠـCells: (connective tissue ❖ Fibroblast Macrophages Mast Cells ● It’s the most common cell, L/M: L/M: found nearly in all types of C.T ● Basophilic cytoplasm, rich in Cytoplasm contains numerous proper. lysosomes. basophilic and cytoplasmic granules.
    [Show full text]
  • Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma
    Characterizing the invasive tumor front of aggressive uterine adenocarcinoma and leiomyosarcoma Sabina Sanegre1, Núria Eritja2, 3, 4, 5, 6, Carlos de Andrea2, 7, Juan Díaz-Martín2, 8, 9, 10, 11, Ángel Díaz-Lagares2, 12, 13, María Amalia Jácome14, Carmen Salguero-Aranda8, 9, 10, 11, David García-Ros7, Ben Davidson15, 16, 17, Rafael López2, 13, 12, Ignacio Melero2, 18, Samuel Navarro2, 1, Santiago Ramon Y Cajal2, 19, Enrique De Álava2, 8, 9, 10, 11, Xavier Matias-Guiu2, 3, 5, 6, 4*, Rosa Noguera2, 20, 1* 1Institute of Health Research (INCLIVA), Spain, 2Centro de Investigaciónació Biomédica en Red del Cáncer (CIBERONC), Spain, 3Department of Pathology, University Hospital ArnauAr de Vilanova, Spain, 4Bellvitge University Hospital, Spain, 5Universitatt de Lleida, Spain, 6Universityniversity of Barcelona, Spain, 7University Clinic of Navarra, Spain, 8Institutetute of Biomedicine of Seville (IBIS), Spain,Sp 9Virgen del Rocío University Hospital, Spain, 10Consejo Superior de Investigaciones CientífiCientíficas (CSIC), Spain, 11Sevilla University, 12 13 Spain, University Clinical Hospital of Santiago, Spain,Spa Health Research Institute of Santiago de Compostelapostela (IDIS), Spain, 14Facultyculty of Science,Scie University of A Coruña, Spain, 15Institute of Clinical Medicine,ne, Faculty of Medicine,Me University of Oslo, Norway, 16Department of Pathology, Oslo University Hospital,l, Norway,Nor 17Norwegian Radium Hospital, Oslo University Hospital, Norway, 18Departamento de Dermatología,D Clínica Universidad de Navarra, Spain, 19Department of
    [Show full text]
  • Avian Blood. the Transformed Cells Occurred in Incubated Blood
    THE FORMATION OF MACROPHAGES, EPITHEIID CELLS AND GIANT CELLS FROM LEUCOCYTES IN INCUBATED BLOOD * MAGARET REED LEWIS (From th Carxge Laboratory of Embryology, Johns Hopkixs edical Scho) While tissue cultures would seem to afford an appropriate technic for the study of the part taken by the white blood-cells in various conditions, this method has seldom been employed. In 1914 Awro- row and Tlmofejewskij studied the white blood-cells of leukemic blood in plasma cultures, Loeb (i92o) followed the amebocytes of the king crab in dotted blood, and Carrel (192I) observed the growth of the buffy coat of the centrifuged blood of the adult chicken in plasma cultures. The method by which the observations incor- porated in this paper were made is simpler than that of any of the above investigators, consisting merely of the incubation of hanging drops of blood taken, by means of a paraffined pipette, either from the heart or from the peripheral circulation. The transformation and growth of the leucocytes into macro- phages, epithelioid cells, and giant cells were observed in the blood of the chick embryo, young chicken, adult hen, mouse, guinea-pig and dog, and i human blood. In every kind of blood emined there developed first a large wandering cell, several times larger than any of the normal leucocytes, which was phagocytic for red blood- cells, melanin granules, carbon partides, dead granulocytes, and tuberde bacili Somewhat later there appeared a cell more like a prmitive mesenchyme cell, and still later the epithelioid cell was formed. This cell was sometimes binudeate and in some instances a :ypical multinudeated giant cell (Lahans giant cell) was formed.
    [Show full text]
  • Review: Epithelial Tissue
    Review: Epithelial Tissue • “There are 2 basic kinds of epithelial tissues.” What could that mean? * simple vs. stratified * absorptive vs. protective * glands vs. other • You are looking at epithelial cells from the intestine. What do you expect to see? tight junctions; simple columnar; gobet cells; microvilli • You are looking at epithelial cells from the trachea. What do you expect to see? cilia; pseudostratified columnar; goblet cells 1 4-1 Four Types of Tissue Tissue Type Role(s) - Covers surfaces/passages - Forms glands - Structural support CONNECTIVE - Fills internal spaces - Transports materials - Contraction! - Transmits information (electrically) 2 Classification of connective tissue 1. Connective tissue proper 1a. Loose: areolar, adipose, reticular 1b. Dense: dense regular, dense irregular, elastic 2. Fluid connective tissue 2a. Blood: red blood cells, white blood cells, platelets 2b. Lymph 3. Supporting connective tissue 3a. Cartilage: hyaline, elastic, fibrocartilage 3b. Bone 3 Defining connective tissue by the process of elimination if not epithelial, muscle, or nervous, must be connective! 4 LAB MANUAL Figure 6.4 Areolar connective tissue: A prototype (model) connective tissue. Cell types Extracellular matrix Ground substance Macrophage Fibers = proteins • Collagen fiber • Elastic fiber • Reticular fiber Fibroblast Lymphocyte Adipocyte Capillary Mast cell 5 The Cells of Connective Tissue Proper Melanocytes and macrophages, mesenchymal, mast; Adipo- / lympho- / fibrocytes and also fibroblasts. These are the cells of connective
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • Hole's Human Anatomy and Physiology
    Hole’s Human Anatomy and Physiology 1 Chapter 5 Tissues Four major tissue types 1. Epithelial 2. Connective 3. Muscle 4. Nervous 2 Epithelial Tissues General characteristics - • cover organs and the body • line body cavities • line hollow organs • have a free surface • have a basement membrane • avascular • cells readily divide • cells tightly packed • cells often have desmosomes • function in protection, secretion, absorption, and excretion • classified according to cell shape and number of cell layers 3 Epithelial Tissues Simple squamous – Simple cuboidal – • single layer of flat cells • single layer of cube-shaped • substances pass easily through cells • line air sacs • line kidney tubules • line blood vessels • cover ovaries • line lymphatic vessels • line ducts of some glands 4 Epithelial Tissues Simple columnar – Pseudostratified columnar – • single layer of elongated cells • single layer of elongated cells • nuclei usually near the basement • nuclei at two or more levels membrane at same level • appear striated • sometimes possess cilia • often have cilia • sometimes possess microvilli • often have goblet cells • often have goblet cells • line respiratory passageways • line uterus, stomach, intestines 5 Epithelial Tissues Stratified squamous – Stratified cuboidal – • many cell layers • 2-3 layers • top cells are flat • cube-shaped cells • can accumulate keratin • line ducts of mammary glands, • outer layer of skin sweat glands, salivary glands, • line oral cavity, vagina, and and the pancreas anal canal 6 Epithelial Tissues Stratified
    [Show full text]
  • Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma
    fcell-09-670185 June 2, 2021 Time: 13:49 # 1 ORIGINAL RESEARCH published: 03 June 2021 doi: 10.3389/fcell.2021.670185 Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma Sabina Sanegre1,2, Núria Eritja1,3, Carlos de Andrea1,4, Juan Diaz-Martin1,5, Ángel Diaz-Lagares1,6, María Amalia Jácome7, Carmen Salguero-Aranda1,5, David García Ros4, Ben Davidson8,9, Rafel Lopez1,10,11, Ignacio Melero1,4, Samuel Navarro1,2, Santiago Ramon y Cajal1,12, Enrique de Alava1,5, Xavier Matias-Guiu1,3*† and Rosa Noguera1,2*† 1 Cancer CIBER (CIBERONC), Madrid, Spain, 2 Department of Pathology, School of Medical, University of Valencia-INCLIVA, Edited by: Valencia, Spain, 3 Institut de Recerca Biomèdica de LLeida (IRBLLEIDA), Institut d’Investigació Biomèdica de Bellvitge Dong Han, (IDIBELL), Department of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, University of Lleida - National Center for Nanoscience University of Barcelona, Barcelona, Spain, 4 Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain, and Technology (CAS), China 5 Institute of Biomedicine of Sevilla, Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain, Reviewed by: 6 Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Hisham F. Bahmad, University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain, 7 Department of Mathematics, Mount Sinai Medical Center, MODES Group, CITIC, Faculty of Science,
    [Show full text]
  • (Outcome 5.1.1) 1. Cells Are Organized Into ______
    Shier, Butler, and Lewis: Hole’s Human Anatomy and Physiology, 13th ed. Chapter 5: Tissues Chapter 5: Tissues I. Introduction A. Introduction (Outcome 5.1.1) 1. Cells are organized into ______________________________ . (Outcome 5.1.2) 2. Intercellular junctions connect_________________________. (Outcome 5.1.2) 3. Three types of intercellular junctions are _________________ _________________________________________________________________ . (Outcome 5.1.2) 4. Tight junctions are located in cells that _________________ . (Outcome 5.1.2) 5. Tight junctions function to ___________________________ . (Outcome 5.1.2) 6. Desmosomes are located in cells of ____________________ . (Outcome 5.1.2) 7. Desmosomes function to ____________________________ . (Outcome 5.1.2) 8. Gap junctions are located in cells of the __________________ _________________________________________________________________ . (Outcome 5.1.2) 9. Gap junctions function to ____________________________ (Outcome 5.1.3) 10. The four major types of tissues of the human body are _____ _________________________________________________________________ . II. Epithelial Tissues A. General Characteristics (Outcome 5.2.4) 1. Epithelium covers ____________________, forms ________ , and lines _________________________________________________________ . (Outcome 5.2.4) 2. Epithelial tissue always has a free _____________________ . (Outcome 5.2.4) 3. The underside of epithelial tissue is anchored by ___________ to connective tissue. (Outcome 5.2.4) 4. Epithelial tissue lacks _______________________________
    [Show full text]
  • Fascia: a Morphological Description and Classification System Based on a Literature Review Myroslava Kumka, MD, Phd* Jason Bonar, Bsckin, DC
    0008-3194/2012/179–191/$2.00/©JCCA 2012 Fascia: a morphological description and classification system based on a literature review Myroslava Kumka, MD, PhD* Jason Bonar, BScKin, DC Fascia is virtually inseparable from all structures in Le fascia est pratiquement inséparable de toutes les the body and acts to create continuity amongst tissues structures du corps, et il sert à créer une continuité to enhance function and support. In the past fascia entre les tissus afin d’en améliorer la fonction et le has been difficult to study leading to ambiguities in soutien. Il a déjà été difficile d’étudier le fascia, ce qui nomenclature, which have only recently been addressed. a donné lieu à des ambiguïtés dans la nomenclature, Through review of the available literature, advances qui n’ont été abordées que récemment. Grâce à un in fascia research were compiled, and issues related examen de la documentation disponible, les avancées to terminology, descriptions, and clinical relevance of dans la recherche sur le fascia ont été compilées, fascia were addressed. Our multimodal search strategy et les problèmes relevant de la terminologie, des was conducted in Medline and PubMed databases, with descriptions et de la pertinence clinique du fascia ont été other targeted searches in Google Scholar and by hand, traités. Nous avons adopté une stratégie de recherche utilizing reference lists and conference proceedings. multimodale pour nos recherches dans les bases de In an effort to organize nomenclature for fascial données Medline et PubMed, avec des recherches ciblées structures provided by the Federative International dans Google Scholar et manuelles, au moyen de listes de Committee on Anatomical Terminology (FICAT), we références et de comptes rendus de congrès.
    [Show full text]
  • Connective Tissue Learning Objectives * Understand the Feature and Classification of the Connective Tissue
    Connective Tissue Learning objectives * Understand the feature and classification of the connective tissue. * Understand the structure and function of varied composition of the loose connective tissue. * Know the composition of the matrix. * Know the features of fibers. * Know the composition of the ground substance. * Know the basic structure and function of the dense connective tissue, reticular tissue and adipose tissue. General characteristic: - Connective tissue is formed by cells and extracellular matrix (ECM). - It differ from the epithelium. - It has a small number of cells and a large amount of extracellular matrix. - The cells in C. T have no polarity. That means they have no the free surface and the basal surface. - They are scattered throughout the ECM. - The extracellular matrix is composed of . fibers ( constitute the formed elements) , an . amorphous ground substance and . tissue fluid. - Connective tissue originate from the mesenchyme, which is embryonal C. T. The cells have multiple developmental potentialities. They have the bility to differentiate different kinds of C. T cells, endothelial cells and smooth muscle cells. - Connective tissue forms a vast and continuous compartment throughout the body, bounded by the basal laminae of the various epithelia and by the basal or external laminae of muscle cells and nerve-supporting cells. - Different types of connective tissue are responsible for a variety of functions. Functions of connective tissues: The functions of the various connective tissues are reflected in the types of cells and fibers present within the tissue and the composition of the ground substance in the ECM. - Binding and packing of tissue ……….CT Proper; - Connect, anchor and support………...Tendon and ligament; - Transport of metabolites……………..Through ground substance; - Defense against infection…………….Lymphocytes, macrophages; - Repair of injury……………………….Scar tissue; - Fat storage…………………………… Adipose tissue.
    [Show full text]