Encyclopedia of Computational Neuroscience
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volume 3 Summer 2012
Volume 3 Summer 2012 . Academic Partners . Cover image Magnetic resonance image of the human brain showing colour-coded regions activated by smell stimulus. Editors Ulisses Barres de Almeida Max-Planck-Institut fuer Physik [email protected] Juan Rojo TH Unit, PH Division, CERN [email protected] [email protected] Academic Partners Fondazione CEUR Consortium Nova Universitas Copyright ©2012 by Associazione EURESIS The user may not modify, copy, reproduce, retransmit or otherwise distribute this publication and its contents (whether text, graphics or original research content), without express permission in writing from the Editors. Where the above content is directly or indirectly reproduced in an academic context, this must be acknowledge with the appropriate bibliographical citation. The opinions stated in the papers of the Euresis Journal are those of their respective authors and do not necessarily reflect the opinions of the Editors or the members of the Euresis Association or its sponsors. Euresis Journal (ISSN 2239-2742), a publication of Associazione Euresis, an Association for the Promotion of Scientific Endevour, Via Caduti di Marcinelle 2, 20134 Milano, Italia. www.euresisjournal.org Contact information: Email. [email protected] Tel.+39-022-1085-2225 Fax. +39-022-1085-2222 Graphic design and layout Lorenzo Morabito Technical Editor Davide PJ Caironi This document was created using LATEX 2" and X LE ATEX 2 . Letter from the Editors Dear reader, with this new issue we reach the third volume of Euresis Journal, an editorial ad- venture started one year ago with the scope of opening up a novel space of debate and encounter within the scientific and academic communities. -
Optimization of Deep Architectures for EEG Signal Classification
sensors Article Optimization of Deep Architectures for EEG Signal Classification: An AutoML Approach Using Evolutionary Algorithms Diego Aquino-Brítez 1, Andrés Ortiz 2,* , Julio Ortega 1, Javier León 1, Marco Formoso 2 , John Q. Gan 3 and Juan José Escobar 1 1 Department of Computer Architecture and Technology, University of Granada, 18014 Granada, Spain; [email protected] (D.A.-B.); [email protected] (J.O.); [email protected] (J.L.); [email protected] (J.J.E.) 2 Department of Communications Engineering, University of Málaga, 29071 Málaga, Spain; [email protected] 3 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK; [email protected] * Correspondence: [email protected] Abstract: Electroencephalography (EEG) signal classification is a challenging task due to the low signal-to-noise ratio and the usual presence of artifacts from different sources. Different classification techniques, which are usually based on a predefined set of features extracted from the EEG band power distribution profile, have been previously proposed. However, the classification of EEG still remains a challenge, depending on the experimental conditions and the responses to be captured. In this context, the use of deep neural networks offers new opportunities to improve the classification performance without the use of a predefined set of features. Nevertheless, Deep Learning architec- Citation: Aquino-Brítez, D.; Ortiz, tures include a vast number of hyperparameters on which the performance of the model relies. In this A.; Ortega, J.; León, J.; Formoso, M.; paper, we propose a method for optimizing Deep Learning models, not only the hyperparameters, Gan, J.Q.; Escobar, J.J. -
A Neuroevolution Approach to Imitating Human-Like Play in Ms
A Neuroevolution Approach to Imitating Human-Like Play in Ms. Pac-Man Video Game Maximiliano Miranda, Antonio A. S´anchez-Ruiz, and Federico Peinado Departamento de Ingenier´ıadel Software e Inteligencia Artificial Universidad Complutense de Madrid c/ Profesor Jos´eGarc´ıaSantesmases 9, 28040 Madrid (Spain) [email protected] - [email protected] - [email protected] http://www.narratech.com Abstract. Simulating human behaviour when playing computer games has been recently proposed as a challenge for researchers on Artificial Intelligence. As part of our exploration of approaches that perform well both in terms of the instrumental similarity measure and the phenomeno- logical evaluation by human spectators, we are developing virtual players using Neuroevolution. This is a form of Machine Learning that employs Evolutionary Algorithms to train Artificial Neural Networks by consider- ing the weights of these networks as chromosomes for the application of genetic algorithms. Results strongly depend on the fitness function that is used, which tries to characterise the human-likeness of a machine- controlled player. Designing this function is complex and it must be implemented for specific games. In this work we use the classic game Ms. Pac-Man as an scenario for comparing two different methodologies. The first one uses raw data extracted directly from human traces, i.e. the set of movements executed by a real player and their corresponding time stamps. The second methodology adds more elaborated game-level parameters as the final score, the average distance to the closest ghost, and the number of changes in the player's route. We assess the impor- tance of these features for imitating human-like play, aiming to obtain findings that would be useful for many other games. -
Computational Neuroscience Meets Optogenetics: Unlocking the Brain’S Secrets
Health & Medicine ︱ Prof Simon Schultz and Dr Konstantin Nikolic Computational neuroscience meets optogenetics: Unlocking the brain’s secrets Working at the interface omposed of billions of specialised responsible for perception, action Simplified models allow researchers to study how the geometry of a neuron’s “dendritic tree” affects its ability to process information. between engineering and nerve cells (called neurons) wired and memory. But this is changing. neuroscience, Professor Simon C together in complex, intricate Schultz and Dr Konstantin webs, the brain is inherently challenging LET THERE BE LIGHT Nikolic at Imperial College to study. Neurons communicate with A powerful new tool (invented by Boyden of Neurotechnology and Director of SHEDDING LIGHT ON THE BRAIN AN INSIGHT INTO NEURONAL GAIN London are developing tools each other by transmitting electrical and and Deisseroth just a little over a decade the Imperial Centre of Excellence in Their innovative approach uses Using two biophysical models of to help us understand the chemical signals along neural circuits: ago) allows researchers to map the brain’s Neurotechnology, Dr Konstantin Nikolic, sophisticated two-photon microscopy, neurons, genetically-modified to include intricate workings of the brain. signals that vary both in space and time. connections, giving unprecedented Associate Professor in the Department optogenetics and electrophysiology two distinct light-sensitive proteins Combining a revolutionary Until now, technical limitations in the access to the workings of the brain. Its of Electrical and Electronic Engineering, to measure (and disturb) patterns of (called opsins): channelrhodopsin-2 technology – optogenetics available research methods to study the impressive resolution enables precise and Dr Sarah Jarvis are taking a unique neuronal activity in vivo (in living tissue). -
Neuro-Crítica: Un Aporte Al Estudio De La Etiología, Fenomenología Y Ética Del Uso Y Abuso Del Prefijo Neuro1
JAHR ǀ Vol. 4 ǀ No. 7 ǀ 2013 Professional article Amir Muzur, Iva Rincic Neuro-crítica: un aporte al estudio de la etiología, fenomenología y ética del uso y abuso del prefijo neuro1 ABSTRACT The last few decades, beside being proclaimed "the decades of the brain" or "the decades of the mind," have witnessed a fascinating explosion of new disciplines and pseudo-disciplines characterized by the prefix neuro-. To the "old" specializations of neurosurgery, neurophysiology, neuropharmacology, neurobiology, etc., some new ones have to be added, which might sound somehow awkward, like neurophilosophy, neuroethics, neuropolitics, neurotheology, neuroanthropology, neuroeconomy, and other. Placing that phenomenon of "neuroization" of all fields of human thought and practice into a context of mostly unjustified and certainly too high – almost millenarianistic – expectations of the science of the brain and mind at the end of the 20th century, the present paper tries to analyze when the use of the prefix neuro- is adequate and when it is dubious. Key words: brain, neuroscience, word coinage RESUMEN Las últimas décadas, además de haber sido declaradas "las décadas del cerebro" o "las décadas de la mente", han sido testigos de una fascinante explosión de nuevas disciplinas y pseudo-disciplinas caracterizadas por el prefijo neuro-. A las "antiguas" especializaciones de la neurocirugía, la neurofisiología, la neurofarmacología, la neurobiología, etc., deben agregarse otras nuevas que pueden sonar algo extrañas, como la neurofilosofía, la neuroética, la neuropolítica, la neuroteología, la neuroantropología, la neuroeconomía, entre otras. El presente trabajo coloca ese fenómeno de "neuroización" de todos los campos del pensamiento y la práctica humana en un contexto de expectativas en general injustificadas y sin duda altísimas (y casi milenarias) en la ciencia del cerebro y la mente a fines del siglo XX; e intenta analizar cuándo el uso del prefijo neuro- es adecuado y cuándo es cuestionable. -
Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities Valentina Castagnola
Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities Valentina Castagnola To cite this version: Valentina Castagnola. Implantable microelectrodes on soft substrate with nanostructured active sur- face for stimulation and recording of brain activities. Micro and nanotechnologies/Microelectronics. Universite Toulouse III Paul Sabatier, 2014. English. tel-01137352 HAL Id: tel-01137352 https://hal.archives-ouvertes.fr/tel-01137352 Submitted on 31 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 18/12/2014 par : Valentina CASTAGNOLA Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities JURY M. Frédéric MORANCHO Professeur d’Université Président de jury M. Blaise YVERT Directeur de recherche Rapporteur Mme Yael HANEIN Professeur d’Université Rapporteur M. Pascal MAILLEY Directeur de recherche Examinateur M. Christian BERGAUD Directeur de recherche Directeur de thèse Mme Emeline DESCAMPS Chargée de Recherche Directeur de thèse École doctorale et spécialité : GEET : Micro et Nanosystèmes Unité de Recherche : Laboratoire d’Analyse et d’Architecture des Systèmes (UPR 8001) Directeur(s) de Thèse : M. -
ECE 5070: Neuroengineering and Neuroprosthetics
ECE 5070: Neuroengineering and Neuroprosthetics Course Description An overview of the broad field of Neuroengineering for graduate and senior undergraduate students with engineering or neuroscience backgrounds. Focusing on neural interfaces and prostheses, this course covers from basic neurophysiology and computational neuronal models to advanced neural interfaces and prostheses currently being actively developed in the field. Transcript Abbreviation: Neur Eng & Prosth Grading Plan: Letter Grade Course Deliveries: Classroom Course Levels: Undergrad, Graduate Student Ranks: Junior, Senior, Masters, Doctoral Course Offerings: Autumn Flex Scheduled Course: Never Course Frequency: Even Years Course Length: 14 Week Credits: 3.0 Repeatable: No Time Distribution: 3.0 hr Lec Expected out-of-class hours per week: 6.0 Graded Component: Lecture Credit by Examination: No Admission Condition: No Off Campus: Never Campus Locations: Columbus Prerequisites and Co-requisites: Prereq: 3050 or BME 3703; or Neurosc 3010; or Grad standing in Engineering or Neurosc. Exclusions: Not open to students with credit for 5194.03 or Neurosc 5070. Cross-Listings: Cross-listed in Neurosc. Course Rationale: Introduce students a vibrant, interdisciplinary field which integrates engineering and neuroscience principles for treating neurological disorders. The course is required for this unit's degrees, majors, and/or minors: No The course is a GEC: No The course is an elective (for this or other units) or is a service course for other units: Yes Subject/CIP Code: 14.1001 Subsidy Level: Doctoral Course Programs Abbreviation Description CpE Computer Engineering EE Electrical Engineering Course Goals Master principles of neural interfaces. Be competent with computational neural models. Be competent with design of common neuroprostheses. -
Evolving Neural Networks Using Behavioural Genetic Principles
Evolving Neural Networks Using Behavioural Genetic Principles Maitrei Kohli A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Computer Science & Information Systems Birkbeck, University of London United Kingdom March 2017 0 Declaration This thesis is the result of my own work, except where explicitly acknowledged in the text. Maitrei Kohli …………………. 1 ABSTRACT Neuroevolution is a nature-inspired approach for creating artificial intelligence. Its main objective is to evolve artificial neural networks (ANNs) that are capable of exhibiting intelligent behaviours. It is a widely researched field with numerous successful methods and applications. However, despite its success, there are still open research questions and notable limitations. These include the challenge of scaling neuroevolution to evolve cognitive behaviours, evolving ANNs capable of adapting online and learning from previously acquired knowledge, as well as understanding and synthesising the evolutionary pressures that lead to high-level intelligence. This thesis presents a new perspective on the evolution of ANNs that exhibit intelligent behaviours. The novel neuroevolutionary approach presented in this thesis is based on the principles of behavioural genetics (BG). It evolves ANNs’ ‘general ability to learn’, combining evolution and ontogenetic adaptation within a single framework. The ‘general ability to learn’ was modelled by the interaction of artificial genes, encoding the intrinsic properties of the ANNs, and the environment, captured by a combination of filtered training datasets and stochastic initialisation weights of the ANNs. Genes shape and constrain learning whereas the environment provides the learning bias; together, they provide the ability of the ANN to acquire a particular task. -
Evolving Autonomous Agent Controllers As Analytical Mathematical Models
Evolving Autonomous Agent Controllers as Analytical Mathematical Models Paul Grouchy1 and Gabriele M.T. D’Eleuterio1 1University of Toronto Institute for Aerospace Studies, Toronto, Ontario, Canada M3H 5T6 [email protected] Downloaded from http://direct.mit.edu/isal/proceedings-pdf/alife2014/26/681/1901537/978-0-262-32621-6-ch108.pdf by guest on 27 September 2021 Abstract a significant amount of time and computational resources. Furthermore, any such design decisions introduce additional A novel Artificial Life paradigm is proposed where experimenter bias into the simulation. Finally, complex be- autonomous agents are controlled via genetically- haviors require complex representations, adding to the al- encoded Evolvable Mathematical Models (EMMs). Agent/environment inputs are mapped to agent outputs ready high computational costs of ALife algorithms while via equation trees which are evolved using Genetic Pro- further obfuscating the inner workings of the evolved agents. gramming. Equations use only the four basic mathematical We propose Evolvable Mathematical Models (EMMs), a operators: addition, subtraction, multiplication and division. novel paradigm whereby autonomous agents are evolved via Experiments on the discrete Double-T Maze with Homing GP as analytical mathematical models of behavior. Agent problem are performed; the source code has been made available. Results demonstrate that autonomous controllers inputs are mapped to outputs via a system of genetically with learning capabilities can be evolved as analytical math- encoded equations. Only the four basic mathematical op- ematical models of behavior, and that neuroplasticity and erations (addition, subtraction, multiplication and division) neuromodulation can emerge within this paradigm without are required, as they can be used to approximate any ana- having these special functionalities specified a priori. -
New Technologies for Human Robot Interaction and Neuroprosthetics
University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Engineering, Computing and Mathematics 2017-07-01 Human-Robot Interaction and Neuroprosthetics: A review of new technologies Cangelosi, A http://hdl.handle.net/10026.1/9872 10.1109/MCE.2016.2614423 IEEE Consumer Electronics Magazine All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. CEMAG-OA-0004-Mar-2016.R3 1 New Technologies for Human Robot Interaction and Neuroprosthetics Angelo Cangelosi, Sara Invitto Abstract—New technologies in the field of neuroprosthetics and These developments in neuroprosthetics are closely linked to robotics are leading to the development of innovative commercial the recent significant investment and progress in research on products based on user-centered, functional processes of cognitive neural networks and deep learning approaches to robotics and neuroscience and perceptron studies. The aim of this review is to autonomous systems [2][3]. Specifically, one key area of analyze this innovative path through the description of some of the development has been that of cognitive robots for human-robot latest neuroprosthetics and human-robot interaction applications, in particular the Brain Computer Interface linked to haptic interaction and assistive robotics. This concerns the design of systems, interactive robotics and autonomous systems. These robot companions for the elderly, social robots for children with issues will be addressed by analyzing developmental robotics and disabilities such as Autism Spectrum Disorders, and robot examples of neurorobotics research. -
Brain-Machine Interface: from Neurophysiology to Clinical
Neurophysiology of Brain-Machine Interface Rehabilitation Matija Milosevic, Osaka University - Graduate School of Engineering Science - Japan. Abstract— Long-lasting cortical re-organization or II. METHODS neuroplasticity depends on the ability to synchronize the descending (voluntary) commands and the successful execution Stimulation of muscles with FES was delivered using a of the task using a neuroprosthetic. This talk will discuss the constant current biphasic waveform with a 300μs pulse width neurophysiological mechanisms of brain-machine interface at 50 Hz frequency via surface electrodes. First, repetitive (BMI) controlled neuroprosthetics with the aim to provide transcranial magnetic stimulation (rTMS) intermittent theta implications for development of technologies for rehabilitation. burst protocol (iTBS) was used to induce cortical facilitation. iTBS protocol consists of pulses delivered intermittently at a I. INTRODUCTION frequency of 50 Hz and 5 Hz for a total of 200 seconds. Functional electrical stimulation (FES) neuroprosthetics Moreover, motor imagery protocol was used to display a can be used to applying short electric impulses over the virtual reality hand opening and closing sequence of muscles or the nerves to generate hand muscle contractions movements (hand flexion/extension) while subject’s hands and functional movements such as reaching and grasping. remained at rest and out of the visual field. Our work has shown that recruitment of muscles using FES goes beyond simple contractions, with evidence suggesting III. RESULTS re-organization of the spinal reflex networks and cortical- Our first results showed that motor imagery can affect level changes after the stimulating period [1,2]. However, a major challenge remains in achieving precise temporal corticospinal facilitation in a phase-dependent manner, i.e., synchronization of voluntary commands and activation of the hand flexor muscles during hand closing and extensor muscles [3]. -
Practical and Ethical Issues at the Intersection of Brain Science and Society
Emerging Neurotechnologies: Practical and Ethical Issues at the Intersection of Brain Science and Society James Giordano PhD Departments of Neurology and Biochemistry Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics Georgetown University Medical Center Washington, DC, USA and EU-Human Brain Project SP-12 Uppsala University, Sweden Neuroscience… • Huge leaps using technology to study and understand how nervous systems and brains are structured and function. Allowed understanding at certain levels of causality: – Formal: Overall “workings” of biological systems – Material: Structure and functional roles of neurons, glia But not at others… – Efficient: How “grey stuff” actually makes “great stuff” – Final: For what? To what “ends”? Core Questions... What do we do with the information and capability we have? What do we do about the information and capability we don’t? Questions toward Innovation • Tools to Theory • Theory to Tools... ...to Theory AISC Approach Brain Science on the World Stage • EU Human Brain Project • US BRAIN initiative • China Brain Project • Japan Brain Project • Global NeuroS/T Economic Predictions 2025 – Asia – US/Western Europe – South America Neuroscience and Technologies (NeuroS/T) • Assessment – Biomarkers – Genetics/genomics – Imaging – Brain modeling/mapping • Interventional – Technopharmaceutics – P-Stim – Neurofeedback – Transcranial Modulation – Deep Brain Stimulation – BCI – Neuroprosthetics • Derivative – -Artificial neural networks – -AI technologies A-3: Actual Ability to Assess...Access...Affect To What Effect(s) and Ends? Neuroimaging – PET – CT – MR – fMR – DTI – MEG/qEEG Can we Scan the Brain to Depict Consciousness and/or “Read” Minds? text copyright, J. Giordano, 2014 Neurogenetics – Genotyping – Phenotyping – Proteomics – Genetic Intervention(s) Can we “Predict” or “Create” Present and Future “Selves”? text copyright, J.