Connective Tissue IUSM – 2016 I

Total Page:16

File Type:pdf, Size:1020Kb

Connective Tissue IUSM – 2016 I Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Connective Tissue II. Learning Objectives III. Keywords IV. Slides A. Types of Connective Tissue 1. Mesenchyme 2. Connective Tissue Proper a. Loose/Areolar i. Elastic fibers ii. Reticular fibers b. Dense i. Irregular ii. Regular 3. Specialized CT a. Adipose b. Cartilage (Lab 6) c. Bone (Lab 6/7) d. Blood (Lab 8) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages 4. Mast cells 5. Eosinophils SEM of mesenchymal stem cell. Steve Gschmeissner. V. Summary Lab 5 – Connective Tissue IUSM – 2016 Connective Tissue (CT) I. Introduction II. Learning Objectives 1. Forms the stroma of most organs, serving to connect III. Keywords and support the other primary tissue types. IV. Slides A. Types of Connective Tissue 2. Derived from embryonic mesenchyme. 1. Mesenchyme 3. Unlike the other tissue types which are composed 2. Connective Tissue Proper primarily of cells, CT consists of only a few dispersed, a. Loose/Areolar inconspicuous cells within a prominent extracellular i. Elastic fibers matrix (ECM). ii. Reticular fibers are the principal resident cells of b. Dense • Fibroblasts connective tissue, responsible for its synthesis and i. Irregular maintenance. ii. Regular 3. Specialized CT • ECM is tissue-specific and composed of protein a. Adipose fibers (collagen, reticular, and elastic) and ground b. Cartilage (Lab 6) substance (amorphous gel-like substance). c. Bone (Lab 6/7) 4. Function and classification of CT is primarily based d. Blood (Lab 8) upon the composition and organization of the B. Resident and Wandering Cells extracellular matrix and its functions. 1. Lymphocytes 2. Plasma cells 5. Within connective tissue, several types of cells, 3. Macrophages primarily leukocytes (white blood cells), can be found; some are long-lived in the tissue ( ) while 4. Mast cells resident cells others are transient and short-lived (wandering cells). 5. Eosinophils V. Summary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction II. Learning Objectives III. Keywords Learning Objectives IV. Slides A. Types of Connective Tissue 1. Be able to identify the major types of connective tissue and 1. Mesenchyme understand how the structure of each reflects its function. 2. Connective Tissue Proper a. Loose/Areolar 2. Understand how to distinguish the various cells found in connective i. Elastic fibers tissue (fibroblasts, adipocytes, mast cells, plasma cells, macrophages, ii. Reticular fibers and undifferentiated mesenchymal cells) and to describe their b. Dense functions and key features. i. Irregular ii. Regular 3. Know the composition, morphology, and variations in distribution of 3. Specialized CT the ground substance and the three types of extracellular fibers and a. Adipose their functions. b. Cartilage (Lab 6) c. Bone (Lab 6/7) d. Blood (Lab 8) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages 4. Mast cells 5. Eosinophils V. Summary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction II. Learning Objectives III. Keywords Keywords IV. Slides A. Types of Connective Tissue 1. Mesenchyme Brown adipose tissue Loose/areolar CT 2. Connective Tissue Proper Collagen fibers Macrophages a. Loose/Areolar Connective tissue proper Mast cells i. Elastic fibers Dense irregular CT Mesenchyme ii. Reticular fibers Dense regular CT Plasma cells Elastin (elastic) fibers Reticulin (reticular) fibers b. Dense Fibroblasts White adipose tissue i. Irregular ii. Regular 3. Specialized CT a. Adipose b. Cartilage (Lab 6) c. Bone (Lab 6/7) d. Blood (Lab 8) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages 4. Mast cells 5. Eosinophils V. Summary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 91: Hamster Embryo, H&E II. Learning Objectives III. Keywords IV. Slides A. Types of Connective Tissue 1. Mesenchyme 2. Connective Tissue Proper look here for a. Loose/Areolar mesenchyme i. Elastic fibers ii. Reticular fibers look here for b. Dense mesenchyme i. Irregular ii. Regular 3. Specialized CT a. Adipose b. Cartilage (Lab 6) c. Bone (Lab 6/7) d. Blood (Lab 8) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages 4. Mast cells 5. Eosinophils V. Summary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 91: Hamster Embryo, H&E II. Learning Objectives III. Keywords IV. Slides A. Types of Connective Tissue 1. Mesenchyme 2. Connective Tissue Proper a. Loose/Areolar i. Elastic fibers mesenchyme ii. Reticular fibers b. Dense i. Irregular ii. Regular 3. Specialized CT a. Adipose b. Cartilage (Lab 6) c. Bone (Lab 6/7) d. Blood (Lab 8) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages 4. Mast cells mesenchyme, or primitive connective tissue, derives from embryonic mesoderm and gives rise to the various 5. Eosinophils connective tissues of the body; it contains spindle-shaped cells in an immature, loose extracellular matrix V. Summary (ECM) containing reticular fibers, collagen, and ground substance; in general, its appearance is best described as “very loose” connective tissue Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 40a (464): Lower Fetal Jaw, H&E II. Learning Objectives III. Keywords IV. Slides A. Types of Connective Tissue look here for 1. Mesenchyme mesenchyme 2. Connective Tissue Proper a. Loose/Areolar i. Elastic fibers ii. Reticular fibers b. Dense i. Irregular ii. Regular look here for 3. Specialized CT mesenchyme a. Adipose b. Cartilage (Lab 6) c. Bone (Lab 6/7) tongue d. Blood (Lab 8) (with developing skeletal muscle) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages 4. Mast cells 5. Eosinophils V. Summary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 40a (464): Lower Fetal Jaw, H&E II. Learning Objectives III. Keywords Slide Overview IV. Slides A. Types of Connective Tissue 1. Mesenchyme 2. Connective Tissue Proper a. Loose/Areolar mesenchyme i. Elastic fibers ii. Reticular fibers b. Dense i. Irregular ii. Regular 3. Specialized CT a. Adipose b. Cartilage (Lab 6) skeletal c. Bone (Lab 6/7) muscle d. Blood (Lab 8) B. Resident and Wandering Cells developing 1. Lymphocytes bone 2. Plasma cells 3. Macrophages 4. Mast cells 5. Eosinophils V. Summary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 40a (464): Lower Fetal Jaw, H&E II. Learning Objectives III. Keywords IV. Slides A. Types of Connective Tissue 1. Mesenchyme 2. Connective Tissue Proper a. Loose/Areolar spindle-shaped mesenchymal cell i. Elastic fibers ii. Reticular fibers b. Dense extracellular i. Irregular matrix fibers ii. Regular (reticular and collagen) 3. Specialized CT a. Adipose ground b. Cartilage (Lab 6) substance c. Bone (Lab 6/7) the “stuff” between d. Blood (Lab 8) the fibers and cells B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages 4. Mast cells 5. Eosinophils V. Summary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 36: Thin Skin, H&E II. Learning Objectives III. Keywords IV. Slides epithelium (epidermis) A. Types of Connective Tissue 1. Mesenchyme 2. Connective Tissue Proper (areolar l oose oose a. Loose/Areolar abundant i. Elastic fibers vasculature is CT ii. Reticular fibers usually seen in ) b. Dense loose CT, i. Irregular especially to dense ii. Regular support the 3. Specialized CT overlying irregular CT irregular a. Adipose epithelium b. Cartilage (Lab 6) which is avascular c. Bone (Lab 6/7) d. Blood (Lab 8) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells loose (or areolar) CT has loosely arranged, thin protein fibers (primarily type I collagen) and abundant ground 3. Macrophages substance, with a relatively large number of cells embedded within it, as compared to the underlying dense CT; 4. Mast cells loose CT is usually found beneath epithelia and surrounding glands and vessels; notice the gradual transition 5. Eosinophils between the loose CT and the underlying dense irregular CT, making a distinct border between the two types of V. Summary tissue arbitrary Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 36: Thin Skin, H&E II. Learning Objectives III. Keywords IV. Slides A. Types of Connective Tissue 1. Mesenchyme 2. Connective Tissue Proper a. Loose/Areolar i. Elastic fibers what is this fibroblast ii. Reticular fibers pigmented b. Dense inclusion i. Irregular within these eosinophilic ii. Regular epithelial cells collagen 3. Specialized CT of the skin? protein fibers a. Adipose unstained spaces b. Cartilage (Lab 6) are composed of c. Bone (Lab 6/7) ground d. Blood (Lab 8) substance B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages the principal cells of connective tissue proper are fibroblasts which synthesize and maintain the ECM components (both the fibers and ground substance); they generally appear elongated with an ovoid, condensed 4. Mast cells nucleus with one or two nucleoli (if visible); their thin cytoplasmic processes not readily seen; however, they 5. Eosinophils may become “activated” and appear more ovoid with a more extensive basophilic cytoplasm (lots of rER) during V. Summary periods of growth or wound repair (note: the term fibrocyte is sometimes used to refer to “inactive” fibroblasts) Lab 5 – Connective Tissue IUSM – 2016 I. Introduction Slide 4a (464): Areolar Connective Tissue II. Learning Objectives III. Keywords IV. Slides A. Types of Connective Tissue 1. Mesenchyme collagen fiber 2. Connective Tissue Proper (thick) a. Loose/Areolar i. Elastic fibers fibroblast ii. Reticular fibers elastic fiber b. Dense (thin) i. Irregular ii. Regular 3. Specialized CT a. Adipose b. Cartilage (Lab 6) c. Bone (Lab 6/7) d. Blood (Lab 8) B. Resident and Wandering Cells 1. Lymphocytes 2. Plasma cells 3. Macrophages while collagen fibers provide strength to a tissue, elastic (or elastin) fibers are found interwoven in varying 4. Mast cells amounts in the ECM of most connective tissues providing stretch and recoil (e.g., in skin and lung); the fibers 5. Eosinophils are produced by fibroblasts or smooth muscle cells and are eosinophilic but are usually only seen with V.
Recommended publications
  • Tendon Fibroblasts
    Ann Rheum Dis: first published as 10.1136/ard.46.5.385 on 1 May 1987. Downloaded from Annals of the Rheumatic Diseases, 1987; 46, 385-390 Isolation and growth characteristics of adult human tendon fibroblasts M D CHARD, J K WRIGHT, AND B L HAZLEMAN From the Rheumatology Research Unit, Addenbrooke's Hospital, Hills Road, Cambridge SUMMARY An explant method for the isolation of fibroblasts from adult human tendon is described. Cells were successfully isolated from 22 out of 27 common biceps tendons obtained from cadaveric donors (age range 11-83 years). The fibroblasts could be maintained in culture using standard methods and morphologically resembled those of synovial rather than dermal origin. Growth characteristics of 12 cell lines were assessed by deoxyribose nucleic acid (DNA) synthesis using [3H]thymidine incorporation in response to stimulation by fetal calf serum. Cells obtained separately from superficial and deep parts of the tendons produced almost identical responses. No significant reduction in growth response with increasing age was found when related to the age of the donor. Therefore this study did not show any age related defect in the short term tendon fibroblast replicative responses to serum. Key words: in vitro, DNA synthesis. copyright. Tendinous lesions are common, but their nature and other tissues such as skin. It is desirable to investi- any possible predisposing factors are not well gate adult human tendon fibroblasts directly. It was understood. They occur in middle life frequently thought that the culture of adult human tendon after only minor, if any, injury. The extent to which fibroblasts would be very difficult to achieve be- this reflects age related changes in tendon tissue is cause of the differentiated appearance of cells on uncertain.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • An Histologie and Immunohistochemical Study
    Bull Group Int Rech Sci Stomatol et Odontol - Vol 34 n° 3-4, 1991 The connective tissue cells of human dental pulp: An histologie and immunohistochemical study LYN Peifen*, FIORE-DONNO G.** and LOMBARD1 T.** * Department ofStomatology, Tbird Hospital ofBeijing Medical University, China. ** Division of Stomatology School ofDental Medicine, Faculty ofMedicine Geneva, Switzerland. SUMMARY Twenty human healthy teeth were extracted for orthondontic purposes and processed for histological, and immunohistochemical examination. Odontoblasts were pseudostratified in depth of 1-8 cells in pulpward direction showing the zone of Weil and the cell-rich zone in coronal third pulp. In the central part of pulp tissue, fibroblasts were arranged as a network. These cells strongly immunoreacted with an antibody (monoclonal and polyclonal) directed against the intermediate filament vimentin. The product reaction was specifically located in the cytoplasm. Near vessels occasional lymphocytes and mast cells were also pré¬ sent. Collagen fibers formed a plexus below the cell-rich zone in middle and coronal pulp. KEY WORDS: Pulp - Fibroblast - Man - Histology - Immunohistochemistry. RESUME Vingt dents humaines saines ont été avulsées pour des raisons orthodontiques et traitées pour être exami¬ nées du point de vue histologique et par immunohistochimie. Les odontoblastes étaient pseudostratifiés (1-8 cellules) et dans le tiers coronaire de la pulpe soit la zone de Weil une zone riche en cellules est pré¬ sente. Dans la partie centrale de la pulpe, les fibroblastes forment un réseau. Ces cellules sont fortement immuno-marquées par un anticorps (monoclonal ou polyclonal) dirigé contre la vimentine. Le marquage est spécifiquement localisé dans le cytoplasme. A proximité des vaisseaux, des mastocytes ainsi que des lymphocytes sont présents.
    [Show full text]
  • Regulatory Micrornas in Brown, Brite and White Adipose Tissue
    cells Review Regulatory microRNAs in Brown, Brite and White Adipose Tissue Seley Gharanei 1,2, Kiran Shabir 3 , James E. Brown 3,4, Martin O. Weickert 1,2,5 , 1,2 1,2,3, 1,2,3, , Thomas M. Barber , Ioannis Kyrou y and Harpal S. Randeva * y 1 Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; [email protected] (S.G.); [email protected] (M.O.W.); [email protected] (T.M.B.); [email protected] (I.K.) 2 Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK 3 Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] (K.S.); [email protected] (J.E.B.) 4 School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK 5 Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK * Correspondence: [email protected] Joint senior authors; contributed equally to the manuscript. y Received: 30 September 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes).
    [Show full text]
  • Effect of Norbixin-Based Poly(Hydroxybutyrate) Membranes on the Tendon Repair Process After Tenotomy in Rats1
    ACTA CIRÚRGICA BRASILEIRA ORIGINAL ARTICLE Experimental Surgery Effect of norbixin-based poly(hydroxybutyrate) membranes on the tendon repair process after tenotomy in rats1 Lízia Daniela e Silva NascimentoI , Renata Amadei NicolauII , Antônio Luiz Martins Maia FilhoIII , José Zilton Lima Verde SantosIV , Khetyma Moreira FonsecaV , Danniel Cabral Leão FerreiraVI , Rayssilane Cardoso de SousaVII , Vicente Galber Freitas VianaVIII , Luiz Fernando Meneses CarvalhoIX , José Figueredo-SilvaX I Fellow PhD degree, Postgraduate Program in Biomedical Engineering, Universidade do Vale do Paraíba (UNIVAP), Sao Jose dos Campos-SP. Assistant Professor of Kinesiology, MSc, Health Sciences Center, Physical Therapy, Universidade Estadual do Piauí (UESPI), Teresina-PI, Brazil. Conception, design, intellectual and scientific content of the study; acquisition and interpretation of data; technical procedures; manuscript preparation. II PhD, Collaborator, Postgraduate Program in Biomedical Engineering of the Research and Development Institute, UNIVAP, Sao Jose dos Campos-SP, Brazil. Conception, design, intellectual and scientific content of the study; interpretation of data; critical revision. III Associate Professor of Physiology, Health Sciences Center, UESPI, Teresina-PI, Brazil. Technical procedures. IV MSc, Assistant Professor, Center of Health Sciences, Medicine and Physical Therapy, UESPI, Teresina-PI. Brazil. Histopathological examinations. V Fellow PhD degree, Postgraduate Program in Pharmacology, Universidade Federal do Ceará (UFC), Fortaleza-CE.
    [Show full text]
  • Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling1
    2912 Vol. 8, 2912–2923, September 2002 Clinical Cancer Research Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling1 Jennifer A. Tuxhorn, Gustavo E. Ayala, Conclusions: The stromal microenvironment in human Megan J. Smith, Vincent C. Smith, prostate cancer is altered compared with normal stroma and Truong D. Dang, and David R. Rowley2 exhibits features of a wound repair stroma. Reactive stroma is composed of myofibroblasts and fibroblasts stimulated to Departments of Molecular and Cellular Biology [J. A. T., T. D. D., express extracellular matrix components. Reactive stroma D. R. R.] and Pathology [G. E. A., M. J. S., V. C. S.] Baylor College of Medicine, Houston, Texas 77030 appears to be initiated during PIN and evolve with cancer progression to effectively displace the normal fibromuscular stroma. These studies and others suggest that TGF-␤1isa ABSTRACT candidate regulator of reactive stroma during prostate can- Purpose: Generation of a reactive stroma environment cer progression. occurs in many human cancers and is likely to promote tumorigenesis. However, reactive stroma in human prostate INTRODUCTION cancer has not been defined. We examined stromal cell Activation of the host stromal microenvironment is pre- phenotype and expression of extracellular matrix compo- dicted to be a critical step in adenocarcinoma growth and nents in an effort to define the reactive stroma environ- progression (1–5). Several human cancers have been shown to ment and to determine its ontogeny during prostate cancer induce a stromal reaction or desmoplasia as a component of progression. carcinoma progression. However, the specific mechanisms of Experimental Design: Normal prostate, prostatic intra- stromal cell activation are not known, and the extent to which epithelial neoplasia (PIN), and prostate cancer were exam- stroma regulates the biology of tumorigenesis is not fully un- ined by immunohistochemistry.
    [Show full text]
  • Flavio Akira Sakae Distribuição Das Fibras Colágenas E Do Sistema De
    Flavio Akira Sakae Distribuição das fibras colágenas e do sistema de fibras elásticas na camada superficial da lâmina própria da prega vocal com edema de Reinke Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências Área de concentração: Otorrinolaringologia Orientador: Prof. Dr. Domingos Hiroshi Tsuji São Paulo 2008 Dados Internacionais de Catalogação na Publicação (CIP) Preparada pela Biblioteca da Faculdade de Medicina da Universidade de São Paulo Óreprodução autorizada pelo autor Sakae, Flavio Akira Distribuição das fibras colágenas e do sistema de fibras elásticas na camada superficial da lâmina própria da prega vocal com edema de Reinke / Flavio Akira Sakae. -- São Paulo, 2008. Tese(doutorado)--Faculdade de Medicina da Universidade de São Paulo. Departamento de Oftalmologia e Otorrinolaringologia. Área de concentração: Otorrinolaringologia. Orientador: Domingos Hiroshi Tsuji. Descritores: 1.Edema laríngeo 2.Colágeno 3.Tecido elástico 4.Membrana mucosa 5.Cordas vocais USP/FM/SBD-146/08 "O único homem que está isento de erros, é aquele que não arrisca acertar." Albert Einstein Dedicatória Aos meus queridos pais, Masao e Junko, por tudo que fazem por mim, pelo apoio incondicional e amor eterno. São os meus ídolos. A minha esposa, Renata, amor da minha vida, pela alegria de viver, companheirismo e incentivo constante. A minha irmã, Cristiane, por ter contribuído em todos os passos de minha vida. Agradecimentos Ao meu orientador, Prof. Dr. Domingos Hiroshi Tsuji pela oportunidade e apoio na concretização deste sonho. Sua amizade e franqueza foram essenciais na elaboração deste trabalho. É o grande mestre. Ao Prof. Dr.
    [Show full text]
  • Human Skeletal Muscles Replaced to a High Degree by White Adipose Tissue
    Okajimas Folia Anat. Jpn.,Replacement 87(4): 165–170, of muscle February, by fat 2011165 Human skeletal muscles replaced to a high degree by white adipose tissue By Keisuke INA1, Hirokazu KITAMURA1, Takayuki MASAKI2, Shuji TATSUKAWA1, Hironobu YOSHIMATSU2 and Yoshihisa FUJIKURA1 1 Department of Molecular Anatomy, Faculty of Medicine, Oita University 2 Department of Internal Medicine 1, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan –Received for Publication, August 28, 2010– Key Words: fatty degeneration, skeletal muscle, diabetes mellitus, renal failure, hypothyroidism Summary: Extreme replacement of skeletal muscles by adipose tissue was found in an 86-year old Japanese male cadaver during dissection practice for medical students at Oita University School of Medicine. Especially, the bilateral sartorius muscles looked overall like adipose tissue. The man had suffered from diabetes mellitus, renal failure, hypertension and hy- pothyroidism before his death. He was also an alcohol drinker. He had been bedridden late in life. The cause of death was renal failure. In microscopy, the adipose tissue-like sartorius muscle was shown to consist of leptin-positive adipocytes with a small number of degenerated muscle fibers. Fatty replacement, or fatty degeneration, appears to result from endocrine and metabolic disorders, and being bedridden leads to muscle atrophy and damage, although the origin of the adipocytes which emerged in the degenerated muscles is unknown. Introduction tally denerved muscle atrophy (Dulor et al., 19984)). A recent report has demonstrated that, when a muscle There are two distinct types of fat accumulation in is injured, the event which subsequently occurs is either skeletal muscles: intramyocellular fat deposits and extra- myocyte regeneration or fatty degeneration, depending myocellular adipocyte accumulation.
    [Show full text]
  • Elastic Fiber Production in Cardiovascular Tissue-Equivalents
    Matrix Biology 22 (2003) 339–350 Elastic fiber production in cardiovascular tissue-equivalents Jennifer L. Long, Robert T. Tranquillo* Department of Chemical Engineering & Materials Science and Department of Biomedical Engineering, 7-114 BSBE, 312 Church St SE, University of Minnesota, Minneapolis, MN 55455, USA Received 10 January 2003; received in revised form 30 April 2003; accepted 30 April 2003 Abstract Elastic fiber incorporation is critical to the success of tissue-engineered arteries and heart valves. Elastic fibers have not yet been observed in tissue-engineered replacements fabricated in vitro with smooth muscle cells. Here, rat smooth muscle cells (SMC) or human dermal fibroblasts (HDF) remodeled collagen or fibrin gels for 4 weeks as the basis for a completely biological cardiovascular tissue replacement. Immunolabeling, alkaline extraction and amino acid analysis identified and quantified elastin. Organized elastic fibers formed when neonatal SMC were cultured in fibrin gel. Fibrillin-1 deposition occurred but elastin was detected in regions without fibrillin-1, indicating that a microfibril template is not required for elastic fiber formation within fibrin. Collagen did not support substantial elastogenesis by SMC. The quantity of crosslinked elastic fibers was enhanced by treatment with TGF-b1 and insulin, concomitant with increased collagen production. These additives overcame ascorbate’s inhibition of elastogenesis in fibrin. The elasticfibers that formed in fibrin treated with TGF- b1 and insulin contained crosslinks, as evidenced by the presence of desmosine and an altered elastin labeling pattern when b-aminopropionitrile (BAPN) was added. These findings indicate that in vitro elastogenesis can be achieved in tissue engineering applications, and they suggest a physiologically relevant model system for the study of three-dimensional elastic structures.
    [Show full text]
  • Profiling Microdissected Epithelium and Stroma to Model Genomic Signatures for Cervical Carcinogenesis Accommodating for Covariates
    Research Article Profiling Microdissected Epithelium and Stroma to Model Genomic Signatures for Cervical Carcinogenesis Accommodating for Covariates David Gius,1 Margo C. Funk,2 Eric Y. Chuang,1 Sheng Feng,3 Phyllis C. Huettner,4 Loan Nguyen,2 C. Matthew Bradbury,1 Mark Mishra,1 Shuping Gao,1 Barbara M. Buttin,2 David E. Cohn,2 Matthew A. Powell,2 Neil S. Horowitz,2 Bradford P. Whitcomb,2 and JanetS. Rader 2 1Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland and 2Division of Gynecologic Oncology, Department of Obstetrics and Gynecology; 3Division of Biostatistics; and 4Lauren V. Ackerman Laboratory of Surgical Pathology, Washington University School of Medicine, St. Louis, Missouri Abstract (CIN 1–3) and finally to squamous cell carcinoma antigen (SCCA) This study is the first comprehensive, integrated approach to have been well characterized. Histologically, CIN 1 consists of examine grade-specific changes in gene expression along the immature basal-type cells involving the lower third of the entire neoplastic spectrum of cervical intraepithelial neoplasia epithelium. In CIN 2, these immature basal-type cells involve more (CIN) in the process of cervical carcinogenesis. This was than the lower third, whereas CIN 3 involves the full thickness of the accomplished by identifying gene expression signatures of epithelium. In addition, higher CIN grades exhibit nuclear crowding, disease progression using cDNA microarrays to analyze RNA pleomorphism, loss of cell polarity, and increased mitotic activity from laser-captured microdissected epithelium and underlying (1). These transitions seemto be well conserved and, as such, stroma from normal cervix, graded CINs, cancer, and patient- provide an intriguing systemto use genomicsto identify the early matched normal cervical tissues.
    [Show full text]
  • On the Reticular Tissue and Lattice=Fibers Occurring in the Milk=Spots of Omentum
    On the Reticular Tissue and Lattice=fibers occurring in the Milk=spots of Omentum. By Dr. Yukio Hamazaki. From the Pathological Department of Okayama Medical College (Director: Prof. Oto Tam ura). 2 Figures (Plate III) and 3 Text Figures. Ranvier and Weide n reic h regarded the omentum as a flattened- out lymph gland and the abdominal cavity as its lymph sinus. The latter, furthermore, theoretically emphasized that the omentum is nothing but a sheet of reticular tissue, the "taches laiteuses" correspond- ing to the secondary nodules. Lately, Kiy ono agreed with the above view, though lie pointed out that the histiocytic cells in the milk-spots do not form reticular tissue, unlike those in the lymph glands. At the Fifteenth Pathological Congress of Japan (1925) I reported that the milk-spots in the rat, cattle, and pig are provided with a certain kind of reticular tissue. The purpose of the present paper is to settle this problem using specific stainings for the reticular fibers and for the lattice-fibers ("Gitterfasern" of v. Kupffer), which may be in an intiniate relation with them. Material and methods. The material was obtained from the cattle, pig , dog, cat, rabbit, guinea-pig, rat, mouse, chicken and human subject. As the control the organs containing reticular tissue, i. e., lymph glands , spleen and thymus gland were also examined. The material fixed with 10% solution of lormalin was studied as stretched specimens and as sections . For reticulum-staining the eosin-methyl blue method modified by the author was used: 1. Sections are stained for 30 minutes in 1% solution of eosin (a few drops of glacial acetic acid is added to 100 cc of the solution) .
    [Show full text]
  • The Mesocolon a Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization
    ORIGINAL ARTICLE The Mesocolon A Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization Kevin Culligan, MRCS,∗ Stewart Walsh, FRCSEd,∗ Colum Dunne, PhD,∗ Michael Walsh, PhD,† Siobhan Ryan, MB,‡ Fabio Quondamatteo, MD,‡ Peter Dockery, PhD,§ and J. Calvin Coffey, FRCSI∗¶ uring fetal development, the dorsal mesentery suspends the en- Background: Colonic mobilization requires separation of mesocolon from tire gastrointestinal tract from the posterior abdominal wall. The underlying fascia. Despite the surgical importance of planes formed by these D mesocolon is the adult remnant of that part of the dorsal mesentery structures, no study has formally characterized their microscopic features. associated with the colon.1 In the adult human, the transverse and The aim of this study was to determine the histological and electron micro- lateral sigmoid portions of the mesocolon are mobile whereas the as- scopic appearance of mesocolon, fascia, and retroperitoneum, prior to and cending, descending, and medial sigmoid portions are nonmobile and after colonic mobilization. attached to underlying retroperitoneum.2–4 Classic anatomic teaching Methods: In 24 cadavers, samples were taken from right, transverse, de- maintains that the ascending and descending mesocolon “disappear” scending, and sigmoid mesocolon. In 12 cadavers, specimens were stained during embryogenesis.5,6 In keeping with this, the identification of a with hematoxylin and eosin (3 sections) or Masson trichrome (3 sections). In right or left mesocolon in the adult is frequently depicted as anoma- the second 12 cadavers, lymphatic channels were identified by staining im- lous rather than accepted as an anatomic norm.7 Accordingly, the munohistochemically for podoplanin.
    [Show full text]