Review of Medicines for the Treatment of Common Tumours in Children

Total Page:16

File Type:pdf, Size:1020Kb

Review of Medicines for the Treatment of Common Tumours in Children 18th Expert Committee on the Selection and Use of Essential Medicines Reviewer No. 1 checklist for: Review of medicines for the treatment of common tumours in Children In the WHO Essential Medicines List (1) Have all important studies that you are aware of been included? Yes No X (2) Is there adequate evidence of efficacy for the proposed use? Yes No X (3) Is there evidence of efficacy in diverse settings and/or populations? Yes X No (4) Are there adverse effects of concern? Yes X No (5) Are there special requirements or training needed for safe/effective use? Yes X No (6) Is this product needed to meet the majority health needs of the population? Yes No X (7) Is the proposed dosage form registered by a stringent regulatory authority? Yes X No 1 (8) What action do you propose for the Committee to take? To rename the subsections 8.2 and 8.3. To delete cytotoxic agents not mentioned for prevalent childhood cancer (subsection 8.2). To add mesna as an adjuvant medicine (subsection 8.2). To discuss retaining two anthracycline agents, two alkylating agents, and two Vinca alkaloids or choosing one of them (subsection 8.2). To delete dexamethasone oral formulation (subsection 8.3) To delete the observation “Specific use for management of bone pain.” regarding ibuprofen for palliative care (subsection 8.4). To add fluoxetine and ondansetron for palliative care (subsection 8.4). To add oral midazolam formulations for palliative care (subsection 8.4). (9) Additional comment, if any. General Comments Antineoplastic agents are used for different purposes: curative (for eradicating the disease and preventing the recurrence), palliative (for relieving tumour symptoms), adjuvant (for preventing tumour recurrence after proved exclusion of residual disease), and neo‐adjuvant (for administrating before a local definitive treatment is done). These agents are prescribed in monotherapy or in combination. Antineoplastic medicines in combination are more effective, since they act in different phases of the cell cycle, by different and synergistic mechanisms of action. The combination therapy has additional benefits relating to not sharing common mechanisms of resistance and similar profiles of major toxicities. So, it is convenient to include at least one representative of each antineoplastic class, according to his benefit in children cancer treatment. To say the least, the therapeutic response depends on the tumour histological type and localization, as well as the disease stage and other concomitant cancer strategies, such as surgery and radiotherapy. These multiple variables influence the choice of antineoplastic agents. The efficacy is usually evidenced by clinical protocols rather than by randomised clinical trials or meta‐analyses. The great variability retrains pooled‐data. Actually the literature search finds mainly book chapters, descriptive reviews, cohort studies (follow‐up studies), non‐randomised trials, and guidelines, as showed in the review offered to be analysed. The strong evidence of efficacy and safety – provided by systematic reviews, meta‐analyses and randomised controlled studies (RCTs) – is scarce in cancer pharmacology for children, especially the face‐to‐face comparisons. Even the RCTs have methodological limitations. Additionally the difficulty of choice increases because cancer is a complex disease, with variable development, severe and multiple clinical manifestations and sequelae which compromise survival, morbidity and quality of life. 2 Therefore, the decision of which medicines should be included for treatment of cancer diseases in children needs to follow a different and unusual rationality, somehow changing the criteria. The efficacy usually comes from clinical protocols (in general including medicine combinations to minimize the emergence of resistance) based on the institutional and professional experience. The inclusion also considers the ability to act in different phases of the cell cycle (subclasses with different mechanisms of action), and the degree of tumour cell resistance to certain medicines (justifying more than one representative of the same pharmacological subclass). Clinically the medicine choice is made regarding patient’s age, intensity and stage of the disease, potential treatment toxicity, and risk of relapses. Taking into account that all antineoplastic agents induce harmful, and even severe, side effects, the safety criterion has to counterbalance these risks with the rapid, and even fatal, cancer disease development. The convenience of treatment is an important issue to consider, especially in children (dosage, concentration, pharmaceutical formulation, routes of administration). The favourable comparative cost should be also considered, allowing the developing countries can afford it. Considering the essential concept that guides the List, it is worth choosing medicines used for treatment of the most common cancer diseases in children. The most common paediatric malignancies have a general incidence in the following order: leukaemias (30%), brain and other nervous system cancers (22.3%), neuroblastoma (7.3%), Wilms tumour (5.6%), non‐Hodgkin lymphoma (4.5%), rhabdomyosarcoma (3.1%), retinoblastoma (2.8%), osteosarcoma (2.4%), and Ewing sarcoma (1.4%). 1 The offered review only analyses acute lymphoblastic leukaemia (ALL), Burkitt lymphoma (BL) and Wilms Tumour (WT). Aim of the comments: To review, through a clinical pharmacologic perspective, antineoplastic and adjuvant medicines (for correction of some antineoplastic side effects), and medicines used in palliative care during cancer treatment to rationally decided their inclusion in the WHO EMLc. Literature search: A PubMed search – performed in February 2011, using as key words the names of the common cancer diseases in children and the names of recommended antineoplastic agents, with the activated limits “Humans, Meta‐Analysis or Randomized Controlled Trial, All Children: 0‐18 years, published in the last 3 years” – found few studies regarding leukaemias (e.g. acute lymphoblastic leukaemia – ALL), non‐Hodgkinʹs lymphoma (e.g. Burkitt´s lymphoma – BL), Wilms Tumour, Ewingʹs sarcoma, rhabdomyosarcoma, and brain tumours treatment. For instance: For ALL – 7 meta‐analyses; 52 RCTs For BL – no items found (meta‐analysis); 2 RCTs For WT – 2 meta‐analyses; 7 RCTs 3 The 3‐year search period was chosen to partially cover the published information after the former committee had decided the inclusion of cancer medicines in the current EMLc. An additional search in the Cochrane Library found recent reviews about antineoplastic treatment for LLA (n=5), BL (n=5), WT (n=8), and Rhabdomyosarcoma (n=1), as well as about cytoprotective medicines (corrective effect) and medicines for palliative care. ANTINEOPLASTIC MEDICINES Cytotoxic medicines (Subsection 8.2) and Hormones and antihormones (Subsection 8.3) First of all, two suggestions: 1. Since the EMLc 8.2 subsection contains allopurinol and calcium folinate (corrective medicines instead of cytotoxic medicines) I suggest substituting its title for: 8.2 Cytotoxic medicines and adjuvant medicines (or cytoprotective medicines) 2. Since the EMLc 8.3 subsection only contains corticosteroids, antihormones are absent. So, there is no reason for the current title. I suggest its change for: 8.3 Hormones Preliminary notes: 1. The underlined medicines in the text are those already included in the 2nd EMLc (2010). 2. The reported information collected in cited RCTs and systematic reviews is only the one which concerns the members with the choice of antineoplastic medicines. Leukaemias For childhood Acute Lymphoblastic Leukaemia or Acute lymphocytic leukaemia, clofarabine with etoposide and cyclophosphamide, 2 mitoxantrone or idarubicin,3 vincristine (VCR) plus steroid pulses (prednisone/prednisolone),4 6‐mercaptopurine (6‐MP) and methotrexate (MTX),5 and anthracyclines6 were studied. A combination of daily 6‐MP, weekly MTX and VCR/DEX (dexamethasone) pulse for maintenance treatment in standard risk or high risk 201 ALL patients evidenced no differences in the event‐free survival or overall survival in comparison to the therapy stated by ALL‐96 protocol. However the first regimen induced more liver toxicity.7 In the previous review, the 17 mentioned medicines used for ALL were: asparaginase, busulphan, cyclophosphamide, cyclosporine, cytarabine (ARA‐C), daunorubicin or doxorubicin (DOX), dexamethasone (DEX), etoposide, hydrocortisone, imatinib, leucovorin, mercaptopurine (6‐MP), methotrexate (MTX), methylprednisolone, prednisone, and vincristine (VCR). The review said that “intensive use of asparaginase either IM or IV, is especially recommended in CNS prophylaxis, but at present there appears to be no reasonable alternative to the availability of all three forms of asparaginase”. The current list already includes 13 of these medicines. The exceptions are busulphan, imatinib, methylprednisolone, and prednisone. 4 Attention: Looking at the classification of antineoplastic medicines (Table 1), one can realize that there is more than one representative in the same subclass. So, it is interesting to discuss efficacy and safety among representatives. 1. A RCT8 compared two purine analogs – oral 6‐mercaptopurine (6‐MP) versus oral 6‐thioguanine (6‐TG) – in the treatment of standard‐risk ALL. The estimated 7‐year event‐free survival for subjects randomized to TG was 84.1% (+/‐ 1.8%) and to MP was 79.0% (+/‐ 2.1%); P = 0.004 log rank), although overall survival was 91.9% (+/‐ 1.4%) and 91.2% (+/‐ 1.5%), respectively
Recommended publications
  • Trade-To-Generic Names
    LIST OF TRADE-TO-GENERIC NAMES Brand Name Generic Name Abraxane® Paclitaxel protein bound particles Adriamycin®, various Doxorubicin Adrucil® (various) Fluorouracil Alimta® Pemetrexed Alkeran® Melphalan Arimidex® Anastrozole Aromasin® Exemestane Arranon® Nelarabine Avastin® Bevacizumab Bexxar® Tositumomab BiCNU® Carmustine (BCNU) Blenoxane® Bleomycin Busulfex® Busulfan Injection Campath® Alemtuzumab Camptosar® Irinotecan (CPT-11) Casodex® Bicalutamide CeeNu® Lomustine (CCNU) Cerubidine® Daunorubicin Clolar® Clofarabine Cosmegen® Dactinomycin Cytadren® Aminoglutethimide Cytosar-U® Cytarabine (ara-C) Cytoxan®, various Cyclophosphamide Dacogen® Decitabine DaunoXome® Daunorubicin liposomal DepotCyt® Cytarabine Liposomal Doxil® Doxorubicin HCL (liposomal injection) DTIC-Dome® Dacarbazine (DTIC) Eldisine® Vindesine Eligard® Leuprolide acetate Ellence® Epirubicin Eloxatin® Oxaliplatin Elspar® Asparaginase EmCyt® Estramustine Erbitux® Cetuximab Etopofos® Etoposide Phosphate Eulexin® Flutamide Fareston® Toremifene Faslodex® Fluvestrant Femara® Letrozole Fludara® Fludarabine Gemzar® Gemcitabine Gleevec® Imatinib Gliadel® Carmustine Wafer Halotestin® Fluoxymesterone Last Updated on January 15, 2007 Brand Name Generic Name Herceptin® Trastuzumab Hexalen® Altretamine Hycamtin® Topotecan Hydrea® Hydroxyurea Idamycin® Idarubicin Ifex® Ifosfamide Intron A® Interferon alfa-2b Iressa® Gefitinib Leukeran® Chlorambucil Leukine® Sargramostim Leustatin® Cladribine Lupron depot® Leuprolide acetate depot Lupron® Leuprolide acetate Matulane® Procarbazine Megace®
    [Show full text]
  • Phenotype Microarrays Panels PM-M1 to PM-M14
    Phenotype MicroArrays™ Panels PM-M1 to PM-M14 for Phenotypic Characterization of Mammalian Cells Assays: Energy Metabolism Pathways Ion and Hormone Effects on Cells Sensitivity to Anti-Cancer Agents and for Optimizing Culture Conditions for Mammalian Cells PRODUCT DESCRIPTIONS AND INSTRUCTIONS FOR USE PM-M1 Cat. #13101 PM-M2 Cat. #13102 PM-M3 Cat. #13103 PM-M4 Cat. #13104 PM-M5 Cat. #13105 PM-M6 Cat. #13106 PM-M7 Cat. #13107 PM-M8 Cat. #13108 PM-M11 Cat. #13111 PM-M12 Cat. #13112 PM-M13 Cat. #13113 PM-M14 Cat. #13114 © 2016 Biolog, Inc. All rights reserved Printed in the United States of America 00P 134 Rev F February 2020 - 1 - CONTENTS I. Introduction ...................................................................................................... 2 a. Overview ................................................................................................... 2 b. Background ............................................................................................... 2 c. Uses ........................................................................................................... 2 d. Advantages ................................................................................................ 3 II. Product Description, PM-M1 to M4 ................................................................ 3 III. Protocols, PM-M1 to M4 ................................................................................. 7 a. Materials Required .................................................................................... 7 b. Determination
    [Show full text]
  • And Cisplatin-Resistant Ovarian Cancer
    Vol. 2, 607–610, July 2003 Molecular Cancer Therapeutics 607 Alchemix: A Novel Alkylating Anthraquinone with Potent Activity against Anthracycline- and Cisplatin-resistant Ovarian Cancer Klaus Pors, Zennia Paniwnyk, mediated stabilization of the topo II-DNA-cleavable complex Paul Teesdale-Spittle,1 Jane A. Plumb, and resulting in inhibition of poststrand passage DNA religa- Elaine Willmore, Caroline A. Austin, and tion (1). This event is not lethal per se but initiates a cascade 2 Laurence H. Patterson of events leading to cell death (2). Anthraquinones, as ex- Department of Pharmaceutical and Biological Chemistry, The School of emplified by mitoxantrone, are topo II inhibitors with proven Pharmacy, University of London, London WC1N 1AX, United Kingdom [K. P., L. H. P.]; Department of Pharmacy, De Montfort University, success for the treatment of advanced breast cancer, non- Leicester LE1 9BH, United Kingdom [Z. P., P. T. S.]; Cancer Research Hodgkin’s lymphoma, and acute leukemia (3). Intercalation is UK Department of Medical Oncology, University of Glasgow, Glasgow a crucial part of topo II inhibition by cytotoxic anthraquinones G61 1BD, United Kingdom [J. A. P.]; and School of Cell and Molecular Biosciences, The Medical School, University of Newcastle upon Tyne, with high affinity for DNA (4). It is likely that the potent Newcastle upon Tyne NE2 4HH, United Kingdom [E. W., C. A. A.] cytotoxicity of anthraquinones is related to their slow rate of dissociation from DNA, the kinetics of which favors long- term trapping of the topo-DNA complexes (5). However, Abstract currently available DNA intercalators at best promote a tran- Chloroethylaminoanthraquinones are described with sient inhibition of topo II, because the topo-drug-DNA ter- intercalating and alkylating capacity that potentially nary complex is reversed by removal of the intracellular drug covalently cross-link topoisomerase II (topo II) to DNA.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • 5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells
    Article Doxorubicin Is Key for the Cardiotoxicity of FAC (5-Fluorouracil + Adriamycin + Cyclophosphamide) Combination in Differentiated H9c2 Cells Maria Pereira-Oliveira, Ana Reis-Mendes, Félix Carvalho, Fernando Remião, Maria de Lourdes Bastos and Vera Marisa Costa * UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; [email protected] (M.P.-O.); [email protected] (A.R.-M.); [email protected] (F.C.); [email protected] (F.R.); [email protected] (M.L.B.) * Correspondence: [email protected] Received: 4 October 2018; Accepted: 3 January 2019; Published: 10 January 2019 Abstract: Currently, a common therapeutic approach in cancer treatment encompasses a drug combination to attain an overall better efficacy. Unfortunately, it leads to a higher incidence of severe side effects, namely cardiotoxicity. This work aimed to assess the cytotoxicity of doxorubicin (DOX, also known as Adriamycin), 5-fluorouracil (5-FU), cyclophosphamide (CYA), and their combination (5-Fluorouracil + Adriamycin + Cyclophosphamide, FAC) in H9c2 cardiac cells, for a better understanding of the contribution of each drug to FAC-induced cardiotoxicity. Differentiated H9c2 cells were exposed to pharmacological relevant concentrations of DOX (0.13–5 μM), 5-FU (0.13–5 μM), CYA (0.13–5 μM) for 24 or 48 h. Cells were also exposed to FAC mixtures (0.2, 1 or 5 μM of each drug and 50 μM 5-FU + 1 μM DOX + 50 μM CYA). DOX was the most cytotoxic drug, followed by 5-FU and lastly CYA in both cytotoxicity assays (reduction of 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide (MTT) and neutral red (NR) uptake).
    [Show full text]
  • Cardioprotective Effects of Exercise Training on Doxorubicin-Induced
    www.nature.com/scientificreports OPEN Cardioprotective efects of exercise training on doxorubicin‑induced cardiomyopathy: a systematic review with meta‑analysis of preclinical studies Paola Victória da Costa Ghignatti, Laura Jesuíno Nogueira, Alexandre Machado Lehnen & Natalia Motta Leguisamo* Doxorubicin (DOX)‑induced cardiotoxicity in chemotherapy is a major treatment drawback. Clinical trials on the cardioprotective efects of exercise in cancer patients have not yet been published. Thus, we conducted a systematic review and meta‑analysis of preclinical studies for to assess the efcacy of exercise training on DOX‑induced cardiomyopathy. We included studies with animal models of DOX‑induced cardiomyopathy and exercise training from PubMed, Web of Sciences and Scopus databases. The outcome was the mean diference (MD) in fractional shortening (FS, %) assessed by echocardiography between sedentary and trained DOX‑treated animals. Trained DOX‑treated animals improved 7.40% (95% CI 5.75–9.05, p < 0.001) in FS vs. sedentary animals. Subgroup analyses revealed a superior efect of exercise training execution prior to DOX exposure (MD = 8.20, 95% CI 6.27–10.13, p = 0.010). The assessment of cardiac function up to 10 days after DOX exposure and completion of exercise protocol was also associated with superior efect size in FS (MD = 7.89, 95% CI 6.11–9.67, p = 0.020) vs. an echocardiography after over 4 weeks. Modality and duration of exercise, gender and cumulative DOX dose did were not individually associated with changes on FS. Exercise training is a cardioprotective approach in rodent models of DOX‑induced cardiomyopathy. Exercise prior to DOX exposure exerts greater efect sizes on FS preservation.
    [Show full text]
  • A Comparison Between Triplet and Doublet Chemotherapy in Improving
    Guo et al. BMC Cancer (2019) 19:1125 https://doi.org/10.1186/s12885-019-6294-9 RESEARCH ARTICLE Open Access A comparison between triplet and doublet chemotherapy in improving the survival of patients with advanced gastric cancer: a systematic review and meta-analysis Xinjian Guo1, Fuxing Zhao1, Xinfu Ma1, Guoshuang Shen1, Dengfeng Ren1, Fangchao Zheng1,2,3, Feng Du4, Ziyi Wang1, Raees Ahmad1, Xinyue Yuan1, Junhui Zhao1* and Jiuda Zhao1* Abstract Background: Chemotherapy can improve the survival of patients with advanced gastric cancer. However, whether triplet chemotherapy can further improve the survival of patients with advanced gastric cancer compared with doublet chemotherapy remains controversial. This study reviewed and updated all published and eligible randomized controlled trials (RCTs) to compare the efficacy, prognosis, and toxicity of triplet chemotherapy with doublet chemotherapy in patients with advanced gastric cancer. Methods: RCTs on first-line chemotherapy in advanced gastric cancer on PubMed, Embase, and the Cochrane Register of Controlled Trials and all abstracts from the annual meetings of the European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology conferences up to October 2018 were searched. The primary outcome was overall survival, while the secondary outcomes were progression-free survival (PFS), time to progress (TTP), objective response rate (ORR), and toxicity. Results: Our analysis included 23 RCTs involving 4540 patients and 8 types of triplet and doublet chemotherapy regimens, and systematic review and meta-analysis revealed that triplet chemotherapy was superior compared with doublet chemotherapy in terms of improving median OS (HR = 0.92; 95% CI, 0.86–0.98; P = 0.02) and PFS (HR = 0.82; 95% CI, 0.69–0.97; P = 0.02) and TTP (HR = 0.92; 95% CI, 0.86–0.98; P = 0.02) and ORR (OR = 1.21; 95% CI, 1.12–1.31; P < 0.0001) among overall populations.
    [Show full text]
  • Anticancer Drugs
    Temobel capsules 20 mg, 100 mg, 250 mg Trade name: Temobel. International nonproprietary name: Temozolomide. Pharmaceutical form: capsules 20 mg, 100 mg and 250 mg. Composition: each capsule contains: Active ingredients: temozolomide. Excipients: stearic acid, tartaric acid, colloidal anhydrous silica, sodium starch glycolate type A, anhydrous lactose. ATC code: L01AX03. Indications for use ▶ Children over the age of 3 years and adult patients ▶ Adult patients with newly-diagnosed glioblastoma with malignant glioma, such as glioblastoma multiforme concomitantly with radiotherapy and multiforme or anaplastic astrocytoma, showing subsequently as monotherapy. recurrence or progression aſt er standard therapy. Alkylating agents AmoxicillinTemodex powder for preparing capsules gel for local 250 usemg 100 mg Trade name: Temodex. Pharmacotherapeutic group: Antitumor agent of International non-proprietary name: Temozolomide. alkylating action. Description: powder from white to greenish-gray or ATC code: L01AX03. brown. Indications for use Composition: each package contains: temozolomide The newly discovered multiform glioblastoma (as part of (in the form of temodex (mixture of temozolomide and sodium dextran phosphate)) – 100 mg. combined treatment in combination with radiotherapy); Dosage form: powder for gel preparation for topical Malignant glioma (glioblastoma multiforme or anaplastic use. astrocytoma). retinoblastoma, lymphogranulomatosis, lymphosarcoma, Cyclophosphan non-Hodgkin lymphoma, reticulosarcoma, osteogenous sarcoma, multiple myeloma,
    [Show full text]
  • Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in Vitro and in Vivo
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Genetik Characterization of the Small Molecule Kinase Inhibitor SU11248 (Sunitinib/ SUTENT in vitro and in vivo - Towards Response Prediction in Cancer Therapy with Kinase Inhibitors Michaela Bairlein Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ. -Prof. Dr. K. Schneitz Prüfer der Dissertation: 1. Univ.-Prof. Dr. A. Gierl 2. Hon.-Prof. Dr. h.c. A. Ullrich (Eberhard-Karls-Universität Tübingen) 3. Univ.-Prof. A. Schnieke, Ph.D. Die Dissertation wurde am 07.01.2010 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 19.04.2010 angenommen. FOR MY PARENTS 1 Contents 2 Summary ................................................................................................................................................................... 5 3 Zusammenfassung .................................................................................................................................................... 6 4 Introduction .............................................................................................................................................................. 8 4.1 Cancer ..............................................................................................................................................................
    [Show full text]
  • Anthracycline Chemotherapy and Cardiotoxicity
    Cardiovasc Drugs Ther DOI 10.1007/s10557-016-6711-0 REVIEW ARTICLE Anthracycline Chemotherapy and Cardiotoxicity John V McGowan1 & Robin Chung1 & Angshuman Maulik1 & Izabela Piotrowska1 & JMalcolmWalker1 & Derek M Yellon1 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Anthracycline chemotherapy maintains a promi- antibiotic overproduction techniques of the day [1]. nent role in treating many forms of cancer. Cardiotoxic side Anthracyclines are listed among the World Health effects limit their dosing and improved cancer outcomes ex- Organisation (WHO) model list of essential medicines [2]. pose the cancer survivor to increased cardiovascular morbidity Fifty years on from its discovery, anthracycline anti-tumour and mortality. The basic mechanisms of cardiotoxicity may and cardiotoxic mechanisms alike continue to evoke consider- involve direct pathways for reactive oxygen species genera- able interest in basic science and clinical trials research. tion and topoisomerase 2 as well as other indirect pathways. Cancer now affects more than one in three people in their Cardioprotective treatments are few and those that have been lifetime, and along with cardiovascular disease, they are the examined include renin angiotensin system blockade, beta two leading causes of death in developed nations. Overall ten- blockers, or the iron chelator dexrazoxane. New treatments year cancer survival stands at 50% across the twenty most exploiting the ErbB or other novel pro-survival pathways, common malignancies and approximately 80% or better in such as conditioning, are on the cardioprotection horizon. breast, lymphoma, melanoma and uterine cancers. These mor- Even in the forthcoming era of targeted cancer therapies, the tality trends reflect a broad improvement in survival rates in substantial proportion of today’s anthracycline-treated cancer the developed economies [3].
    [Show full text]
  • Covalently-Linked Complexes and Methods for Enhanced Cytotoxicity and Imaging
    Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 359 347 B1 12 EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification © int. ci.5: A61K 47/42, A61K 49/02, 23.12.92 Bulletin 92/52 A61K 43/00 © Application number : 89250014.1 © Date of filing : 14.08.89 @) Covalently-linked complexes and methods for enhanced cytotoxicity and imaging. © Priority : 15.08.88 US 232337 © Proprietor : NEORX CORPORATION 410 West Harrison Street Seattle Washington 98119 (US) @ Date of publication of application 21.03.90 Bulletin 90/12 © Inventor : Anderson, David C. 2415 Thorndyke Avenue No.301 © Publication of the grant of the patent : Seattle Washington 98199 (US) 23.12.92 Bulletin 92/52 Inventor : Morgan, A. Charles 803 Driftwood Place Edmonds Washington 98020 (US) @ Designated Contracting States : Inventor : Abrams, Paul G. AT BE CH DE ES FR GB GR IT LI LU NL SE 2125 First Avenue No. 1602 Seattle Washington 98121 (US) Inventor : Nichols, Everett J. © References cited : 12525 17th Avenue N.E. EP-A- 0 282 057 Seattle Washington 98125 (US) CHEMICAL ABSTRACTS, vol. 108, no. 7, 1987, Inventor : Fritzberg, Alan R. abstract no. 48913a, Columbus, Ohio, US; J.M. 16703 74th Place West BOGGS et al.: Edmonds Washington 98020 (US) "Antigen-targetedliposome-encapsulated methotrexate specifically kills lymphocytes sensitized to the nonapeptide of myelin basic © Representative : Wablat, Wolfgang, Dr. Dr. protein ", & J.NEUROIMMUNOL, 17(1), 35-48 Potsdamer Chaussee 48 W-1000 Berlin 38 (DE) CO h- CO If) CO Note : Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Identification and Validation of an Anthracycline/ Cyclophosphamide–Based Chemotherapy Response Assay in Breast Cancer Jude M
    DOI:10.1093/jnci/djt335 © The Author 2014. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] ARTICLE Identification and Validation of an Anthracycline/ Cyclophosphamide–Based Chemotherapy Response Assay in Breast Cancer Jude M. Mulligan, Laura A. Hill, Steve Deharo, Gareth Irwin, David Boyle, Katherine E. Keating, Olaide Y. Raji, Fionnuala A. McDyer, Eamonn O’Brien, Max Bylesjo, Jennifer E. Quinn, Noralane M. Lindor, Paul B. Mullan, Colin R. James, Steven M. Walker, Peter Kerr, Jacqueline James, Timothy S. Davison, Vitali Proutski, Manuel Salto-Tellez, Patrick G. Johnston, Fergus J. Couch, D. Paul Harkin, Richard D. Kennedy Manuscript received March 12, 2012; revised October 4, 2013; accepted October 10, 2013. Correspondence to: Richard D. Kennedy, MB, PhD, Centre for Cancer Research & Cell Biology, Queen’s University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK (e-mail: [email protected]). Downloaded from Background There is no method routinely used to predict response to anthracycline and cyclophosphamide–based chemo- therapy in the clinic; therefore patients often receive treatment for breast cancer with no benefit. Loss of the Fanconi anemia/BRCA (FA/BRCA) DNA damage response (DDR) pathway occurs in approximately 25% of breast http://jnci.oxfordjournals.org/ cancer patients through several mechanisms and results in sensitization to DNA-damaging agents.
    [Show full text]