FAST Magazine 31- December 2003

Total Page:16

File Type:pdf, Size:1020Kb

FAST Magazine 31- December 2003 FAST N°31 AIRBUS TECHNICAL DIGEST DECEMBER 2002 AIRBUS TECHNICAL DIGEST DECEMBER 2002 A340-500 Arctic flights 3 Capt. Michel Brandt Just happened… Coming soon… 8 Potable water purity 9 Christian Sparr Less maintenance, less costs 13 Christian Delmas PAGE 1 AirN@v: The Airbus solution for advanced 17 consultation of interactive E-documentation 31 FAST Jan Renette Index of previous articles 26 From the archives... 29 Polar flying Editor: Denis Dempster Customer Services 30 Art Director: Agnès Massol-Lacombe Around the clock… Around the world in association with Chandler Gooding London • Leeds • Toulouse Customer Services Marketing Tel: +33 5 61 93 39 29 Fax: +33 5 61 93 27 67 E-mail: [email protected] Printer Escourbiac FAST may be read on Internet http://www.airbus.com under Customer Services/Publications Airbus Customer Services © AIRBUS 2002. All rights reserved The articles herein may be reprinted without permission except where copyright source is indicated, but with acknowledgement to Airbus. Articles which may be subject to ongoing review must have their accuracy verified prior to reprint. The statements made herein do not constitute an offer. This issue of FAST has been printed on paper They are based on the assumptions shown and are expressed in good faith. produced without using chlorine, to reduce Where the supporting grounds for these statements are not shown, waste and help conserve natural resources. the Company will be pleased to explain the basis thereof. Every little helps! PAGE 2 FAST 31 FAST A340-500 ARCTIC FLIGHTS Customer Services A340-500 Arctic flights Two flights exceeding 10 hours each were required for Both flights were planned and operated by the Airbus the A340-500 fuel system certification and for the Flight Test Division: Toulouse-Keflavik and Keflavik- evaluation of the ADIRS performance. In addition, the Toulouse, each time via the North Pole. behaviour of the navigation system and the Electronic Instrument System (EIS) had to be checked in the polar This article recalls some aspects of the polar navigation area including flying over the North Pole itself. observed during these flights. PAGE 3 FAST 31 FAST Capt. Michel Brandt Airbus Test Pilot Flight Operations Support A340-500 ARCTIC FLIGHTS DIGRESSION ON On TRUE heading MAGNETIC HEADING We left Toulouse on 12 September Although the Flight Management 2002 with 12 people on board, maxi- and Guidance System (FMGS) Traditionally, the polar area was defined mum fuel uplift and full flight-test remained in GPS PRIMARY mode as an area of magnetic compass equipment, including ballast, which of navigation update all the time, uncertainty and the limit was sometimes gave a take-off-weight (TOW) of we were able to cross-check the set where the earth magnetic field is less 325,000kg. Our flight plan led us to FMGS navigation with the Auto- than 6 microtesla. Except for the standby Vigra VHF Omnidirectional Range matic Direction Finder (ADF) compass, modern aircraft no longer have (VOR) in Norway to intercept the sometimes at a very great distance, magnetic sensors “slaving” the gyro- Polar Track System (PTS) route up to 500 nautical miles (nm) from compass to the magnetic north. The “November”. This route follows the the Non-Directional Beacon (NDB). magnetic variation is extracted from meridian 10°E to the North Pole. However, the wave propagation tables in the Air Data/Inertial Reference may not be always as good, for System (ADIRS) and the Flight Although Magnetic Heading (MH) example, during periods of aurora Management System (FMS). These tables is available until 82°N at this long- borealis. give an accurate magnetic variation up to itude, we selected TRUE heading a latitude of 82° N, or 73° N in function reference as soon as we were estab- Flying in NAVigation autopilot of the longitude. Beyond this latitude lished on the PTS. With this selec- (NAV) mode, nothing significant TRUE reference must be used. tion, the indications on navigation happened until approaching the Consequently, the 6 microtesla limit has display (ND) (Figure 1 below) and North Pole. We observed the rela- no meaning for these navigation systems. Multipurpose Control and Display tive position of each Inertial We nevertheless observed during these Unit (MCDU) were in line with the Reference System (IRS) to antici- flights that the standby compass True Tracks (TT) given on our nav- pate the system behaviour while indication was coherent well above the igation charts. flying over the North Pole. charted 6 microtesla limit. PAGE 4 When passing 65°N latitude the DIGRESSION ON GRID TRACK FAST 31 FAST grid track (GT) appeared on the navigation display. When flying east to west or west to east at very high latitude on an orthodromic (great circle) route, the true track changes quite rapidly due to the convergence of the meridians. On older aircraft, the true heading was not directly available to the crew. “Old style” Horizontal Situation Indicators (HSI) were set in a so-called free gyro mode on the Grid North reference. The characteristic of the grid track is that it remains constant on an orthodromic route as indicated in the drawing below, right. With our modern navigation system, the grid track would not be mandatory, as the true track is always available and the navigation charts indicate the outbound GRID North Direction and inbound true tracks at each waypoint for cross- Geographic check. But the grid track Pole indication on the navigation display provides the crew with at least a convenient GT Figure 1 stable indication for navigation monitoring in this moving display TT environment. GT 0º TT L O N G GT - TT+Long. W TT Variable GT - TT-Long. E GT Constant Note: Where words are spelt in capital letters it refers (Valid for a polar stereographic projection) to their use as cockpit labels, messages and displays. A340-500 ARCTIC FLIGHTS Figure 2 Figure 3a Note: The TAXI CAMERA was selected “on” in flight so the flight test engineers could see the landscape from their station in the cabin. Figure 3b HEADING BEHAVIOUR The ECAM procedure cannot be At 20nm outbound from the North followed, as all heading indications Pole, everything was nominal and At about 20nm before the Pole the start to move very quickly and it was time for us to turn left to heading discrepancies on ND switching ATT HDG on IRS3 intercept “another” 180° course to became noticeable and finally trig- would not help. The autopilot the VOR of Thule (THT). gered, as expected, the HDG DIS- remained engaged in NAV mode CREPANCY Electronic Central- and the aircraft continued nicely Despite the magnetic variation of PAGE ised Aircraft Monitor (ECAM) straight ahead. 66°W at Thule, the VOR THT is 5 caution (Figure 2) and CHECK magnetically oriented (some VORs 31 FAST HDG on the ND and Primary Flight When flying exactly (with GPS in north Canada are oriented to the Display (PFD) (Figures 3a and 3b). accuracy) over the North Pole the geographic North). As we were fly- ND display swung over by one ing with TRUE reference, the VOR The heading discrepancy is due to hundred eighty degrees from a needle on ND in MAP mode or the fact that each IRS has a differ- True Heading (TH) close to 000° to ROSE NAV mode is automatically ent position relative to the Pole. a TH close to 180° (the drift was corrected with the magnetic varia- small). But very quickly all head- tion, so as to get a TRUE bearing. ings were again in agreement as Otherwise the needle would not shown on the flight test traces indicate the direction to THT. This given in Figure 4 (below), and the is marked by the magenta color of ECAM caution disappeared. the needle and the label CORR next Figure 4 HDG of each IRS plotted versus time in seconds. 359.00 The red line indicates the time of the flight over the 287.20 North Pole. Before reaching the 215.40 North Pole the heading calculated by each IRS was close to 360°/000°. 143.60 After passing the North Pole all headings 71.80 converged rapidly to approximately 180°." 0.00 0 20 40 60 80 100 120 Sec GMT START: 13:54:56 A340-500 ARCTIC FLIGHTS Figure 5 Leaving the oceanic airspace we deselected TRUE to revert to mag- netic reference and continued to destination, arriving at Keflavik after 10 hours 45 minutes flight time, having enough fuel to return to Toulouse with more than the required reserves. The next day we left Keflavik for Toulouse and headed north east to join and follow the PTS route “Romeo” up to ROGSO, a way- point located 230nm to the north of Thule. At this waypoint we turned right to the North Pole. On PTS “Romeo” we selected TRUE refer- ence, as it is better for navigation monitoring; but this time, before crossing 82°N, we deselected TRUE to revert to magnetic refer- ence in order to see how the ECAM will advise us to select the right heading reference. Ellesmere Island PAGE 6 FAST 31 FAST Flight test engineers at station Figure 6 to the VOR2 display as shown in After passing THT (Figure 6) the Figures 5 and 6. The indications of outbound true track to the 7440N the Digital Distance and Radio waypoint was 095°. On this leg the Magnetic Indicator (DDRMI) and true track changed significantly, the ND in ROSE VOR mode are not from 095° to 123° due to the con- corrected, as they would be on a vergence of the meridians, but the conventional aircraft. When we grid track remained conveniently were at 77nm to THT, the DDRMI constant and equal to 163°.
Recommended publications
  • Home at Airbus
    Journal of Aircraft and Spacecraft Technology Original Research Paper Home at Airbus 1Relly Victoria Virgil Petrescu, 2Raffaella Aversa, 3Bilal Akash, 4Juan M. Corchado, 2Antonio Apicella and 1Florian Ion Tiberiu Petrescu 1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania 2Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, 81031 Aversa (CE), Italy 3Dean of School of Graduate Studies and Research, American University of Ras Al Khaimah, UAE 4University of Salamanca, Spain Article history Abstract: Airbus Commerci al aircraft, known as Airbus, is a European Received: 16-04-2017 aeronautics manufacturer with headquarters in Blagnac, in the suburbs of Revised: 18-04-2017 Toulouse, France. The company, which is 100% -owned by the industrial Accepted: 04-07-2017 group of the same name, manufactures more than half of the airliners produced in the world and is Boeing's main competitor. Airbus was Corresponding Author: founded as a consortium by European manufacturers in the late 1960s. Florian Ion Tiberiu Petrescu Airbus Industry became a SAS (simplified joint-stock company) in 2001, a ARoTMM-IFToMM, Bucharest subsidiary of EADS renamed Airbus Group in 2014 and Airbus in 2017. Polytechnic University, Bucharest, (CE) Romania BAE Systems 20% of Airbus between 2001 and 2006. In 2010, 62,751 Email: [email protected] people are employed at 18 Airbus sites in France, Germany, the United Kingdom, Belgium (SABCA) and Spain. Even if parts of Airbus aircraft are essentially made in Europe some come from all over the world. But the final assembly lines are in Toulouse (France), Hamburg (Germany), Seville (Spain), Tianjin (China) and Mobile (United States).
    [Show full text]
  • A World of Expertise
    Capability list A world of expertise Member of the Lufthansa Technik Group 2 Qualification for personnel in the aviation industry Addressing the industry’s need for training excellence Effective training methods The success of an aviation business depends on the Basic training, type training and competence training – quality, efficiency, safety and flexibility of its operations, each one of these areas in Lufthansa Techncial Training’s be they in the air or on the ground. Although state-of-the- portfolio are provided using different methods. The training art technology and systems are an important part of the takes place either in a classroom setting led by an instructor, equation, the crucial variable is the qualification of your in dedicated workshops, in a maintenance environment most important asset – your employees. Knowledge, skill, or as a trainee-paced, state-of-the-art e-learning course. attitude and creativity are the key differentiators. And those In order to implement all of these options as best as are the result of training. possible, courses are designed in line with the “blended That is why more than 600 companies working in aviation training” principle – optimum training is a mix of diverse, manufacturing, in maintenance, repair and overhaul (MRO) yet compatible and complementary training methods. and in other aviation-related fields worldwide trust Lufthansa The success of Lufthansa Technical Training’s model comes Technical Training – a company built on more than 50 years from a modular approach to training. This concept makes of experience in aircraft maintenance and operations opti- it easy to select just the right amount of training to suit the mization.
    [Show full text]
  • 11ADOBL04 December 2010
    11ADOBL04 December 2010 Use of rudder on Airbus A300-600/A310 (extracted from former FCOM Bulletin N°15/1 – Subject N°40) Reason for issue On February 8th, 2002, the National Transportation Safety Board (NTSB), in cooperation with the French Bureau d'Enquêtes et d'Analyses (BEA), issued recommendations that aircraft manufacturers re-emphasize the structural certification requirements for the rudder and vertical stabilizer, showing how some maneuvers can result in exceeding design lim- its and even lead to structural failure. The purpose of this Bulletin is to re-emphasize proper operational use of the rudder, highlight certification requirements and rud- der control design characteristics. Yaw control General In flight, yaw control is provided by the rudder, and directional stability is provided by the vertical stabilizer. The rudder and vertical stabilizer are sized to meet the two following objectives: Provide sufficient lateral control of the aircraft during crosswind takeoffs and landings, within the published crosswind limits (refer to FCOM Operating Limitations chapter). Provide positive aircraft control under conditions of engine failure and maximum asymmetric thrust, at any speed above Vmcg (minimum control speed - on ground). The vertical stabilizer and the rudder must be capable of generating sufficient yawing moments to maintain directional control of the aircraft. The rudder deflection, necessary to achieve these yawing moments, and the resulting sideslip angles place significant aerodynamic loads on the rudder and on the vertical stabilizer. Both are designed to sustain loads as prescribed in the JAR/FAR 25 certification requirements which define several lateral loading conditions (maneuver, gust loads and asymmetric loads due to engine failure) leading to the required level of structural strength.
    [Show full text]
  • FAST Magazine Issue 22
    Cover FAST 11/03/98 21:55 Page 1 FAST 22/p1 ˆ p6 11/03/98 23:45 Page 1 AIRBUS TECHNICAL DIGEST NUMBER 22 MARCH 1998 HYDRAULIC SYSTEM PREVENTING LEAKS 22 JEROME QUENESCOURT FUEL SYSTEM DETECTING LEAKS USING HELIUM 77 ALAIN MARECHAL AND ALAIN DENINOTTI THE INTERNATIONAL REGULATORY CLIMATE ANDREW S. Mc CLYMONT 1111 IMPLEMENTING JAR-OPS WITH AIRBUS INDUSTRIE OPERATIONAL DOCUMENTATION 1717 GUY DI SANTO THE PORTABLE WATER DETECTION TOOL FOR A300/A300-600/A310 AIRCRAFT 2121 RENE SAVOIE AND MARIE-SOPHIE CALAIS LIGHTNING STRIKES AND AIRBUS FLY-BY-WIRE AIRCRAFT CAPTAIN CHRIS KRAHE 2525 AIM-FANS WINS GROWING NUMBER OF ORDERS JEAN-PIERRE DAMBRINE 2828 CUSTOMER SERVICES CONFERENCES 3030 THE FIRST AVIATION REGULATION? 3131 RESIDENT CUSTOMER SUPPORT REPRESENTATION 3232 The articles herein may be reprinted without permission except where copyright source is indicated, but with acknowledgement to Airbus Industrie. Articles which may be subject to ongoing review must have their accuracy verified prior to reprint. The statements made herein do not constitute an offer. They are based on the assumptions shown and are expressed in good faith. Where the supporting grounds for these statements are not shown, the Company will be pleased to explain the basis thereof. © AIRBUS INDUSTRIE 1998 Publisher: Airbus Industrie Customer Services, 1 rond-point Maurice Bellonte, 31707 Blagnac Cedex, France Editor: Denis Dempster, Product Marketing Telephone +33 (0)5 61 93 39 29, Telex AIRBU 530526F, Telefax +33 (0)5 61 93 27 67 Graphic design: Agnès Lacombe, Customer Services Marketing Photo-engraving: Passion Graphic, 60 boulevard Déodat de Séverac, 31027 Toulouse Cedex, France Printer: Escourbiac, 5 avenue Marcel Dassault, 31502 Toulouse Cedex, France This issue of FAST has been printed on paper produced without using chlorine, to reduce waste and help to conserve natural resources.
    [Show full text]
  • Flight Safety DIGEST OCTOBER 2005
    Flight Safety DIGEST OCTOBER 2005 Analysis of CREW CONVERSATIONS Provides Insights for Accident Investigation Flight Safety Digest Flight Safety Foundation For Everyone Concerned With the Safety of Flight Vol. 24 No. 10 October 2005 www.fl ightsafety.org OFFICERS AND STAFF Chairman, Board of Governors Amb. Edward W. Stimpson President and CEO Stuart Matthews In This Issue Executive Vice President Robert H. Vandel General Counsel and Secretary Kenneth P. Quinn, Esq. Treasurer David J. Barger Analysis of Crew Conversations ADMINISTRATIVE Provides Insights for Accident Manager, Support Services Linda Crowley Horger Investigation 1 New methods of examining recorded voice communications FINANCIAL can help investigators evaluate interactions between fl ight Accountant Millicent Wheeler crewmembers and determine the quality of the work environment on the fl ight deck. MEMBERSHIP Director, Membership and Development Ann Hill On-board Fatalities Lowest Membership Services STATS Coordinator Ahlam Wahdan Since 1984 for Large Commercial Jets Membership Services Coordinator Namratha Apparao Boeing data assembled according to a new taxonomy created by an international team indicate that controlled fl ight into PUBLICATIONS terrain and loss of control in fl ight were, by a considerable margin, the leading causes of on-board fatalities in accidents Senior Editor Mark Lacagnina 18 from 1987 through 2004. Senior Editor Wayne Rosenkrans Senior Editor Linda Werfelman Associate Editor Rick Darby Ethics Is a Safety Issue Web and Print Y Production Coordinator Karen K. Ehrlich ‘Data smoothing,’ ‘pencil whipping,’ ‘normalization of Production Designer Ann L. Mullikin deviance’ — they’re all tempting shortcuts against which Production Specialist Susan D. Reed LIBRAR aviation personnel must take a principled stand in a safety Librarian, Jerry Lederer culture.
    [Show full text]
  • EASA.A.172 A300, A310, and A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES ...................................................................................................................
    [Show full text]
  • Aviation Profiles and Cases
    Ashfords has unique air accident claims and aviation expertise - AVIATION specialist lawyers have represented the victims of air accidents PROFILES AND dating back to 1977. The Aviation Team is dedicated to representing injured victims CASES and families who have lost loved ones as a result of aviation accidents around the world. The head of the Aviation Team is Jim Morris, a RAF pilot for 12 years before qualifying as a barrister to specialise in air accident litigation. The Team’s class leading expertise means that Ashfords has the resources and ability to act in all types of air accidents, from single engine pleasure flights to major airline disasters and acts of terrorism. Ashfords LLP ashfords.co.uk THE AVIATION TEAM Jim Morris Stephen Walker Partner & Barrister Legal Director Head of the Aviation Team [email protected] [email protected] Mobile +44 (0)7974 244769 Mobile +44 (0)7850 506057 Jim specialises in representing the victims of Stephen is a Legal Director in the Aviation Team. He has international air accidents. He was a professionally dealt with a wide range of civil litigation matters over the qualified Royal Air Force pilot prior to becoming an past 28 years. He advises private individuals, sole traders aviation lawyer, and has over 26 years’ experience in and small/medium enterprises in relation to civil litigation aviation and litigation. matters including misrepresentation/ estoppel, breach of contract, defamation, debt recovery, professional During Jim’s 12 years as a pilot, he was qualified on a negligence and high value personal injury cases. number of military aircraft (single piston, single turbo prop, fast jet, twin turbo prop, heavy jet) and his last Prior to joining Ashfords, Stephen worked for the TSB flying tour was on the Boeing E-3D AWACS.
    [Show full text]
  • EASA.A.172 Issue 4 Airbus A300 A310 A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 66 An agency of the European Union Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 67 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES .................................................................................................................... 8 2.1 Certified model : A300 B1 ....................................................................................................... 8 2.2 Powerplant .............................................................................................................................. 8 2.3 Maximum Weights (kg) ..........................................................................................................
    [Show full text]
  • How Airbus Surpassed Boeing: a Tale of Two Competitors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2007 How Airbus Surpassed Boeing: A Tale of Two Competitors William Alexander Burns University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Burns, William Alexander, "How Airbus Surpassed Boeing: A Tale of Two Competitors. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/252 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by William Alexander Burns entitled "How Airbus Surpassed Boeing: A Tale of Two Competitors." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems. Robert B. Richards, Major Professor We have read this thesis and recommend its acceptance: Richard Ranaudo, U. Peter Solies Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by William A. Burns entitled “How Airbus Surpassed Boeing: A Tale of Two Competitors” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems.
    [Show full text]
  • In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001
    National Transportation Safety Board Washington, D.C. 20594 PRSRT STD OFFICIAL BUSINESS Postage & Fees Paid Penalty for Private Use, $300 NTSB Permit No. G-200 In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 Aircraft Accident Report NTSB/AAR-04/04 PB2004-910404 Notation 7439B National National Transportation Transportation Safety Board Safety Board Washington, D.C. Washington, D.C. Aircraft Accident Report In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 RAN S P T O L R A T LUR IBUS A N P UNUM E O T I I O T A N N S A D FE R NTSB/AAR-04/04 T Y B OA PB2004-910404 National Transportation Safety Board Notation 7439B 490 L’Enfant Plaza, S.W. Adopted October 26, 2004 Washington, D.C. 20594 National Transportation Safety Board. 2004. In-Flight Separation of Vertical Stabilizer, American Airlines Flight 587, Airbus Industrie A300-605R, N14053, Belle Harbor, New York, November 12, 2001. Aircraft Accident Report NTSB/AAR-04/04. Washington, DC. Abstract: This report explains the accident involving American Airlines flight 587, an Airbus Industrie A300-605R, N14053, which crashed into a residential area of Belle Harbor, New York, following the in-flight separation of the airplane’s vertical stabilizer and rudder. The safety issues discussed in this report focus on characteristics of the A300-600 rudder control system design, A300-600 rudder pedal inputs at high airspeeds, aircraft-pilot coupling, flight operations at or below an airplane’s design maneuvering speed, and upset recovery training programs.
    [Show full text]
  • Fluid Power Products on the Airbus A300 and A310
    Aerospace Marine Defense S1KFf Fluid Power Products On the Airbus A300 and A310 The Fluid Power Division of Vickers The A300, with seating capacity for up Other advantages of the A300 and A31 0 Aerospace Marine Defense Group, a to 315 passengers, and its smaller include: extremely low noise and air recognized leader in advanced partner the A31 0, with space for 21 0 to pollution levels; the latest in avionics; technology hydraulic and electro- 280 seats, are Airbus' entry into the improved cargo handling capability; and hydraulic components for aerospace, short to medium-range, wide-body a demonstrated high reliability rate. marine and defense vehicles, was commercial jet airliner market. Both The wide-body concept, which Airbus chosen to supply hydraulic pumps, aircraft are fitted with either Pratt & has incorporated into both the A300 and motorpumps, power transfer units and Whitney or General Electric turbofan the A31 0, has greatly increased the valves for the Airbus A300 and A31 0 engines which, combined with the operating efficiency of these aircraft over commercial jet airliners. Airbus Industry, high-lift wing design, make these aircraft earlier jet airliner designs. Because of a consortium comprised of cooperating two of the most efficient and economical its greater capacity for passengers and * airframe manufacturers from throughout jet airliners in use today. The A300 cargo, the A300 series requires fewer Western Europe, is headquartered in series' twin engine concept, along with scheduled frequencies to perform the Toulouse, France, where the aircraft other state-of-the-adt improvements in same productivity of the narrow-body components and subassemblies are engine design, has produced a 25% jets.
    [Show full text]
  • Driver Training 2 Contents
    Driver training 2 Contents Aircraft components-------------------------------------------Page 3 Commercial aircraft ID---------------------------------------- Page 4-66 Helicopter ID-----------------------------------------------------Page 67-68 Business Jet ID---------------------------------------------------Page 69-74 Light aircraft ID--------------------------------------------------Page 75-77 Military aircraft ID----------------------------------------------Page 78-83 Aircraft Dimensions-------------------------------------------- Page 84-91 Taxiway signage------------------------------------------------- Page 92 Phonetic Alphabet--------------------------------------------- Page 93 Radiotelephony------------------------------------------------- Page 94 3 Aircraft Components Fin (Vertical Stabiliser) Wingtip Rudder Tail (Empennage) Airbrakes / Spoilers (Jet Aileron Elevator engines only) Fuselage Flaps Wind Shield (Cockpit) Horizontal Stabiliser Main Gear Nose Gear Wing Engines (nacelle) Nose (Radar Cone) Undercarriage Airbus A200-100 (Formally CS100) 4 Note Airbus purchased a 50.01% majority stake in the CSeries program in October 2017, with the deal closing in July 2018. The Airbus A220, previously known as Bombardier CSeries (or C Series), is a family of narrow- body, twin-engine, medium-range jet airliners marketed by Airbus but designed and built by the Canadian manufacturer Bombardier Aerospace. Airbus A200-300 (Formally CS300) Key Features • Double Emergency exits over wing • Winglets • Engines appear oversized compared to
    [Show full text]