Tendon Fibroblasts

Total Page:16

File Type:pdf, Size:1020Kb

Tendon Fibroblasts Ann Rheum Dis: first published as 10.1136/ard.46.5.385 on 1 May 1987. Downloaded from Annals of the Rheumatic Diseases, 1987; 46, 385-390 Isolation and growth characteristics of adult human tendon fibroblasts M D CHARD, J K WRIGHT, AND B L HAZLEMAN From the Rheumatology Research Unit, Addenbrooke's Hospital, Hills Road, Cambridge SUMMARY An explant method for the isolation of fibroblasts from adult human tendon is described. Cells were successfully isolated from 22 out of 27 common biceps tendons obtained from cadaveric donors (age range 11-83 years). The fibroblasts could be maintained in culture using standard methods and morphologically resembled those of synovial rather than dermal origin. Growth characteristics of 12 cell lines were assessed by deoxyribose nucleic acid (DNA) synthesis using [3H]thymidine incorporation in response to stimulation by fetal calf serum. Cells obtained separately from superficial and deep parts of the tendons produced almost identical responses. No significant reduction in growth response with increasing age was found when related to the age of the donor. Therefore this study did not show any age related defect in the short term tendon fibroblast replicative responses to serum. Key words: in vitro, DNA synthesis. copyright. Tendinous lesions are common, but their nature and other tissues such as skin. It is desirable to investi- any possible predisposing factors are not well gate adult human tendon fibroblasts directly. It was understood. They occur in middle life frequently thought that the culture of adult human tendon after only minor, if any, injury. The extent to which fibroblasts would be very difficult to achieve be- this reflects age related changes in tendon tissue is cause of the differentiated appearance of cells on uncertain. Thus investigation of the functions of histology'5 and the traditional concept of tendon tendon tissue could be of central importance in healing by adhesion alone.'1619 Recent work in http://ard.bmj.com/ understanding the aetiopathology of such lesions. animals has shown that tendon has the capacity for One approach to this problem is the study and intrinsic repair.'1 2t)23 This process involves migra- characterisation of human tendon fibroblasts in tion, replication, and collagen formation by tendon vitro. fibroblasts. Organ culture of tendon of both avian and These studies have raised the possibility that mammalian origin has shown how tendon fibroblasts fibroblasts could be isolated from adult human respond to injury.'v Culture of cells derived from tendon and maintained in vitro. The present study on September 28, 2021 by guest. Protected animal tendon has provided information on growth, was carried out to investigate this possibility and, if metabolism, and collagen formation.'9 Interspecies successful, to assess the growth characteristics of differences occur, however, and therefore the rele- tendon fibroblasts. vance of these studies to human tendon must be open to question. Although some work has been Materials and methods carried out on human tendon fibroblasts of fetal origin, this has uncertain relevance to aging ISOLATION tendon. 10 Adult human tendon was obtained from fresh Differences exist between fibroblasts of different cadavers within a short time of death (<12 h). The tissue origin, 11-14 and therefore investigation of common biceps tendon was chosen for ease of adult human tendon fibroblasts would have more aseptic removal and being unsheathed does not have relevance than making inferences from work on a covering of synovial type fibroblasts which could have been a source of contaminating cells. Accepted for publication 4 December 1986. Correspondence to Dr M D Chard, Rheumatology Research Unit, After being washed three times in Hanks's Level E6, Addenbrooke's Hospital, Hills Road, Cambridge CB2 balanced salt solution (HBSS) buffered with 2QQ. 20 mM HEPES (N-2-hydroxyethylpiperazine-N'-2- 385 Ann Rheum Dis: first published as 10.1136/ard.46.5.385 on 1 May 1987. Downloaded from 386 Chard, Wright, Hazleman ethanesulphonic acid; Gibco, Paisley, Scotland) all were cultured separately from those from within it fat and loose tissue surrounding the tendon was as a previous report has suggested that the superfi- carefully dissected away and fragments 1-3 mm cial cells are most active in tendon repair.2 thick and up to 5 mm in length were cut from it. Fragments were placed in groups in 50 mm tissue GROWTH EXPERIMENTS culture grade plastic Petri dishes (Sterilin, Tedding- A representative sample of 12 tendon fibroblast ton, England). Each group was covered with a lines was used from an age range of 11 to 83 years. 10 mm diameter circular sterile glass coverslip held Growth was assessed by DNA synthesis using in place with a spot of sterile silicone grease. Four [3H]thymidine incorporation. coverslips were used per dish. Three millilitres Cell lines at low passage (<4) were plated out into of Dulbecco's modification of Eagle's medium 24-well plastic plates (Nunc, Gibco, Irvine, Scot- (DMEM) supplemented with 20 mM HEPES, 10% land) at a density of 2*5x104 cells/well in 1 ml of fetal calf serum (FCS), and antibiotics (Gibco, DMEM+20 mM HEPES, 10% FCS, and anti- Paisley, Scotland) was added to each dish. The biotics. The cultures were incubated at 37°C in a cultures were then incubated at 37°C in a humidified humidified atmosphere for three days to allow the atmosphere. The medium was changed weekly. The cells to become established. The medium was then use of coverslips increased the area of tendon removed and the cells washed three times with to surface contact, thus encouraging fibroblast HBSS. One millilitre of medium containing 1% FCS outgrowth.24 was then added to each well. After a further 24 Once adequate cell migration and replication had hours this medium was removed and the cells occurred the coverslips were inverted and the exposed to a range of concentrations of FCS from 0 medium and explants were carefully removed. The to 20%, each concentration being used in triplicate. fibroblasts were washed with calcium and magne- Twenty four hours later 5 RCi (185 kBq) sium free HBSS and removed from the dish and [3H.]thymidine was added to each well and incuba- coverslips by incubation with 0*25% trypsin and tion continued for a further 24 hours. 0*02% ethylenediaminetetra-acetic acid in calcium At that time medium was removed and the cellscopyright. and magnesium free HBSS (Flow Laboratories, were washed three times with HBSS and were lysed Irvine, Scotland). The cells were transferred to with 0-5 ml of 19 M formic acid. The resulting 25 cm2 plastic culture flasks (Nunc, Gibco, Irvine, solution was transferred to labelled scintillation Scotland) and maintained in monolayer in DMEM vials, 4-5 ml of Optiphase 'safe' scintillant (LKB supplemented with 20 mM HEPES, 10% FCS, and Instruments, Croydon, UK) added, and the samples antibiotics. counted on an LKB 1218 liquid scintillation spectro- Tissue fragments from the surface of the tendon meter. http://ard.bmj.com/ on September 28, 2021 by guest. Protected Fig. 1 Fourteen day explant culture ofadult human tendon showing migration ofthe fibroblasts onto the surface ofthe culture disc. AM- qm. ,Am lmff& ..0 I.W- t"'i Ann Rheum Dis: first published as 10.1136/ard.46.5.385 on 1 May 1987. Downloaded from Adult human tendon fibroblasts 387 Fig. 2 First passage tendon fibroblasts in monolayer culture. The mean of the triplicates for each concentration Results of FCS was used to construct a dose-response curve for FCS stimulated DNA synthesis for each cell line. ISOLATION The data were linearised by conversion to log to No visible outgrowth of cells from the explants was copyright. base 10, and a curve was obtained by regression seen in the first two weeks after the cultures were analysis. The slope of this curve was used as a established. After this period, however, fibroblasts measure of the rate of [3H]thymidine incorporation started to migrate from the substance of the tendon by the tendon fibroblasts, and each value was then tissue onto the surface of the Petri dish and related to the age of the donor. coverslips (Fig. 1). Migration and replication then In addition, comparison was made between the continued slowly, taking up to a further two weeks superficial and deep tendon fibroblast lines by before sufficient cell numbers were present for http://ard.bmj.com/ comparing the mean DNA synthesis for each passage (approximately 0*5x 106 cells). concentration of FCS. This was done to establish Successful isolation was achieved from 22 out of any difference between the DNA synthetic ability of 27 tendons (age range 11-83 years). Once estab- superficial and deep tendon fibroblasts. lished in monolayer the cells had cell doubling times % 3 on September 28, 2021 by guest. Protected x E 2.5 , 1.5 Fig. 3 Tvpicalgrowth curvefor a line ofhuman tendon fibroblasts (HTB8) after stimulation with fetal calfserum (mean oftriplicate cultures (SEM)). 0.5 v . ^ ~~~~~~I~ I 5 10 15 20 25 FCS % Ann Rheum Dis: first published as 10.1136/ard.46.5.385 on 1 May 1987. Downloaded from 388 Chard, Wright, Hazleman IN~ 0 x 2 - Lu r = 0.32 0-1.5 0 z Fig. 4 The response ofsuperficial human tendonfibroblasts (12 lines) as measured by [3HJthymidine incorporation, expressed as the slope I- 0 ofthe log linearised growth curve, 0~~~~~~~~~~~A derived by regression analysis, for a 0.5 - * range ofconcentrations offetal calf 0 0 0@0 serum. 0 II II UI I a 20 40 60 80 100 AGE (years) of between four and six days. Morphologically the Variation in sensitivity to FCS was large, as the cells appeared dissimilar to skin fibroblasts grown in linearised rate values show when related to the age the same conditions, being less spindle shaped and of the donor.
Recommended publications
  • Review the Cellular Matrix: a Feature of Tensile Bearing Dense Soft
    Histol Histopathol (2002) 17: 523-537 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology Review The cellular matrix: a feature of tensile bearing dense soft connective tissues I.K. Lo, S. Chi, T. Ivie, C.B. Frank and J.B. Rattner Joint Injury and Arthritis Research Group, University of Calgary, Calgary, Canada S u m m a r y. The term connective tissue encompasses a recent studies using a variety of microscopic and indirect d iverse group of tissues that reside in diff e r e n t immunofluorescence techniques suggest that these e nvironments and must support a spectrum of apparently diverse groups of tissues, which are mechanical functions. Although the extracellular matrix characterized by a spectrum of functions and in vivo of these tissues is well described, the cellular mechanical environments, are organized around similar architecture of these tissues and its relationship to tissue architectural principles. function has only recently become the focus of study. It The purpose of this rev i ew is to highlight recent n ow appears that tensile-bearing dense connective d evelopments in our understanding of the cellular tissues may be a specific class of connective tissues that architecture of dense soft connective tissues and to display a common cellular organization characterized by discuss their functional implications. It will become fusiform cells with cytoplasmic projections and ga p clear that a 3-dimensional cellular arrangement, a junctions. These cells with their cellular projections are “cellular matrix”, consisting of fusiform cells with organised into a complex 3-dimensional network leading cytoplasmic projections and gap junctions may define a to a phy s i c a l l y, chemically and electrically connected s p e c i fic class of hy p o c e l l u l a r, tensile-bearing, dense cellular matrix.
    [Show full text]
  • Comparative Multi-Scale Hierarchical Structure of the Tail, Plantaris, and Achilles Tendons in 2 the Rat 3 Andrea H
    bioRxiv preprint doi: https://doi.org/10.1101/396309; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Comparative Multi-scale Hierarchical Structure of the Tail, Plantaris, and Achilles Tendons in 2 the Rat 3 Andrea H. Lee, Dawn M. Elliott* 4 Department of Biomedical Engineering, University of Delaware 5 *Corresponding author. Tel.: +1 302 831 1295. E-mail address: [email protected] (D.M. Elliott). 6 7 Keyword: Tendon, Hierarchical Structure, Multi-scale, Imaging 8 9 10 Abstract (500 words) 11 Rodent tendons are widely used to study human pathology, such as tendinopathy and 12 repair, and to address fundamental physiological questions about development, growth, and 13 remodeling. However, how the gross morphology and the multi-scale hierarchical structure of 14 rat tendons, such as the tail, plantaris, and Achillles tendons, compare to that of human 15 tendons are unknown. In addition, there remains disagreement about terminology and 16 definitions. Specifically, the definition of fascicle and fiber are often dependent on the diameter 17 size and not their characteristic features, which impairs the ability to compare across species 18 where the size of the fiber and fascicle might change with animal size and tendon function. 19 Thus, the objective of the study was to select a single species that is widely used for tendon 20 research (rat) and tendons with varying mechanical functions (tail, plantaris, Achilles) to 21 evaluate the hierarchical structure at multiple length scales.
    [Show full text]
  • Establishment and Investigation of Tendon-Derived Cell Lines Immortalized by the Human Telomerase Reverse Transcriptase Gene
    Aus der Chirurgischen Klinik und Poliklinik – Innenstadt, der Ludwig-Maximilians-Universität München Direktor: Prof. Dr. med. Wolf Mutschler Establishment and investigation of tendon- derived cell lines immortalized by the human telomerase reverse transcriptase gene. DISSERTATION zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von: Sophia Amina Poppe aus München, im Jahr 2010 Mit Genehmigung der Medizinischen Fakultät der Universität München Berichterstatter: Prof. Dr. med. Matthias Schieker Mitberichterstatter: Prof. Dr. Günther Eißner Prof. Dr. Peter Müller Mitbetreuung durch die promovierten Mitarbeiter: Dr. rer. nat. Denitsa Docheva Dekan: Prof. Dr. med. Dr. h.c. M. Reiser FACR, FRCR Tag der mündlichen Prüfung: 08. Juli 2010 1. INTRODUCTION......................................................................................................................... 4 1.1. General background......................................................................................................... 4 1.1.1. Anatomical and molecular structure of tendons.............................................. 4 1.1.1.1. Tendinous tissue................................................................................................ 4 1.1.1.2. Osteotendinous junction - enthesis............................................................ 5 1.1.1.3. Myotendinous junction................................................................................... 7 1.1.2. Development of tendons......................................................................................
    [Show full text]
  • Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges
    materials Review Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges Megane Beldjilali-Labro 1,†, Alejandro Garcia Garcia 1,†, Firas Farhat 1,† ID , Fahmi Bedoui 2, Jean-François Grosset 1, Murielle Dufresne 1 and Cécile Legallais 1,* ID 1 CNRS, UMR 7338, Biomécanique-Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France; [email protected] (M.B.-L.); [email protected] (A.G.G.); fi[email protected] (F.F.); [email protected] (J.-F.G.); [email protected] (M.D.) 2 CNRS FRE 2012, Laboratoire Roberval, Sorbonne Universités, Université de Technologie de Compiègne, 60200 Compiègne, France; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 31 May 2018; Accepted: 25 June 2018; Published: 29 June 2018 Abstract: Tissue engineering is a promising approach to repair tendon and muscle when natural healing fails. Biohybrid constructs obtained after cells’ seeding and culture in dedicated scaffolds have indeed been considered as relevant tools for mimicking native tissue, leading to a better integration in vivo. They can also be employed to perform advanced in vitro studies to model the cell differentiation or regeneration processes. In this review, we report and analyze the different solutions proposed in literature, for the reconstruction of tendon, muscle, and the myotendinous junction. They classically rely on the three pillars of tissue engineering, i.e., cells, biomaterials and environment (both chemical and physical stimuli). We have chosen to present biomimetic or bioinspired strategies based on understanding of the native tissue structure/functions/properties of the tissue of interest.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Rebuilding Tendons: a Concise Review on the Potential of Dermal Fibroblasts
    cells Review Rebuilding Tendons: A Concise Review on the Potential of Dermal Fibroblasts Jin Chu 1 , Ming Lu 2, Christian G. Pfeifer 1,3 , Volker Alt 1,3 and Denitsa Docheva 1,* 1 Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany; [email protected] (J.C.); [email protected] (C.G.P.); [email protected] (V.A.) 2 Department of Orthopaedic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116023, China; [email protected] 3 Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany * Correspondence: [email protected]; Tel.: +49-(0)941-943-1605 Received: 29 June 2020; Accepted: 2 September 2020; Published: 8 September 2020 Abstract: Tendons are vital to joint movement by connecting muscles to bones. Along with an increasing incidence of tendon injuries, tendon disorders can burden the quality of life of patients or the career of athletes. Current treatments involve surgical reconstruction and conservative therapy. Especially in the elderly population, tendon recovery requires lengthy periods and it may result in unsatisfactory outcome. Cell-mediated tendon engineering is a rapidly progressing experimental and pre-clinical field, which holds great potential for an alternative approach to established medical treatments. The selection of an appropriate cell source is critical and remains under investigation. Dermal fibroblasts exhibit multiple similarities to tendon cells, suggesting they may be a promising cell source for tendon engineering. Hence, the purpose of this review article was in brief, to compare tendon to dermis tissues, and summarize in vitro studies on tenogenic differentiation of dermal fibroblasts.
    [Show full text]
  • Tendon Extracellular Matrix Remodeling and Defective Cell Polarization in the Presence of Collagen VI Mutations
    cells Article Tendon Extracellular Matrix Remodeling and Defective Cell Polarization in the Presence of Collagen VI Mutations Manuela Antoniel 1,2, Francesco Traina 3,4, Luciano Merlini 5 , Davide Andrenacci 1,2, Domenico Tigani 6, Spartaco Santi 1,2, Vittoria Cenni 1,2, Patrizia Sabatelli 1,2,*, Cesare Faldini 7 and Stefano Squarzoni 1,2 1 CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”-Unit of Bologna, 40136 Bologna, Italy; [email protected] (M.A.); [email protected] (D.A.); [email protected] (S.S.); [email protected] (V.C.); [email protected] (S.S.) 2 IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy 3 Ortopedia-Traumatologia e Chirurgia Protesica e dei Reimpianti d’Anca e di Ginocchio, Istituto Ortopedico Rizzoli di Bologna, 40136 Bologna, Italy; [email protected] 4 Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università Degli Studi Di Messina, 98122 Messina, Italy 5 Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; [email protected] 6 Department of Orthopedic and Trauma Surgery, Ospedale Maggiore, 40133 Bologna, Italy; [email protected] 7 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-051-6366755; Fax: +39-051-4689922 Received: 20 December 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: Mutations in collagen VI genes cause two major clinical myopathies, Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), and the rarer myosclerosis myopathy. In addition to congenital muscle weakness, patients affected by collagen VI-related myopathies show axial and proximal joint contractures, and distal joint hypermobility, which suggest the involvement of tendon function.
    [Show full text]
  • Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity
    nutrients Review Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review Elvira Verduci 1,2,*,† , Valeria Calcaterra 2,3,† , Elisabetta Di Profio 2,4, Giulia Fiore 2, Federica Rey 5,6 , Vittoria Carlotta Magenes 2, Carolina Federica Todisco 2, Stephana Carelli 5,6,* and Gian Vincenzo Zuccotti 2,5,6 1 Department of Health Sciences, University of Milan, 20146 Milan, Italy 2 Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; [email protected] (V.C.); elisabetta.diprofi[email protected] (E.D.P.); giulia.fi[email protected] (G.F.); [email protected] (V.C.M.); [email protected] (C.F.T.); [email protected] (G.V.Z.) 3 Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy 4 Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy 5 Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; [email protected] 6 Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy * Correspondence: [email protected] (E.V.); [email protected] (S.C.) † These authors contributed equally to this work. Abstract: Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we Citation: Verduci, E.; Calcaterra, V.; revised preclinical and clinical works on factors that may promote BAT or browning of white adipose Di Profio, E.; Fiore, G.; Rey, F.; tissue (WAT) from fetal age to adolescence.
    [Show full text]
  • Estudo Histológico E Biomecânico Da Tendinopatia Induzida Por Injeções Seriadas De Colagenase: Novo Modelo Experimental No
    CÉSAR DE CÉSAR NETTO Estudo histológico e biomecânico da tendinopatia induzida por injeções seriadas de colagenase: novo modelo experimental no tendão do calcâneo de coelhos Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do Título de Doutor em Ciências Programa de Ortopedia e Traumatologia Orientador: Prof. Dr. Túlio Diniz Fernandes São Paulo 2017 Dados Internacionais de Catalogação na Publicação (CIP) Preparada pela Biblioteca da Faculdade de Medicina da Universidade de São Paulo reprodução autorizada pelo autor Cesar Netto, Cesar de Estudo histológico e biomecânico da tendinopatia induzida por injeções seriadas de colagenase : novo modelo experimental no tendão do calcâneo de coelhos/ Cesar de Cesar Netto. -- São Paulo, 2017. Tese(doutorado)--Faculdade de Medicina da Universidade de São Paulo. Programa de Ortopedia e Traumatologia. Orientador: Túlio Diniz Fernandes. Descritores: 1.Tendinopatia 2.Tendão do calcâneo 3.Modelos animais 4.Tendinopatia induzida quimicamente 5.Colagenase bacteriana 6.Coelhos USP/FM/DBD-105/17 Dedicatória Dedicatória À minha amada esposa Sabrina, amor da minha vida, que sempre esteve ao meu lado, me apoiando nos momentos mais difíceis. À minha filha Manuela, razão do meu viver. À minha filha Juliana, que logo estará conosco e nos trará ainda mais alegria. Aos meus amados pais Luiz Edmundo e Maria Amélia, pelo amor e carinho, e por proporcionarem todas as oportunidades da minha vida. À minha querida irmã Marcela, eterna companheira, que me presenteou com meus amados sobrinhos Gianluca e Sofia. Ao meu saudoso avô Osvaldo, melhor amigo. A Deus, por me dar saúde e sempre me guiar pelos melhores caminhos.
    [Show full text]
  • Tendon Healing with Allogenic Fibroblast and Static Magnetic Field in Rabbit Model
    IJVS 2015; 10(2); Serial No:23 IRANIAN JOURNAL OF VETERINARY SURGERY (IJVS) WWW.IVSA.IR Tendon Healing with Allogenic Fibroblast and Static Magnetic Field in Rabbit Model Amin Bigham-Sadegh*1, Setare Ghasemi 2, Iraj Karimi 3, Pezhman Mirshokraei 4, Hasan Nazari 5, Ahmad Oryan 6 Abstract Objectives- Tendons are integral parts of musculoskeletal system and are subjected to injury. Fibroblast is used in tendon healing, however, there is no proved and reported result regarding concurrent use of allogenic fibroblast with static magnetic field in tendon healing. In addition, there are some studies done on the effect of magnetic fields on tendon healing but the results are antithesis. The aim of this study is to evaluate the effect of simultaneous application of fibroblast and magnetic field on tendon healing in rabbit model. Design- Experimental study. Animals- Eighteen female rabbits, 15 months old and weighing 3.0±0.5 kg were used in this study. Procedures- Two legs of eighteen rabbits were divided into 6 groups. After skin incision, superficial flexor tendon was exposed and cut transversely and then sutured. In control group tendon injury were created in right and left legs and sutured in bunnell mayer suturing technique. In culture media substance group after tendon injury in two legs, 0.5 cc culture substance was injected in the injured tendon area in two legs. In fibroblast group, fibroblast cells were injected in the tendon injured area in both legs. Then all injuries legs were dressed up, a piece of magnet was placed in the surrounding bandage of the left leg for 7 days and right legs were left empty.
    [Show full text]
  • White Adipocyte Plasticity in Physiology and Disease
    cells Review White Adipocyte Plasticity in Physiology and Disease Ewa Bielczyk-Maczynska Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; [email protected] Received: 19 October 2019; Accepted: 21 November 2019; Published: 25 November 2019 Abstract: Cellular plasticity is a transformation of a terminally differentiated cell into another cell type, which has been long known to occur in disease and regeneration. However, white adipocytes (fat cells) have only recently been observed to undergo different types of cellular plasticity. Adipocyte transdifferentiation into myofibroblasts and cancer-associated fibroblasts occurs in fibrosis and cancer, respectively. On the other hand, reversible adipocyte dedifferentiation into adipocyte progenitor cells (preadipocytes) has been demonstrated in mammary gland and in dermal adipose tissue. Here we discuss the research on adipocyte plasticity, including the experimental approaches that allowed to detect and study it, the current state of the knowledge, major research questions which remain to be addressed, and the advances required to stimulate adipocyte plasticity research. In the future, the knowledge of the molecular mechanisms of adipocyte plasticity can be utilized both to prevent adipocyte plasticity in disease and to stimulate it for use in regenerative medicine. Keywords: cell plasticity; adipocytes; fat; cell dedifferentiation; cell transdifferentiation; cell differentiation 1. Introduction In the traditional view of cell differentiation, cells follow a differentiation trajectory in discrete developmental stages, beginning with stem cells and culminating with a terminally differentiated state [1]. The terminally differentiated state is thought to be permanent as the cells can no longer transfer into other cell fates. However, in many systems the phenomenon of cellular plasticity, which is a transformation of a cellular phenotype beginning with a terminally differentiated cell, has been described not only in pathologies like cancer, but also during physiological processes [2].
    [Show full text]
  • Extracellular Matrix Regulates Fibroblast Heterogeneity and Tumorigenesis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Extracellular Matrix Regulates Fibroblast Heterogeneity And Tumorigenesis Diana Leigh Avery University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, Oncology Commons, and the Pharmacology Commons Recommended Citation Avery, Diana Leigh, "Extracellular Matrix Regulates Fibroblast Heterogeneity And Tumorigenesis" (2017). Publicly Accessible Penn Dissertations. 2173. https://repository.upenn.edu/edissertations/2173 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2173 For more information, please contact [email protected]. Extracellular Matrix Regulates Fibroblast Heterogeneity And Tumorigenesis Abstract Heterogeneous activated fibroblasts that deposit and remodel extracellular matrix (ECM) comprise desmoplasia, a key regulator of tumor development. The divergent outcomes in response to varied therapies targeting intratumoral desmoplasia underscore the pressing need to delineate the intricate role of a heterogeneous stroma in tumorigenesis. Fibroblast activation protein (FAP) and alpha-smooth muscle actin (αSMA) identify distinct, yet overlapping, activated fibroblast subsets in myriad tumor types, fibrosis, and wound healing. FAPHi reactive fibroblasts and αSMAHi myofibroblasts can exert divergent influences on tumor progression. However, the factors that drive this phenotypic heterogeneity and the
    [Show full text]