<<

excerpt from the book: , Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved.

Chapter 6, Pages 139-174

Direct Neural Interface Hiroyuki Tashiro*, Marko B. Popovic†, Keiji Iramina*,

‡ § Yasuo Terasawa , Jun Ohta

*KYUSHU UNIVERSITY, FUKUOKA, JAPAN †WORCESTER POLYTECHNIC INSTITUTE,

WORCESTER, MA, ‡NIDEK CO., LTD., AICHI, JAPAN §NARA INSTITUTE OF

SCIENCE AND TECHNOLOGY (NAIST), NARA, JAPAN

Abstract

A direct neural interface (DNI) is a direct communication pathway between the and an external device. DNI is also known by other terms like -machine interface (BMI) and brain-computer interface (BCI). BMI translates neuronal information into instructions for external software or hardware such as a computer or robotic arm and can also serve to communicate sensory data collected by an external device back to the human nervous system. This chapter addresses neural interfaces, for example, cortical microelectrode technologies and high-resolution peripheral neuromuscular interfaces. Comprehensive review of electrode technologies used for stimulation and recording is provided. Additionally, several practical applications involving BMI-based control of an external device are addressed.

CHAPTER OUTLINE

6.1 Introduction ...... 139

6.2 Theory of Electrical Recording ...... 141

6.2.1 Recording Electrode ...... 142

6.2.2 Electrode Configuration ...... 148

6.3 Electrical Stimulation ...... 148

6.3.1 Theory ...... 150 6.3.2 Stimulation Electrode ...... 152

6.4 Optical Recording and Stimulation ...... 153

6.4.1 Optical Recording ...... 154

6.4.2 Optical Stimulation ...... 154

6.5 Applications of BMI ...... 156

6.5.1 Overview of BMI Application ...... 156

6.5.2 Invasive BMI ...... 157

6.5.3 Noninvasive BMI ...... 163

References ...... 167

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00006-9

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] F. Nijboer, J. Clausen, B.Z. Allison, P. Haselager, The Asilomar survey: stakeholders’ opinions on ethical issues related to brain-computer interfacing. 6 (3) (2013) 541–578, doi:10.1007/s12152-011- 9132-6.

[2] H. Berger, Uber das elektrenkephalogramm des menschen. Arch. Psychiatr. Nervenkr. 87 (1) (1929) 527–570, doi:10.1007/BF01797193.

[3] J.M.R. Delgado, Permanent implantation of multilead electrodes in the brain, Yale J. Biol.Med. 24 (5) (1952) 351–358.

[4] J.M.R. Delgado, H. Hamlin, Surface and depth electrography of the frontal lobes in conscious patients. Electroencephalogr. Clin. Neurophysiol. 8 (3) (1956) 371–384, doi:10.1016/0013-4694(56) 90003-7.

[5] J.J. Vidal, Real-Time detection of brain events in EEG. Proc. IEEE 65 (5) (1977) 633–641, doi:10.1109/PROC.1977.10542.

[6] M.M.Merzenich, R.P. Michelson, C.R. Pettit, R.A. Schindler,M. Reid, Neural encoding of sound sensation evoked by electrical stimulation of the acoustic . Ann. Otol. Rhinol. Laryngol. 82 (4) (1973) 486–503, doi:10.1177/000348947308200407. [7] W.H. Dobelle, M.G. Mladejovsky, J.P. Girvin, Artificial vision for the blind: electrical stimulation of offers hope for a functional . Science 183 (4123) (1974) 440–444, doi:10.1126/science.183.4123.440.

[8] S.W. Lee, F. Fallegger, B.D.F. Casse, S.I. Fried, Implantable microcoils for intracortical magnetic stimulation. Sci. Adv. 2 (12) (2016)e1600889doi:10.1126/sciadv.1600889.

[9] A.C. Thompson, P.R. Stoddart, E.D. Jansen, Optical Stimulation of . Curr.Mol. Imaging 3 (2) (2014) 162–177, doi:10.2174/2211555203666141117220611.

[10] E. Rezayat, I.G. Toostani, A review on brain stimulation using low intensity focused ultrasound. Basic Clin. Neurosci. 7 (3) (2016) 187–194, doi:10.15412/J.BCN.03070303.

[11] J. Rivnay, H. Wang, L. Fenno, K. Deisseroth, G.G. Malliaras, Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3 (6) (2017)e1601649doi:10.1126/sciadv.1601649.

[12] L.F. Nicolas-Alonso, J. Gomez-Gil, Brain computer interfaces, a review. Sensors (Basel) 12 (2) (2012) 1222–1279, doi:10.3390/s120201211.

[13] B.P. Christie, D.M. Tat, Z.T. Irwin, V. Gilja, P. Nuyujukian, J.D. Foster, S.I. Ryu, K.V. Shenoy, D. E. Thompson, C.A. Chestek, Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance. J. Neural. Eng. 12 (1) (2015) 016009, doi:10.1088/1741-2560/12/1/016009.

[14] L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, control of prosthetic devices by a human with . Nature 442 (7099) (2006) 164–171, doi:10.1038/nature04970.

[15] J.D. Simeral, S.-P. Kim, M.J. Black, J.P. Donoghue, L.R. Hochberg, Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical . J. Neural Eng. 8 (2) (2011)025027doi:10.1088/1741-2560/8/2/025027.

[16] M.J. Nelson, P. Pouget, E.A. Nilsen, C.D. Patten, J.D. Schall, Review of signal distortion through metal microelectrode recording circuits and filters. J. Neurosci. Methods 169 (1) (2008) 141–157, doi:10.1016/j.jneumeth.2007.12.010.

[17] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Application, John Wiley & Sons, Inc., Danvers, 2001

[18] P. Vanysek, Electrochemical series, in:W.M. Haynes (Ed.), CRC Handbook of Chemistry and Physics, 92nd ed., CRC Press, Boca Raton, 2011–2012, , pp. 5-80–5-89.

[19] L.A. Geddes, R. Roeder, Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng. 31 (7) (2003) 879–890, doi:10.1114/1.1581292.

[20] C. Im, J.-M. Seo, A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett. 6 (3) (2016) 104–112, doi:10.1007/s13534-016-0235-1.

[21] M.R. Neuman, Biopotential electrodes, in: J.D. Bronzine (Ed.), Medical Devices and Systems, The Biomedical Handbook, third ed., CRC Press, Boca Raton, 2006, , pp. 47-1–47-13. [22] M. Schuettler, T. Doerge, S.L. Wien, S. Becker, A. Staiger, M. Hanauer, S. Kammer, T. Stieglitz, Cytotoxicity of platinum black, in: Proc. 10th Ann. Conf. Int. FES Soc., 5–8 July 2005,Montreal, Canada, 2005, , pp. S.343–S.345.

[23] B. Alizadeh-Taheri, R.L. Smith, R.T. Knight, An active, microfabricated, scalp electrode array for EEG recording. Sens. Actuators A 54 (1–3) (1996) 606–611, doi:10.1016/S0924-4247(97) 80023-4.

[24] Y.M. Chi, T.-P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3 (2010) 106–119, doi:10.1109/RBME.2010.2084078.

[25] M.A. Lopez-Gordo, D. Sanchez-Morillo, F. Pelayo Valle, Dry EEG electrodes. Sensors (Basel) 14 (7) (2014) 12847–12870, doi:10.3390/s140712847.

[26] J.W. Salatino, K.A. Ludwig, T.D.Y. Kozai, E.K. Purcell, Glial responses to implanted electrodes in the brain. Nature Biomed. Eng. 1 (2017) 862–877, doi:10.1038/s41551-017-0177-7.

[27] A. Weltman, J. Yoo, E. Meng, Flexible, penetrating brain probes enabled by advances in polymer microfabrication. Micromachines 7 (10) (2016) 180, doi:10.3390/mi7100180.

[28] K.A. Potter, A.C. Buck,W.K. Self, J.R. Capadona, Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J. Neural Eng. 9 (4) (2012) 046020, doi:10.1088/1741-2560/9/4/046020.

[29] L. Luan, X. Wei, Z. Zhao, J.J. Siegel, O. Potnis, C.A. Tuppen, S. Lin, S. Kazmi, R.A. Fowler, S. Holloway, A.K. Dunn, R.A. Chitwood, C. Xie, Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3 (2) (2017)e1601966doi:10.1126/sciadv.1601966.

[30] T.J. Oxley, N.L. Opie, S.E. John, G.S. Rind, S.M. Ronayne, T.L. Wheeler, J.W. Judy, A.J. McDonald, A. Dornom, T.J.H. Lovell, C. Steward, D.J. Garrett, B.A. Moffat, E.H. Lui, N. Yassi, B.C.V. Campbell, Y. T. Wong, K.E. Fox, E.S. Nurse, I.E. Bennett, S.H. Bauquier, K.A. Liyanage, N.R. van der Nagel, P. Perucca, A. Ahnood, K.P. Gill, B. Yan, L. Churilov, C.R. French, P.M. Desmond, M. K. Horne, L. Kiers, S. Prawer, S.M. Davis, A.N. Burkitt, P.J. Mitchell, D.B. Grayden, C. N. May, T.J. O’Brien, Minimally invasive endovascular stent- electrode array for highfidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34 (3) (2016) 320–327, doi:10.1038/nbt.3428.

[31] J. Agorelius, F. Tsanakalis, A. Friberg, P.T. Thorbergsson, L.M.E. Pettersson, J. Schouenborg, An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation—initial evaluation in cortex cerebri of awake rats. Front. Neurosci. 9 (2015) 331, doi:10.3389/fnins.2015.00331.

[32] J. Kim, M. Lee, J.S. Rhim, P.Wang, N. Lu,D.-H. Kim, Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett. 4 (2) (2014) 95–108, doi:10.1007/s13534-014-0132-4.

[33] W.S. Konerding, U.P. Froriep, A. Kral, P. Baumhoff, New thin-film surface electrode array enables with high spatial acuity in rodents. Sci. Rep. 8 (2018) 3825, doi:10.1038/s41598-018-22051- z.

[34] A.Mercanzini, P. Colin, J.C. Bensadoun, A. Bertsch, P. Renaud, In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays. IEEE Trans. Biomed. Eng. 56 (7) (2009) 1909– 1918, doi:10.1109/TBME.2009.2018457. [35] S.F. Lempka, S. Miocinovic, M.D. Johnson, J.L. Vitek, C.C.McIntyre, In vivo impedance spectroscopy of electrodes. J. Neural. Eng. 6 (4) (2009) 046001, doi:10.1088/1741- 2560/6/4/046001.

[36] J. Selvakumaran, J.L. Keddie, D.J. Ewins, M.P. Hughes, Protein adsorption on materials for recording sites on implantable microelectrodes. J. Mater. Sci. Mater. Med. 19 (1) (2008) 143–151, doi:10.1007/s10856-007-3110-x.

[37] K.J. Otto, M.D. Johnson, D.R. Kipke, Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans. Biomed. Eng. 53 (2) (2006) 333– 340, doi:10.1109/TBME.2005.862530.

[38] S.D. Nandedkar, D.B. Sanders, Recording characteristics of monopolar EMG electrodes. Muscle Nerve 14 (2) (1991) 108–112, doi:10.1002/mus.880140204.

[39] M. Ortiz-Catalan, R. Branemark, B.Hakansson, J. Delbeke, On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed. Eng. Online 11 (2012) 33, doi:10.1186/1475-925X-11-33.

[40] G.E. Loeb, R.A. Peck, Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J. Neurosci. Methods 64 (1) (1996) 95–103, doi:10.1016/0165-0270(95)00123-9.

[41] D.R.Merrill, J. Lockhart, P.R. Troyk, R.F.Weir, D.L. Hankin, Development of an implantable myoelectric sensor for advanced prosthesis control. Artif. Organs 35 (3) (2011) 249–252, doi:10.1111/j.1525- 1594.2011.01219.x.

[42] K.A. Ludwig, R.M. Miriani, N.B. Langhals, M.D. Joseph, D.J. Anderson, D.R. Kipke, Using a common average reference to improve cortical recordings from microelectrode arrays. J. Neurophysiol. 101 (3) (2009) 1679–1689, doi:10.1152/jn.90989.2008.

[43] R. Cicione, M.N. Shivdasani, J.B. Fallon, C.D. Luu, P.J. Allen, G.D. Rathbone, R.K. Shepherd, C.E. Williams, Visual cortex responses to suprachoroidal electrical stimulation of the : effects of electrode return configuration, J. Neural Eng. 9 (3) 036009, doi:https://doi.org/10.1088/1741- 2560/9/3/036009.

[44] D.R.Merrill, M. Bikson, J.G.R. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141 (2) (2005) 171–198, doi:10.1016/j.jneumeth.2004.10.020.

[45] R.V. Shannon, A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39 (4) (1992) 424–426, doi:10.1109/10.126616.

[46] S.F. Cogan, K.A. Ludwig, C.G.Welle, P. Takmakov, Tissue damage thresholds during therapeutic electrical stimulation, J.Neural Eng. 13 (2) 021001, doi:https://doi.org/10.1088/1741-2560/13/2/021001.

[47] S.B. Brummer, M.J. Turner, Electrical stimulation with Pt electrodes: II—estimation of maximum surface redox (theoretical non-gassing) limits, IEEE Trans. Biomed. Eng. 24 (5) (1977) 440–443.

[48] S.F. Cogan, In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes. in: Proceedings of 2006 International Conference of the IEEE Engineering in and Society, New York, NY, 30 August–3 September 2006, Conf. Proc. IEEE Eng. Med. Biol. Soc.2006, pp. 882–885, doi:10.1109/IEMBS.2006.259654.

[49] T.L. Rose, L.S. Robblee, Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application). IEEE Trans. Biomed. Eng. 37 (11) (1990) 1118– 1120, doi:10.1109/10.61038.

[50] D.D. Zhou, R.J. Greenberg, Microelectronic . in: E. Greenbaum, D. Zhou (Eds.), Implantable neural prostheses 1, Springer, New York, 2009doi:10.1007/978-0-387-77261-5_1.

[51] S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10 (2008) 275–309, doi:10.1146/annurev.bioeng.10.061807.160518.

[52] S.A. Kim, S.B. Jun, In-vivo optical measurement of neural activity in the brain. Exp. Neurobiol. 22 (3) (2013) 158–166, doi:10.5607/en.2013.22.3.158.

[53] S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, K. Sato, Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat . Neuroimage 17 (3) (2002) 1240–1255, doi:10.1006/nimg.2002.1286.

[54] M. Haruta, Y. Sunaga, T. Yamaguchi, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, J. Ohta, Intrinsic signal imaging of brain function using a small implantable CMOS imaging device. Jpn. J. Appl. Phys. 54 (4S) (2015)04DL10doi:10.7567/JJAP.54.04DL10.

[55] T. Kobayashi, M. Haruta, K. Sasagawa, M. Matsumata, K. Eizumi, C. Kitsumoto, M. Motoyama, Y. Maezawa, Y. Ohta, T.Noda, T. Tokuda, Y. Ishikawa, J. Ohta, Optical communication with brain cells by means of an implanted duplex micro-device with and Ca2+ fluoroimaging. Sci. Rep. 6 (2016) 21247, doi:10.1038/srep21247.

[56] E.S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8 (9) (2005) 1263–1268, doi:10.1038/nn1525.

[57] F. Zhang, M. Prigge, F. Beyriere, S.P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, K. Deisseroth, Redshifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11 (6) (2008) 631–633, doi:10.1038/nn.2120.

[58] J.Y. Lin, P.M. Knutsen, A. Muller, D. Kleinfeld, R.Y. Tsien, ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16 (10) (2013) 1499– 1508, doi:10.1038/nn.3502.

[59] R. Wieboldt, K.R. Gee, L. Niu, D. Ramesh, B.K. Carpenter, G.P. Hess, Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc. Natl. Acad. Sci. U. S. A. 91 (19) (1994) 8752–8756, doi:10.1073/pnas.91.19.8752.

[60] I. Tochitsky, J. Trautman, N. Gallerani, J.G. Malis, R.H. Kramer, Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci. Rep. 7 (2017) 45487, doi:10.1038/srep45487.

[61] J. Wells, C. Kao, K. Mariappan, J. Albea, E.D. Jansen, P. Konrad, A. Mahadevan-Jansen, Optical stimulation of neural tissue in vivo. Opt. Lett. 30 (5) (2005) 504–506, doi:10.1364/OL.30.000504. [62] NIH Publication No. 11-4798, Cochlear Implants, National Institute on Deafness and Other Communication Disorders, 2013 (retrieved 18.02.16).

[63] “BrainGate” Brain-Machine-Interface takes shape, New Atlas December 7th, 2004, https://newatlas.com/go/3503/, 2004 (retrieved 18.02.16).

[64] Richard Martin, Mind Control, Wired magazine March 5th, 2005, https://www.wired.com/2005/03/brain-3/, 2005 retrieved 18.02.16.

[65] L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. van der Smagt, J.P. Donoghue, Reach and grasp by people with tetraplegia using a neuraly controlled robotic arm, Nature. 485 (7398) 372–375, doi:https://doi.org/10.1038/nature11076.

[66] Katie Moisse, Paralyzed Woman Moves Robotic Arm With Her Mind, ABC News May 16th, 2012, https://abcnews.go.com/Health/w_MindBodyNews/paralyzed-woman-moves-robotic-armmind/ story?id=16353993, 2012 retrieved 18.02.16.

[67] B. Wodlinger, J.E. Downey, E.C. Tyler-Kabara, A.B. Schwartz, M.L. Boninger, J.L. Collinger, Ten dimensional anthropomorphic arm control in a –machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12 (1) (2015)016011doi:10.1088/1741-2560/12/1/016011.

[68] T. Aflalo, S. Kellis, C. Klaes, B. Lee, Y. Shi, K. Pejsa, K. Shanfield, S. Hayes-Jackson, M. Aisen, C. Heck, C. Liu, R.A. Andersen, Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348 (6237) (2015) 906–910, doi:10.1126/science.aaa5417.

[69] J. Cohen, Memory Implants: a maverick believes he has deciphered the code by which the brain forms long-term memories, MIT Technology Review , 2012 (retrieved 18.02.16).

[70] A. Regalado, The Entrepreneur with the $100 Million Plan to Link to Computers, MIT Technology Review March 16th, 2017, https://www.technologyreview.com/s/603771/the- entrepreneurwith-the-100-million-plan-to-link-brains-to-computers/, 2017 retrieved 18.02.16.

[71] AAAAA, wants to connect brains to computers with new company, The Guardian March 28th, 2017, https://www.theguardian.com/technology/2017/mar/28/elon-musk-merge- brainscomputers-, 2017 (retrieved 18.02.16).

[72] J. Wu, R.P.N. Rao, How close are we to Elon Musk’s brain-computer interface?, The Conversation, CNN April 12, 2017, https://edition.cnn.com/2017/04/12/health/brain-computer- interfacepartner/index.html, 2017 retrieved 18.02.16.

[73] M.D. Serruya, J.P. Donoghue, Design principles of a neuromotor prosthetic device. in: K.W. Horch, G.S. Dhillon (Eds.), : Theory and Practice, World Scientific Publishing, Singapore, 2004, , pp. 1158–1196, doi:10.1142/9789812561763_0040.

[74] T. Fitzpatrick, Teenager moves video icons just by imagination, press release October 9th, 2006, Washington University in St. Louis, https://source.wustl.edu/2006/10/teenager-moves-videoicons-just- by-imagination/, 2006 (retrieved 18.02.16). [75] L. Schuh, I. Drury, Intraoperative and direct cortical electrical stimulation. Semin. Anesth. 16 (1) (1996) 46–55, doi:10.1016/s0277-0326(97)80007-4.

[76] N. Mesgarani, E.F. Chang, Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485 (7397) (2012) 233–236, doi:10.1038/nature11020.

[77] P. Shenoy, K.J. Miller, J.G. Ojemann, R.P.N. Rao, Generalized features for electrocorticographic BCIs, IEEE Trans. Biomed. Eng. 55 (1) 273–280, doi:https://doi.org/10.1109/TBME.2007.903528.

[78] K.K. Ang, C. Guan, K.S. Phua, C.Wang, L. Zhao,W.P. Teo, C. Chen, Y.S. Ng, E. Chew, Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation, Arch. Phys. Med. Rehabil. 96 (3 Suppl). S79–S87, doi:https://doi.org/10.1016/j.apmr.2014.08.008.

[79] L. Ding, C. Wilke, B. Xu, X. Xu,W. van Drongelene,M. Kohrman, B.He, EEG source imaging: correlate source locations and extents with ECoG and surgical resections in epilepsy patients, J. Clin. Neurophysiol. 24 (2) 130–136, doi:https://doi.org/10.1097/WNP.0b013e318038fd52.

[80] J.A. Cronin, J.Wu, K.L. Collins, D. Sarma, R.P.N. Rao, J.G. Ojemann, J.D. Olson, Task-specific somatosensory feedback via cortical stimulation in humans. IEEE Trans. Haptics 9 (4) (2016) 515–522, doi:10.1109/TOH.2016.2591952.

[81] C.E. King, P.T.Wang, C.M.McCrimmon, C.C.Y. Chou, A.H. Do, Z. Nenadic, The feasibility of a braincomputer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. J. NeuroEng. Rehabil 12 (2015) 80, doi:10.1186/s12984-015-0068-7.

[82] E. Saint-Elme, M.A. Larrier Jr., C. Kracinovich, D. Renshaw, K. Troy, M. Popovic, Design of a biologically accurate prosthetic hand, in: Proceedings of the International Symposium onWearable (WeRob 2017). Houston, TX 5–8 (November, 2017) 97–98, doi:10.1109/WEROB.2017.8383866.

[83] A. Chancellor, : maturing gracefully. Pract. Neurol. 9 (3) (2009) 130–132, doi:10.1136/jnnp.2009.176586.

[84] R.A. Ramadana, A.V. Vasilakosc, Brain computer interface: control signals review. Neuro computing 223 (2017) 26–44, doi:10.1016/j.neucom.2016.10.024.

[85] G. Bin, X. Gao, Y.Wang, B. Hong, S. Gao, VEP-based brain-computer interfaces: time, frequency, and code modulations. IEEE Comput. Intell. Mag. 4 (4) (2009) 22–26, doi:10.1109/MCI.2009.934562.

[86] L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event related brain potentials, Electroencephalogr. Clin. Neurophysiol. 70 (6) (1988) 510–523.

[87] E. Donchin, D.B.D. Smith, The contingent negative variation and the late positive wave of the average evoked potential. Electroencephalogr. Clin. Neurophysiol. 29 (2) (1970) 201–203, doi:10.1016/0013- 4694(70)90124-0.

[88] J. Polich, P.C. Ellerson, J. Cohen, P300, stimulus intensity, modality, and probability. Int. J. Psychophysiol. 23 (1–2) (1996) 55–62, doi:10.1016/0167-8760(96)00028-1.

[89] K. Tanaka, K. Matsunaga, H.O.Wang, Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Robot. 21 (4) (2005) 762–766, doi:10.1109/TRO.2004.842350. [90] E.M. Mugler, C.A. Ruf, S. Halder,M. Bensch, A. Kubler, Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans. Neural Syst. Rehabil. Eng. 18 (6) (2010) 599–609, doi:10.1109/TNSRE.2010.2068059.

[91] G. Pfurtscheller, C. Neuper, Motor imagery and direct brain-computer communication. Proc. IEEE 89 (7) (2001) 1123–1134, doi:10.1109/5.939829.

[92] A. Vasilyev, S. Liburkina, L. Yakovlev, O. Perepelkina, A. Kaplan, Assessing motor imagery in braincomputer interface training: psychological and neurophysiological correlates. Neuropsychologia 97 (2017) 56–65, doi:10.1016/j.neuropsychologia.2017.02.005.

[93] S.R. Soekadar, S. Silvoni, L.G. Cohen, N. Birbaumer, Brain–machine interfaces in stroke . in: K. Kansaku, L.G. Cohen, N. Birbaumer (Eds.), Clinical Systems , Springer, Tokyo, 2015, , pp. 3–14, doi:10.1007/978-4-431-55037-2_1.

[94] L. Naci, M.M. Monti, D. Cruse, A. K€ubler, B. Sorger, R. Goebel, B. Kotchoubey, A.M. Owen, Brain– computer interfaces for communication with nonresponsive patients. Ann. Neurol. 72 (3) (2012) 312–323, doi:10.1002/ana.23656.

[95] C.G. Lim, T.S. Lee, C. Guan, D.S.S. Fung, Y. Zhao, S.S.W. Teng, H. Zhang, K.R.R. Krishnane, A brain– computer interface based attention training program for treating attention deficit hyperactivity disorder. PLoS ONE 7 (10) (2012) e46692, doi:10.1371/journal.pone.0046692.

[96] T.P. Cothran, J.E. Larson, Brain-computer interface technology for schizophrenia. J. Dual Diagnosis 8 (4) (2012) 337–340, doi:10.1080/15504263.2012.723313.

[97] E.V.C. Friedrich, N. Suttie, A. Sivanathan, T. Lim, S. Louchart, J.A. Pineda, Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front. Neuroeng. 7 (2014) 21, doi:10.3389/fneng.2014.00021.

[98] M. Ferrari, V. Quaresima, A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63 (2) (2012) 921–935, doi:10.1016/j.neuroimage.2012.03.049.

[99] S. Coyle, T. Ward, C. Markham, G. McDarby, On the suitability of near-infrared (NIR) systems for next- generation brain–computer interfaces. Physiol. Meas. 25 (4) (2004) 815–822, doi:10.1088/0967- 3334/25/4/003.

[100] J. Shin, J. Kwon, J. Choi, C.-H. Im, Performance enhancement of a brain-computer interface using high-density multi-distance NIRS. Sci. Rep. 7 (2017) 16545, doi:10.1038/s41598-017-16639-0.

[101] S. Fazli, J. Mehnert, J. Steinbrink, G. Curio, A. Villringer, K.R. Muller, B. Blankertz, Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59 (1) (2012) 519–529, doi:10.1016/j.neuroimage.2011.07.084.

[102] Y. Tomita, F.B. Vialatte, G. Dreyfus, Y. Mitsukura, H. Bakardjian, A. Cichocki, Bimodal BCI using simultaneously NIRS and EEG. IEEE Trans. Biomed. Eng. 61 (4) (2014) 1274–1284, doi:10.1109/ TBME.2014.2300492. [103] N. Weiskopf, R. Veit, M. Erb, K. Mathiak, W. Grodd, R. Goebel, N. Birbaumer, Physiological self- regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19 (3) (2003) 577–586, doi:10.1016/S1053-8119(03) 00145-9.

[104] T. Watanabe, Y. Sasaki, K. Shibata, M. Kawato, Advances in fMRI real-time neurofeedback. Trends. Cogn. Sci. 21 (12) (2017) 997–1010, doi:10.1016/j.tics.2017.09.010.

[105] K. Shibata, T. Watanabe, Y. Sasaki, M. Kawato, Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334 (6061) (2011) 1413–1415, doi:10.1126/science.1212003.

[106] F. Megumi, A. Yamashita, M. Kawato, H. Imamizu, Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Front. Hum. Neurosci. 9 (2015) 160, doi:10.3389/fnhum.2015.00160.

[107] N. Yahata, J. Morimoto, R. Hashimoto, G. Lisi, K. Shibata, Y. Kawakubo, H. Kuwabara, M. Kuroda, T. Yamada, F. Megumi, H. Imamizu, J.E. Na´n˜ez Sr, H. Takahashi, Y. Okamoto, K. Kasai, N. Kato, Y. Sasaki, T.Watanabe, M. Kawato, A small number of abnormal brain connections predicts adult autism spectrum disorder.Nat. Commun. 7 (2016) 11254, doi:10.1038/ncomms11254.

[108] T. Yamada, R. Hashimoto, N. Yahata, N. Ichikawa, Y. Yoshihara, Y. Okamoto, N. Kato, H. Takahashi, M. Kawato, Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers. Int. J. Neuropsychopharmacol. 20 (10) (2017) 769–781, doi:10.1093/ijnp/pyx059.

[109] N. Yahata, K. Kasai, M. Kawato, Computational approach to biomarkers and treatments for mental disorders. Clin.Neurosci. 71 (4) (2017) 215–237, doi:10.1111/pcn.12502.

[110] X. Hong, Z.K. Lu, I. Teh, F.A. Nasrallah, W.P. Teo, K.K. Ang, K.S. Phua, C. Guan, E. Chew, K.-H. Chuang, Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Sci. Rep. 7 (2017) 9222, doi:10.1038/s41598-017-08928-5.

[111] N.N. Johnson, J. Carey, B.J. Edelman, A. Doud, A. Grande, K. Lakshminarayan, B. He, Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke. J. Neural Eng. 15 (1) (2018)016009doi:10.1088/1741-2552/aa8ce3.

[112] C. Grau, R. Ginhoux, A. Riera, T.L. Nguyen, H. Chauvat, M. Berg, J.L. Amengual, A. Pascual-Leone, G. Ruffini, Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS ONE 9 (8) (2014)e105225doi:10.1371/journal.pone.0105225.