Flight Safety DIGEST OCTOBER 2005

Total Page:16

File Type:pdf, Size:1020Kb

Flight Safety DIGEST OCTOBER 2005 Flight Safety DIGEST OCTOBER 2005 Analysis of CREW CONVERSATIONS Provides Insights for Accident Investigation Flight Safety Digest Flight Safety Foundation For Everyone Concerned With the Safety of Flight Vol. 24 No. 10 October 2005 www.fl ightsafety.org OFFICERS AND STAFF Chairman, Board of Governors Amb. Edward W. Stimpson President and CEO Stuart Matthews In This Issue Executive Vice President Robert H. Vandel General Counsel and Secretary Kenneth P. Quinn, Esq. Treasurer David J. Barger Analysis of Crew Conversations ADMINISTRATIVE Provides Insights for Accident Manager, Support Services Linda Crowley Horger Investigation 1 New methods of examining recorded voice communications FINANCIAL can help investigators evaluate interactions between fl ight Accountant Millicent Wheeler crewmembers and determine the quality of the work environment on the fl ight deck. MEMBERSHIP Director, Membership and Development Ann Hill On-board Fatalities Lowest Membership Services STATS Coordinator Ahlam Wahdan Since 1984 for Large Commercial Jets Membership Services Coordinator Namratha Apparao Boeing data assembled according to a new taxonomy created by an international team indicate that controlled fl ight into PUBLICATIONS terrain and loss of control in fl ight were, by a considerable margin, the leading causes of on-board fatalities in accidents Senior Editor Mark Lacagnina 18 from 1987 through 2004. Senior Editor Wayne Rosenkrans Senior Editor Linda Werfelman Associate Editor Rick Darby Ethics Is a Safety Issue Web and Print Y Production Coordinator Karen K. Ehrlich ‘Data smoothing,’ ‘pencil whipping,’ ‘normalization of Production Designer Ann L. Mullikin deviance’ — they’re all tempting shortcuts against which Production Specialist Susan D. Reed LIBRAR aviation personnel must take a principled stand in a safety Librarian, Jerry Lederer culture. Aviation Safety Library Patricia Setze 24 TECHNICAL Director of Technical Programs James M. Burin Flight Crews Cleared for Technical Programs Specialist Joanne Anderson Near-simultaneous Takeoffs From Managing Director of Intersecting Runways Air Transport Safety Services Louis A. Sorrentino III Q-Star Program Administrator Robert Feeler A preliminary report from the U.S. National Transportation BRIEFS Manager, Data Systems Safety Board quotes the fi rst offi cer as saying that the captain and Analysis Robert Dodd, Ph.D. delayed rotation of their Boeing 737 as an Airbus A330 passed 28 Manager of Aviation overhead with ‘very little separation.’ Safety Audits Darol V. Holsman Founder Jerome Lederer 1902–2004 Flight Safety Foundation is an international membership organization dedicated to the continuous improvement of aviation safety. Nonprofi t and independent, the Foundation was launched offi cially in 1947 in response to the aviation industry’s need for a neutral clearinghouse to disseminate objective safety information, and for a credible and knowl- edgeable body that would identify threats to safety, analyze the problems and recommend practical solutions to them. Since its beginning, the Foundation has acted in the public interest to produce positive infl uence on aviation safety. Today, the Foundation provides leadership to more than 900 member organizations in more than 150 countries. Cover illustration: © Copyright 2005 Getty Images Inc. N EW ARTICLE TITLE? Copyright © 2005 Rubberball Analysis of Crew Conversations Provides Insights for Accident Investigation New methods of examining recorded voice communications can help investigators evaluate interactions between flight crewmembers and determine the quality of the work environment on the flight deck. — MAURICE NEVILE, PH.D., AND MICHAEL B. WALKER, PH.D. ockpit voice recorders (CVRs) are in- Following the investigation of a controlled-fl ight- stalled in aircraft to provide informa- into-terrain (CFIT) accident involving an Israel tion to investigators after an accident. Aircraft Industries Westwind 1124 jet aircraft, CThey provide records of fl ight crew which struck terrain near Alice Springs, Northern activities and conversations, as well as a variety Territory, Australia, on April 27, 1995, the Bureau of other auditory information. Information from of Air Safety Investigation (BASI, which became CVRs has proved useful in determining the events part of the newly formed multi-modal Australian leading up to aircraft accidents for many years. Transport Safety Bureau [ATSB] in 1999) evalu- However, there has been little discussion in the ated available methods to analyze recorded voice safety investigation fi eld about appropriate ways communications. to analyze recorded voice communications, par- ticularly in terms of analyzing the quality of the [CFIT, as defi ned by the Flight Safety Foundation interaction between crewmembers. CFIT Task Force, occurs when an airworthy FLIGHT SAFETY FOUNDATION • FLIGHT SAFETY DIGEST • OCTOBER 2005 1 C ONVERSATION ANALYSIS aircraft under the control of the fl ight crew is It is acknowledged that a perfect understanding fl own unintentionally into terrain, obstacles or of cockpit activity is diffi cult to achieve without water, usually with no prior awareness by the the opportunity to interview the fl ight crew as a crew.] part of an investigation. However, the methodol- ogy described in this paper is intended to expand As a result of the BASI research, the ATSB con- the level of understanding that can be obtained tracted independent specialists in an emerging from a cockpit voice recording as a part of an fi eld known as “conversation analysis” to analyze investigation. the CVR from the Westwind accident. The proj- ect was conducted by Maurice Nevile, Ph.D., and A.J. Liddicoat, Ph.D., both then of the Australian Executive Summary National University. The independent consultants’ report provided conclusions regarding the crew ecorded voice data, such as from CVRs or interaction that were consistent with the original Rair traffi c control (ATC) tapes, can be an BASI investigation report. More important, the important source of information for accident project showed that the conversation analysis investigation, as well as for human factors re- method provided a very useful approach to search. During accident investigations, the extent identify, describe, demonstrate and explain dif- of analysis of these recordings depends on the fi culties in conversation between two or more nature and severity of the accident. However, individuals. most of the analysis has been based on subjective interpretation rather than the use of systematic This paper discusses the nature of conversa- methods, particularly when dealing with the tion analysis and its potential for use in safety analysis of crew interactions. investigation, as well as its potential for dem- onstrating the importance of appropriate crew This paper presents a methodology, called communication practices. To help explain the conversation analysis, which involves the de- usefulness of the method, information from tailed examination of interaction as it develops the original consultancy project’s examination moment-to-moment between the participants, in of the Westwind CVR is included. This paper context. Conversation analysis uses highly detailed is not an investigation of the circumstances of and revealing transcriptions of recorded voice (or the accident. video) data that can allow deeper analyses of how people interact. It is important to note that a cockpit voice re- cording provides limited information about ac- tivity in a cockpit and cannot provide a complete The paper uses conversation analysis as a tech- understanding of all activities nique to examine CVR data from the Westwind and interactions among fl ight accident. crew. It does, however, provide a good understanding of what The conversation analysis methodology provided happened and why. The analysis a structured means for analyzing the crew’s in- can be enhanced by comparing teraction. The error that contributed directly to average sound recordings from the accident — an incorrectly set descent alti- normal multi-crew communi- tude — can be seen as not the responsibility of cation and activity on a fl ight one pilot but, at least in part, as the outcome of with a recording from a particu- the way the two pilots communicated with one lar fl ight that is being studied. another. The analysis considered the following This comparison can provide aspects in particular: more detailed insights into crew activities and interactions on a • The significance of overlapping talk (when particular operation despite both pilots spoke at the same time); the lack of visual information — for example, from a cockpit • The copilot’s silence after talk from the pilot- video recording. in-command (PIC); 2 FLIGHT SAFETY FOUNDATION • FLIGHT SAFETY DIGEST • OCTOBER 2005 C ONVERSATION ANALYSIS • Instances when the PIC corrected (repaired) identifying the reasons for such the copilot’s talk or conduct; and, errors rather than the errors themselves (Maurino et al., • A range of aspects for how the two pilots 1995; Reason, 1990, 1997). communicated to perform routine tasks. These reasons may include In summary, the conversation analysis methodol- a range of factors associated ogy showed how specifi c processes of interaction with the task and environmen- between crewmembers helped to create a work- tal conditions, as well as the ing environment conducive to making, and not broader organizational context detecting, an error. By not interacting to work in which the crews operated. together as a team, pilots can create a context However, to identify
Recommended publications
  • Home at Airbus
    Journal of Aircraft and Spacecraft Technology Original Research Paper Home at Airbus 1Relly Victoria Virgil Petrescu, 2Raffaella Aversa, 3Bilal Akash, 4Juan M. Corchado, 2Antonio Apicella and 1Florian Ion Tiberiu Petrescu 1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania 2Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, 81031 Aversa (CE), Italy 3Dean of School of Graduate Studies and Research, American University of Ras Al Khaimah, UAE 4University of Salamanca, Spain Article history Abstract: Airbus Commerci al aircraft, known as Airbus, is a European Received: 16-04-2017 aeronautics manufacturer with headquarters in Blagnac, in the suburbs of Revised: 18-04-2017 Toulouse, France. The company, which is 100% -owned by the industrial Accepted: 04-07-2017 group of the same name, manufactures more than half of the airliners produced in the world and is Boeing's main competitor. Airbus was Corresponding Author: founded as a consortium by European manufacturers in the late 1960s. Florian Ion Tiberiu Petrescu Airbus Industry became a SAS (simplified joint-stock company) in 2001, a ARoTMM-IFToMM, Bucharest subsidiary of EADS renamed Airbus Group in 2014 and Airbus in 2017. Polytechnic University, Bucharest, (CE) Romania BAE Systems 20% of Airbus between 2001 and 2006. In 2010, 62,751 Email: [email protected] people are employed at 18 Airbus sites in France, Germany, the United Kingdom, Belgium (SABCA) and Spain. Even if parts of Airbus aircraft are essentially made in Europe some come from all over the world. But the final assembly lines are in Toulouse (France), Hamburg (Germany), Seville (Spain), Tianjin (China) and Mobile (United States).
    [Show full text]
  • A World of Expertise
    Capability list A world of expertise Member of the Lufthansa Technik Group 2 Qualification for personnel in the aviation industry Addressing the industry’s need for training excellence Effective training methods The success of an aviation business depends on the Basic training, type training and competence training – quality, efficiency, safety and flexibility of its operations, each one of these areas in Lufthansa Techncial Training’s be they in the air or on the ground. Although state-of-the- portfolio are provided using different methods. The training art technology and systems are an important part of the takes place either in a classroom setting led by an instructor, equation, the crucial variable is the qualification of your in dedicated workshops, in a maintenance environment most important asset – your employees. Knowledge, skill, or as a trainee-paced, state-of-the-art e-learning course. attitude and creativity are the key differentiators. And those In order to implement all of these options as best as are the result of training. possible, courses are designed in line with the “blended That is why more than 600 companies working in aviation training” principle – optimum training is a mix of diverse, manufacturing, in maintenance, repair and overhaul (MRO) yet compatible and complementary training methods. and in other aviation-related fields worldwide trust Lufthansa The success of Lufthansa Technical Training’s model comes Technical Training – a company built on more than 50 years from a modular approach to training. This concept makes of experience in aircraft maintenance and operations opti- it easy to select just the right amount of training to suit the mization.
    [Show full text]
  • A Statistical Analysis of Commercial Aviation Accidents 1958-2019
    Airbus A Statistical Analysis of Commercial Aviation Accidents 1958-2019 Contents Scope and definitions 02 1.0 2020 & beyond 05 Accidents in 2019 07 2020 & beyond 08 Forecast increase in number of aircraft 2019-2038 09 2.0 Commercial aviation accidents since the advent of the jet age 10 Evolution of the number of flights & accidents 12 Evolution of the yearly accident rate 13 Impact of technology on aviation safety 14 Technology has improved aviation safety 16 Evolution of accident rates by aircraft generation 17 3.0 Commercial aviation accidents over the last 20 years 18 Evolution of the yearly accident rate 20 Ten year moving average of accident rate 21 Accidents by flight phase 22 Distribution of accidents by accident category 24 Evolution of the main accident categories 25 Controlled Flight Into Terrain (CFIT) accident rates 26 Loss Of Control In-flight (LOC-I) accident rates 27 Runway Excursion (RE) accident rates 28 List of tables & graphs 29 A Statistical Analysis of Commercial Aviation Accidents 1958 / 2019 02 Scope and definitions This publication provides Airbus’ a flight in a commercial aircraft annual analysis of aviation accidents, is a low risk activity. with commentary on the year 2019, Since the goal of any review of aviation as well as a review of the history of accidents is to help the industry Commercial Aviation’s safety record. further enhance safety, an analysis This analysis clearly demonstrates of forecasted aviation macro-trends that our industry has achieved huge is also provided. These highlight key improvements in safety over the factors influencing the industry’s last decades.
    [Show full text]
  • Substandard Flight Crew Performance I
    Running Head; Substandard Flight Crew Performance i Substandard Flight Crew Performance: Recurrent Human Factors in Flight Crew Initiated Aircraft Incidents and Accidents By Raymond Newell, BSc (Hons) MSc Doctoral Thesis Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University June 2017 Substandard Flight Crew Performance iii ABSTRACT The objective of this research has been to understand more about aviation accidents in which the actions of the flight crew members (hereafter FCMs) were the main cause. A new con- struct has been developed known as substandard flight crew performance (hereafter SFP) to provide framework and context for this research. To support this construct, the most recurrent examples of SFP were identified from analysis of decades of investigations and reports. Based upon the frequency of occurrence, the potential contribution to aviation safety, and the feasibility of conducting meaningful research, three diverse but interconnected factors have been identified. The first of these related to the recurrent influence of verbal phenomena in aviation accidents, in particular, distracting conversations and unclear communications. The literature indicated that even those tasked with investigating accidents where these phenome- na had been present understood very little about the underlying reasons for their occurrence. Furthermore, although these phenomena have been studied within more general research populations, as far as is known no previous research has examined their function in the avia- tion context. A questionnaire and unstructured interviews with FCMs resulted in two taxon- omies, both of which have been supported by ethnographic1 observations. The next strand of this research critically examined some of the reasons why some flight crews become unsure of their position or orientation whilst navigating both in flight and on the ground, a phenome- non that has been associated with some of the most serious instances of SFP.
    [Show full text]
  • 11ADOBL04 December 2010
    11ADOBL04 December 2010 Use of rudder on Airbus A300-600/A310 (extracted from former FCOM Bulletin N°15/1 – Subject N°40) Reason for issue On February 8th, 2002, the National Transportation Safety Board (NTSB), in cooperation with the French Bureau d'Enquêtes et d'Analyses (BEA), issued recommendations that aircraft manufacturers re-emphasize the structural certification requirements for the rudder and vertical stabilizer, showing how some maneuvers can result in exceeding design lim- its and even lead to structural failure. The purpose of this Bulletin is to re-emphasize proper operational use of the rudder, highlight certification requirements and rud- der control design characteristics. Yaw control General In flight, yaw control is provided by the rudder, and directional stability is provided by the vertical stabilizer. The rudder and vertical stabilizer are sized to meet the two following objectives: Provide sufficient lateral control of the aircraft during crosswind takeoffs and landings, within the published crosswind limits (refer to FCOM Operating Limitations chapter). Provide positive aircraft control under conditions of engine failure and maximum asymmetric thrust, at any speed above Vmcg (minimum control speed - on ground). The vertical stabilizer and the rudder must be capable of generating sufficient yawing moments to maintain directional control of the aircraft. The rudder deflection, necessary to achieve these yawing moments, and the resulting sideslip angles place significant aerodynamic loads on the rudder and on the vertical stabilizer. Both are designed to sustain loads as prescribed in the JAR/FAR 25 certification requirements which define several lateral loading conditions (maneuver, gust loads and asymmetric loads due to engine failure) leading to the required level of structural strength.
    [Show full text]
  • Change 3, FAA Order 7340.2A Contractions
    U.S. DEPARTMENT OF TRANSPORTATION CHANGE FEDERAL AVIATION ADMINISTRATION 7340.2A CHG 3 SUBJ: CONTRACTIONS 1. PURPOSE. This change transmits revised pages to Order JO 7340.2A, Contractions. 2. DISTRIBUTION. This change is distributed to select offices in Washington and regional headquarters, the William J. Hughes Technical Center, and the Mike Monroney Aeronautical Center; to all air traffic field offices and field facilities; to all airway facilities field offices; to all international aviation field offices, airport district offices, and flight standards district offices; and to the interested aviation public. 3. EFFECTIVE DATE. July 29, 2010. 4. EXPLANATION OF CHANGES. Changes, additions, and modifications (CAM) are listed in the CAM section of this change. Changes within sections are indicated by a vertical bar. 5. DISPOSITION OF TRANSMITTAL. Retain this transmittal until superseded by a new basic order. 6. PAGE CONTROL CHART. See the page control chart attachment. Y[fa\.Uj-Koef p^/2, Nancy B. Kalinowski Vice President, System Operations Services Air Traffic Organization Date: k/^///V/<+///0 Distribution: ZAT-734, ZAT-464 Initiated by: AJR-0 Vice President, System Operations Services 7/29/10 JO 7340.2A CHG 3 PAGE CONTROL CHART REMOVE PAGES DATED INSERT PAGES DATED CAM−1−1 through CAM−1−2 . 4/8/10 CAM−1−1 through CAM−1−2 . 7/29/10 1−1−1 . 8/27/09 1−1−1 . 7/29/10 2−1−23 through 2−1−27 . 4/8/10 2−1−23 through 2−1−27 . 7/29/10 2−2−28 . 4/8/10 2−2−28 . 4/8/10 2−2−23 .
    [Show full text]
  • Government and British Civil Aerospace 1945-64.Pdf
    Journal of Aeronautical History Paper No. 2018/04 Government and British Civil Aerospace 1945-64 Professor Keith Hayward Preface This paper is something of a trip down an academic memory lane. My first book, published in the early 1980s, carried a similar title, albeit with a longer time span. While it had the irreplaceable benefit of some first hand memories of the period, the official record was closed. A later history of the UK aircraft industry did refer in part to such material dating from the 1940s, but access to the ‘secret’ historical material of the 1950s and beyond was still blocked by the then “Thirty Year” rule. By the time the restrictions were relaxed to a “Twenty Year” rule or even more by the liberality offered by “Freedom of Information” legislation, I had moved on to the more pressing demands of analysing the world aerospace industry for the SBAC. 1 My years at the Royal Aeronautical Society afforded a bit more scope. Discovery of an archive on the formation of the British Aircraft Corporation, and published by the Royal Aeronautical Society’s Journal of Aeronautical History 2, stimulated a hankering to open more musty files on the 1950s. This led to a series of articles published in the Aviation Historian. However much this satisfied an initial hankering to look back to a critical period in UK aerospace, there were gaps to be filled in the narrative and the analysis. With the encouragement of the Editorial Board of the Journal of Aeronautical History, I have endeavoured to provide a more coherent overview of government policy towards the civil sector.
    [Show full text]
  • FAST Magazine Issue 22
    Cover FAST 11/03/98 21:55 Page 1 FAST 22/p1 ˆ p6 11/03/98 23:45 Page 1 AIRBUS TECHNICAL DIGEST NUMBER 22 MARCH 1998 HYDRAULIC SYSTEM PREVENTING LEAKS 22 JEROME QUENESCOURT FUEL SYSTEM DETECTING LEAKS USING HELIUM 77 ALAIN MARECHAL AND ALAIN DENINOTTI THE INTERNATIONAL REGULATORY CLIMATE ANDREW S. Mc CLYMONT 1111 IMPLEMENTING JAR-OPS WITH AIRBUS INDUSTRIE OPERATIONAL DOCUMENTATION 1717 GUY DI SANTO THE PORTABLE WATER DETECTION TOOL FOR A300/A300-600/A310 AIRCRAFT 2121 RENE SAVOIE AND MARIE-SOPHIE CALAIS LIGHTNING STRIKES AND AIRBUS FLY-BY-WIRE AIRCRAFT CAPTAIN CHRIS KRAHE 2525 AIM-FANS WINS GROWING NUMBER OF ORDERS JEAN-PIERRE DAMBRINE 2828 CUSTOMER SERVICES CONFERENCES 3030 THE FIRST AVIATION REGULATION? 3131 RESIDENT CUSTOMER SUPPORT REPRESENTATION 3232 The articles herein may be reprinted without permission except where copyright source is indicated, but with acknowledgement to Airbus Industrie. Articles which may be subject to ongoing review must have their accuracy verified prior to reprint. The statements made herein do not constitute an offer. They are based on the assumptions shown and are expressed in good faith. Where the supporting grounds for these statements are not shown, the Company will be pleased to explain the basis thereof. © AIRBUS INDUSTRIE 1998 Publisher: Airbus Industrie Customer Services, 1 rond-point Maurice Bellonte, 31707 Blagnac Cedex, France Editor: Denis Dempster, Product Marketing Telephone +33 (0)5 61 93 39 29, Telex AIRBU 530526F, Telefax +33 (0)5 61 93 27 67 Graphic design: Agnès Lacombe, Customer Services Marketing Photo-engraving: Passion Graphic, 60 boulevard Déodat de Séverac, 31027 Toulouse Cedex, France Printer: Escourbiac, 5 avenue Marcel Dassault, 31502 Toulouse Cedex, France This issue of FAST has been printed on paper produced without using chlorine, to reduce waste and help to conserve natural resources.
    [Show full text]
  • Air Transport
    The History of Air Transport KOSTAS IATROU Dedicated to my wife Evgenia and my sons George and Yianni Copyright © 2020: Kostas Iatrou First Edition: July 2020 Published by: Hermes – Air Transport Organisation Graphic Design – Layout: Sophia Darviris Material (either in whole or in part) from this publication may not be published, photocopied, rewritten, transferred through any electronical or other means, without prior permission by the publisher. Preface ommercial aviation recently celebrated its first centennial. Over the more than 100 years since the first Ctake off, aviation has witnessed challenges and changes that have made it a critical component of mod- ern societies. Most importantly, air transport brings humans closer together, promoting peace and harmo- ny through connectivity and social exchange. A key role for Hermes Air Transport Organisation is to contribute to the development, progress and promo- tion of air transport at the global level. This would not be possible without knowing the history and evolu- tion of the industry. Once a luxury service, affordable to only a few, aviation has evolved to become accessible to billions of peo- ple. But how did this evolution occur? This book provides an updated timeline of the key moments of air transport. It is based on the first aviation history book Hermes published in 2014 in partnership with ICAO, ACI, CANSO & IATA. I would like to express my appreciation to Professor Martin Dresner, Chair of the Hermes Report Committee, for his important role in editing the contents of the book. I would also like to thank Hermes members and partners who have helped to make Hermes a key organisa- tion in the air transport field.
    [Show full text]
  • Prior Compliance List of Aircraft Operators Specifying the Administering Member State for Each Aircraft Operator – June 2014
    Prior compliance list of aircraft operators specifying the administering Member State for each aircraft operator – June 2014 Inclusion in the prior compliance list allows aircraft operators to know which Member State will most likely be attributed to them as their administering Member State so they can get in contact with the competent authority of that Member State to discuss the requirements and the next steps. Due to a number of reasons, and especially because a number of aircraft operators use services of management companies, some of those operators have not been identified in the latest update of the EEA- wide list of aircraft operators adopted on 5 February 2014. The present version of the prior compliance list includes those aircraft operators, which have submitted their fleet lists between December 2013 and January 2014. BELGIUM CRCO Identification no. Operator Name State of the Operator 31102 ACT AIRLINES TURKEY 7649 AIRBORNE EXPRESS UNITED STATES 33612 ALLIED AIR LIMITED NIGERIA 29424 ASTRAL AVIATION LTD KENYA 31416 AVIA TRAFFIC COMPANY TAJIKISTAN 30020 AVIASTAR-TU CO. RUSSIAN FEDERATION 40259 BRAVO CARGO UNITED ARAB EMIRATES 908 BRUSSELS AIRLINES BELGIUM 25996 CAIRO AVIATION EGYPT 4369 CAL CARGO AIRLINES ISRAEL 29517 CAPITAL AVTN SRVCS NETHERLANDS 39758 CHALLENGER AERO PHILIPPINES f11336 CORPORATE WINGS LLC UNITED STATES 32909 CRESAIR INC UNITED STATES 32432 EGYPTAIR CARGO EGYPT f12977 EXCELLENT INVESTMENT UNITED STATES LLC 32486 FAYARD ENTERPRISES UNITED STATES f11102 FedEx Express Corporate UNITED STATES Aviation 13457 Flying
    [Show full text]
  • Museum Stories
    Must see: Concorde seum Stori Hangar 4, Concorde Experience Mu es Aircraft highlights This trail has been produced by members of the local community, who selected their highlights and shared personal stories of the site. Concorde Top tip: “I would recommend taking the land train From Hangar 2, to Hangar 3, (Airfield Explorer) from the shop to the civil aviation then down to (The most exciting thing is) “the Boeing for the pilot to mark in the flight mileages Comet. From there to Fantastic Flight Hangar 4, Concorde Experience.” 707 plane, which I flew to Malaya in as – jet set flying at its best and the pilots and on to Hangar 2, Military aviation. Brian, Musselburgh a child going on holiday. I was given a always welcomed you on to the cockpit!” games box on board, which had a book Denise, Edinburgh Go inside the Boeing 707 in Hangar 4, Concorde Experience Boeing 707 Which is your favourite aircraft? De Havilland Comet Designed and illustrated by Dawson Creative. by Designed and illustrated Must see: Must see: De Havilland Comet The Comet was the world’s first passenger Supermarine Spitfire More than 20,000 were built between jet; a much faster aircraft powered by a Hangar 2, Military aviation 1936 and 1948. The Spitfire here at “I personally loved the (De Havilland) jet engine. It made its debut as early as National Museum of Flight was built Comet interior and its round windows.” The Spitfire was the most famous of all 1952. One year later, however, a Comet in July 1945.
    [Show full text]
  • EASA.A.172 A300, A310, and A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES ...................................................................................................................
    [Show full text]