Department of Transportation Federal Aviation Administration

Total Page:16

File Type:pdf, Size:1020Kb

Department of Transportation Federal Aviation Administration Wednesday, November 15, 2006 Part III Department of Transportation Federal Aviation Administration 14 CFR Parts 121, 125, and 135 Filtered Flight Data; Proposed Rule VerDate Aug<31>2005 17:07 Nov 14, 2006 Jkt 211001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\15NOP3.SGM 15NOP3 rwilkins on PROD1PC63 with PROPOSALS3 66634 Federal Register / Vol. 71, No. 220 / Wednesday, November 15, 2006 / Proposed Rules DEPARTMENT OF TRANSPORTATION SW., Washington, DC, between 9 a.m. without incurring expense or delay. We and 5 p.m., Monday through Friday, may change this proposal in light of the Federal Aviation Administration except Federal holidays. comments we receive. FOR FURTHER INFORMATION CONTACT: For If you want the FAA to acknowledge 14 CFR Parts 121, 125, and 135 technical questions: Timothy W. Shaver, receipt of your comments on this [Docket No. FAA–2006–26135; Notice No. Avionics Systems Branch, Aircraft proposal, include with your comments 06–16] Certification Service, AIR–130, Federal a pre-addressed, stamped postcard on Aviation Administration, 800 which the docket number appears. We RIN 2120–AI79 Independence Avenue, SW., will stamp the date on the postcard and mail it to you. Filtered Flight Data Washington, DC 20591; telephone (202) 385–4686; facsimile (202) 385–4651; e- Proprietary or Confidential Business AGENCY: Federal Aviation mail [email protected]. For legal Information Administration (FAA), DOT. questions: Karen L. Petronis, Do not file in the docket information ACTION: Notice of proposed rulemaking Regulations Division, Office of Chief that you consider to be proprietary or (NPRM). Council, AGC–200, Federal Aviation Administration, 800 Independence confidential business information. Send SUMMARY: The FAA proposes to amend Avenue, SW., Washington, DC 20591; or deliver this information directly to the digital flight data recorder (DFDR) telephone (202) 267–3073; facsimile the person identified in the FOR FURTHER regulations by prohibiting the filtering (202) 267–7971; e-mail INFORMATION CONTACT section of this of some original parameter sensor [email protected]. document. You must mark the signals. This proposed rule is based on information that you consider SUPPLEMENTARY INFORMATION: recommendations issued by the proprietary or confidential. If you send National Transportation Safety Board, Comments Invited the information on a disk or CD ROM, mark the outside of the disk or CD ROM and is intended to improve the accuracy The FAA invites interested persons to and quality of the data recorded on and also identify electronically within participate in this rulemaking by the disk or CD ROM the specific DFDRs and used during accident and submitting written comments, data, or incident investigations. information that is proprietary or views. We also invite comments relating confidential. DATES: Send your comments on or to the economic, environmental, energy, before February 13, 2007. Under 14 CFR 11.35(b), when we are or federalism impacts that might result aware of proprietary information filed ADDRESSES: You may send comments from adopting the proposals in this with a comment, we do not place it in [identified by Docket Number FAA– document. The most helpful comments the docket. We hold it in a separate file 2006–26135] using any of the following reference a specific portion of the to which the public does not have methods: proposal, explain the reason for any • access, and place a note in the docket DOT Docket Web site: Go to http:// recommended change, and include that we have received it. If we receive dms.dot.gov and follow the instructions supporting data. We ask that you send a request to examine or copy this for sending your comments us two copies of written comments. information, we treat it as any other electronically. We will file in the docket all • request under the Freedom of Government-wide rulemaking Web comments we receive, as well as a Information Act (5 U.S.C. 552). We site: Go to http://www.regulations.gov report summarizing each substantive process such requests under the DOT and follow the instructions for sending public contact with FAA personnel procedures found in 49 CFR part 7. your comments electronically. concerning this proposed rulemaking. • Mail: Docket Management Facility; The docket is available for public Availability of Rulemaking Documents U.S. Department of Transportation, 400 inspection before and after the comment You can get an electronic copy using Seventh Street, SW., Nassif Building, closing date. If you wish to review the the Internet by: Room PL–401, Washington, DC 20590– docket in person, go to the address in (1) Searching the Department of 001. the ADDRESSES section of this preamble Transportation’s electronic Docket • Fax: 1–202–493–2251. between 9 a.m. and 5 p.m., Monday Management System (DMS) Web page • Hand Delivery: Room PL–401 on through Friday, except Federal holidays. (http://dms.dot.gov/search); the plaza level of the Nassif Building, You may also review the docket using (2) Visiting the Office of Rulemaking’s 400 Seventh Street, SW., Washington, the Internet at the Web address in the Web page at http://www.faa.gov/ DC, between 9 a.m. and 5 p.m., Monday ADDRESSES section. regulations_policies/; or through Friday, except Federal holidays. Privacy Act: Using the search function (3) Accessing the Government For more information on the of our docket Web site, anyone can find Printing Office’s Web page at http:// rulemaking process, see the and read the comments received into www.gpoaccess.gov/fr/index.html. SUPPLEMENTARY INFORMATION section of any of our dockets, including the name You can also get a copy by sending a this document. of the individual sending the comment request to the Federal Aviation Privacy: We will post all comments (or signing the comment on behalf of an Administration, Office of Rulemaking, we receive, without change, to http:// association, business, labor union, etc.). ARM–1, 800 Independence Avenue dms.dot.gov, including any personal You may review DOT’s complete SW., Washington, DC 20591, or by information you provide. For more Privacy Act Statement in the Federal calling (202) 267–9680. Make sure to information, see the Privacy Act Register published on April 11, 2000 identify the docket number, notice discussion in the SUPPLEMENTARY (65 FR 19477–78) or you may visit number, or amendment number of this INFORMATION section of this document. http://dms.dot.gov. rulemaking. Docket: To read background Before acting on this proposal, we documents or comments received, go to will consider all comments we receive Authority for This Rulemaking http://dms.dot.gov at any time or to on or before the closing date for The FAA’s authority to issue rules Room PL–401 on the plaza level of the comments. We will consider comments regarding aviation safety is found in Nassif Building, 400 Seventh Street, filed late if it is possible to do so Title 49 of the United States Code. VerDate Aug<31>2005 17:07 Nov 14, 2006 Jkt 211001 PO 00000 Frm 00002 Fmt 4701 Sfmt 4702 E:\FR\FM\15NOP3.SGM 15NOP3 rwilkins on PROD1PC63 with PROPOSALS3 Federal Register / Vol. 71, No. 220 / Wednesday, November 15, 2006 / Proposed Rules 66635 Subtitle I, section 106 describes the ‘‘capable of recording values that meet (2) Review other airplane designs to authority of the FAA Administrator. the accuracy requirements through the ensure that flight control position data Subtitle VII, Aviation Programs, full dynamic range of each parameter at to the DFDR are accurately recorded and describes in more detail the scope of the a frequency sufficient to determine a that flight control position data filtered agency’s authority. complete, accurate, and unambiguous by systems such as EICAS are not This rulemaking is promulgated time history of parameter activity, with substituted for accurate data (NTSB under the authority described in subtitle emphasis on capturing each parameter’s Recommendation A–94–121). VII, part A, subpart III, section 44701. dynamic motion at the maximum rate FAA Action: Recommendation A–94– Under that section, the FAA is charged possible, including reversals of 120 with prescribing regulations providing direction at the maximum rate minimum standards for other practices, possible.’’ The FAA addressed NTSB methods and procedures necessary for The FAA agrees with these NTSB Recommendation A–94–120 in two safety in air commerce. This regulation recommendations and is proposing to ways. First, in 1997, the FAA revised is within the scope of that authority prohibit signal filtering for specified the DFDR regulations to require that since flight data recorders are the only recorded parameters. certain aircraft be equipped to means available to account for aircraft accommodate additional DFDR movement and flight crew actions History parameters (Revisions to Digital Flight critical to finding the probable cause of First Encounter With Filtered Data Data Recorder Rules; Final Rule (62 FR incidents or accidents, including data 38362, July 17, 1997)). The revised that could prevent future incidents or The NTSB’s first encounter with DFDR regulations prescribe that up to accidents. filtered data that impeded an 88 data parameters be recorded on investigation occurred during its DFDRs, with the exact number of Background investigation of three similar Boeing 767 parameters determined by the date of Statement of the Problem accidents. Two of these accidents airplane manufacture. The number of occurred in 1992 and one in 1993 when, parameters that must be recorded range During several aircraft accident during landing, the nose gear contacted from 18 for a transport category airplane investigations, the National the runway with excessive force after manufactured on or before October 11, Transportation Safety Board (NTSB or normal touchdown on the main landing 1991, to 88 for airplanes manufactured Board) found that some flight data gear. In each case, the airplane fuselage after August 19, 2002.
Recommended publications
  • Home at Airbus
    Journal of Aircraft and Spacecraft Technology Original Research Paper Home at Airbus 1Relly Victoria Virgil Petrescu, 2Raffaella Aversa, 3Bilal Akash, 4Juan M. Corchado, 2Antonio Apicella and 1Florian Ion Tiberiu Petrescu 1ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania 2Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, 81031 Aversa (CE), Italy 3Dean of School of Graduate Studies and Research, American University of Ras Al Khaimah, UAE 4University of Salamanca, Spain Article history Abstract: Airbus Commerci al aircraft, known as Airbus, is a European Received: 16-04-2017 aeronautics manufacturer with headquarters in Blagnac, in the suburbs of Revised: 18-04-2017 Toulouse, France. The company, which is 100% -owned by the industrial Accepted: 04-07-2017 group of the same name, manufactures more than half of the airliners produced in the world and is Boeing's main competitor. Airbus was Corresponding Author: founded as a consortium by European manufacturers in the late 1960s. Florian Ion Tiberiu Petrescu Airbus Industry became a SAS (simplified joint-stock company) in 2001, a ARoTMM-IFToMM, Bucharest subsidiary of EADS renamed Airbus Group in 2014 and Airbus in 2017. Polytechnic University, Bucharest, (CE) Romania BAE Systems 20% of Airbus between 2001 and 2006. In 2010, 62,751 Email: [email protected] people are employed at 18 Airbus sites in France, Germany, the United Kingdom, Belgium (SABCA) and Spain. Even if parts of Airbus aircraft are essentially made in Europe some come from all over the world. But the final assembly lines are in Toulouse (France), Hamburg (Germany), Seville (Spain), Tianjin (China) and Mobile (United States).
    [Show full text]
  • A World of Expertise
    Capability list A world of expertise Member of the Lufthansa Technik Group 2 Qualification for personnel in the aviation industry Addressing the industry’s need for training excellence Effective training methods The success of an aviation business depends on the Basic training, type training and competence training – quality, efficiency, safety and flexibility of its operations, each one of these areas in Lufthansa Techncial Training’s be they in the air or on the ground. Although state-of-the- portfolio are provided using different methods. The training art technology and systems are an important part of the takes place either in a classroom setting led by an instructor, equation, the crucial variable is the qualification of your in dedicated workshops, in a maintenance environment most important asset – your employees. Knowledge, skill, or as a trainee-paced, state-of-the-art e-learning course. attitude and creativity are the key differentiators. And those In order to implement all of these options as best as are the result of training. possible, courses are designed in line with the “blended That is why more than 600 companies working in aviation training” principle – optimum training is a mix of diverse, manufacturing, in maintenance, repair and overhaul (MRO) yet compatible and complementary training methods. and in other aviation-related fields worldwide trust Lufthansa The success of Lufthansa Technical Training’s model comes Technical Training – a company built on more than 50 years from a modular approach to training. This concept makes of experience in aircraft maintenance and operations opti- it easy to select just the right amount of training to suit the mization.
    [Show full text]
  • 11ADOBL04 December 2010
    11ADOBL04 December 2010 Use of rudder on Airbus A300-600/A310 (extracted from former FCOM Bulletin N°15/1 – Subject N°40) Reason for issue On February 8th, 2002, the National Transportation Safety Board (NTSB), in cooperation with the French Bureau d'Enquêtes et d'Analyses (BEA), issued recommendations that aircraft manufacturers re-emphasize the structural certification requirements for the rudder and vertical stabilizer, showing how some maneuvers can result in exceeding design lim- its and even lead to structural failure. The purpose of this Bulletin is to re-emphasize proper operational use of the rudder, highlight certification requirements and rud- der control design characteristics. Yaw control General In flight, yaw control is provided by the rudder, and directional stability is provided by the vertical stabilizer. The rudder and vertical stabilizer are sized to meet the two following objectives: Provide sufficient lateral control of the aircraft during crosswind takeoffs and landings, within the published crosswind limits (refer to FCOM Operating Limitations chapter). Provide positive aircraft control under conditions of engine failure and maximum asymmetric thrust, at any speed above Vmcg (minimum control speed - on ground). The vertical stabilizer and the rudder must be capable of generating sufficient yawing moments to maintain directional control of the aircraft. The rudder deflection, necessary to achieve these yawing moments, and the resulting sideslip angles place significant aerodynamic loads on the rudder and on the vertical stabilizer. Both are designed to sustain loads as prescribed in the JAR/FAR 25 certification requirements which define several lateral loading conditions (maneuver, gust loads and asymmetric loads due to engine failure) leading to the required level of structural strength.
    [Show full text]
  • FAST Magazine Issue 22
    Cover FAST 11/03/98 21:55 Page 1 FAST 22/p1 ˆ p6 11/03/98 23:45 Page 1 AIRBUS TECHNICAL DIGEST NUMBER 22 MARCH 1998 HYDRAULIC SYSTEM PREVENTING LEAKS 22 JEROME QUENESCOURT FUEL SYSTEM DETECTING LEAKS USING HELIUM 77 ALAIN MARECHAL AND ALAIN DENINOTTI THE INTERNATIONAL REGULATORY CLIMATE ANDREW S. Mc CLYMONT 1111 IMPLEMENTING JAR-OPS WITH AIRBUS INDUSTRIE OPERATIONAL DOCUMENTATION 1717 GUY DI SANTO THE PORTABLE WATER DETECTION TOOL FOR A300/A300-600/A310 AIRCRAFT 2121 RENE SAVOIE AND MARIE-SOPHIE CALAIS LIGHTNING STRIKES AND AIRBUS FLY-BY-WIRE AIRCRAFT CAPTAIN CHRIS KRAHE 2525 AIM-FANS WINS GROWING NUMBER OF ORDERS JEAN-PIERRE DAMBRINE 2828 CUSTOMER SERVICES CONFERENCES 3030 THE FIRST AVIATION REGULATION? 3131 RESIDENT CUSTOMER SUPPORT REPRESENTATION 3232 The articles herein may be reprinted without permission except where copyright source is indicated, but with acknowledgement to Airbus Industrie. Articles which may be subject to ongoing review must have their accuracy verified prior to reprint. The statements made herein do not constitute an offer. They are based on the assumptions shown and are expressed in good faith. Where the supporting grounds for these statements are not shown, the Company will be pleased to explain the basis thereof. © AIRBUS INDUSTRIE 1998 Publisher: Airbus Industrie Customer Services, 1 rond-point Maurice Bellonte, 31707 Blagnac Cedex, France Editor: Denis Dempster, Product Marketing Telephone +33 (0)5 61 93 39 29, Telex AIRBU 530526F, Telefax +33 (0)5 61 93 27 67 Graphic design: Agnès Lacombe, Customer Services Marketing Photo-engraving: Passion Graphic, 60 boulevard Déodat de Séverac, 31027 Toulouse Cedex, France Printer: Escourbiac, 5 avenue Marcel Dassault, 31502 Toulouse Cedex, France This issue of FAST has been printed on paper produced without using chlorine, to reduce waste and help to conserve natural resources.
    [Show full text]
  • Flight Safety DIGEST OCTOBER 2005
    Flight Safety DIGEST OCTOBER 2005 Analysis of CREW CONVERSATIONS Provides Insights for Accident Investigation Flight Safety Digest Flight Safety Foundation For Everyone Concerned With the Safety of Flight Vol. 24 No. 10 October 2005 www.fl ightsafety.org OFFICERS AND STAFF Chairman, Board of Governors Amb. Edward W. Stimpson President and CEO Stuart Matthews In This Issue Executive Vice President Robert H. Vandel General Counsel and Secretary Kenneth P. Quinn, Esq. Treasurer David J. Barger Analysis of Crew Conversations ADMINISTRATIVE Provides Insights for Accident Manager, Support Services Linda Crowley Horger Investigation 1 New methods of examining recorded voice communications FINANCIAL can help investigators evaluate interactions between fl ight Accountant Millicent Wheeler crewmembers and determine the quality of the work environment on the fl ight deck. MEMBERSHIP Director, Membership and Development Ann Hill On-board Fatalities Lowest Membership Services STATS Coordinator Ahlam Wahdan Since 1984 for Large Commercial Jets Membership Services Coordinator Namratha Apparao Boeing data assembled according to a new taxonomy created by an international team indicate that controlled fl ight into PUBLICATIONS terrain and loss of control in fl ight were, by a considerable margin, the leading causes of on-board fatalities in accidents Senior Editor Mark Lacagnina 18 from 1987 through 2004. Senior Editor Wayne Rosenkrans Senior Editor Linda Werfelman Associate Editor Rick Darby Ethics Is a Safety Issue Web and Print Y Production Coordinator Karen K. Ehrlich ‘Data smoothing,’ ‘pencil whipping,’ ‘normalization of Production Designer Ann L. Mullikin deviance’ — they’re all tempting shortcuts against which Production Specialist Susan D. Reed LIBRAR aviation personnel must take a principled stand in a safety Librarian, Jerry Lederer culture.
    [Show full text]
  • EASA.A.172 A300, A310, and A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2021. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 62 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 05 Date: 27 May 2021 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES ...................................................................................................................
    [Show full text]
  • Aviation Profiles and Cases
    Ashfords has unique air accident claims and aviation expertise - AVIATION specialist lawyers have represented the victims of air accidents PROFILES AND dating back to 1977. The Aviation Team is dedicated to representing injured victims CASES and families who have lost loved ones as a result of aviation accidents around the world. The head of the Aviation Team is Jim Morris, a RAF pilot for 12 years before qualifying as a barrister to specialise in air accident litigation. The Team’s class leading expertise means that Ashfords has the resources and ability to act in all types of air accidents, from single engine pleasure flights to major airline disasters and acts of terrorism. Ashfords LLP ashfords.co.uk THE AVIATION TEAM Jim Morris Stephen Walker Partner & Barrister Legal Director Head of the Aviation Team [email protected] [email protected] Mobile +44 (0)7974 244769 Mobile +44 (0)7850 506057 Jim specialises in representing the victims of Stephen is a Legal Director in the Aviation Team. He has international air accidents. He was a professionally dealt with a wide range of civil litigation matters over the qualified Royal Air Force pilot prior to becoming an past 28 years. He advises private individuals, sole traders aviation lawyer, and has over 26 years’ experience in and small/medium enterprises in relation to civil litigation aviation and litigation. matters including misrepresentation/ estoppel, breach of contract, defamation, debt recovery, professional During Jim’s 12 years as a pilot, he was qualified on a negligence and high value personal injury cases. number of military aircraft (single piston, single turbo prop, fast jet, twin turbo prop, heavy jet) and his last Prior to joining Ashfords, Stephen worked for the TSB flying tour was on the Boeing E-3D AWACS.
    [Show full text]
  • EASA.A.172 Issue 4 Airbus A300 A310 A300-600
    TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 TYPE-CERTIFICATE DATA SHEET No. EASA.A.172 for AIRBUS A300, A310, A300-600 Type Certificate Holder: AIRBUS SAS 2, Rond-Point Emile Dewoitine 31700 BLAGNAC FRANCE For Models: A300 B1 A300 B4-2C A310-203 A300 B4-620 A300 B2-1A A300 B4-102 A310-221 A300 B4-601 A300 B2-1C A300 B4-103 A310-222 A300 B4-603 A300 B2K-3C A300 B4-120 A310-204 A300 B4-622 A300 B2-202 A300 B4-203 A310-203C A300 C4-620 A300 B2-203 A300 B4-220 A310-322 A300 B4-605R A300 B2-320 A300 C4-203 A310-304 A300 B4-622R A300 F4-203 A310-324 A300 F4-605R A310-308 A300 F4-622R A310-325 A300 C4-605R variant F TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 1 of 66 An agency of the European Union Intentionally left blank TE.CERT.00051-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified. Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. Page 2 of 67 An agency of the European Union TCDS EASA.A.172 AIRBUS A300, A310, A300-600 Issue: 04 Date: 11 March 2019 CONTENTS 1 GENERAL (ALL MODELS) ....................................................................................................... 7 2 A300 B1 SERIES .................................................................................................................... 8 2.1 Certified model : A300 B1 ....................................................................................................... 8 2.2 Powerplant .............................................................................................................................. 8 2.3 Maximum Weights (kg) ..........................................................................................................
    [Show full text]
  • How Airbus Surpassed Boeing: a Tale of Two Competitors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2007 How Airbus Surpassed Boeing: A Tale of Two Competitors William Alexander Burns University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Burns, William Alexander, "How Airbus Surpassed Boeing: A Tale of Two Competitors. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/252 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by William Alexander Burns entitled "How Airbus Surpassed Boeing: A Tale of Two Competitors." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems. Robert B. Richards, Major Professor We have read this thesis and recommend its acceptance: Richard Ranaudo, U. Peter Solies Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by William A. Burns entitled “How Airbus Surpassed Boeing: A Tale of Two Competitors” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aviation Systems.
    [Show full text]
  • In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001
    National Transportation Safety Board Washington, D.C. 20594 PRSRT STD OFFICIAL BUSINESS Postage & Fees Paid Penalty for Private Use, $300 NTSB Permit No. G-200 In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 Aircraft Accident Report NTSB/AAR-04/04 PB2004-910404 Notation 7439B National National Transportation Transportation Safety Board Safety Board Washington, D.C. Washington, D.C. Aircraft Accident Report In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001 RAN S P T O L R A T LUR IBUS A N P UNUM E O T I I O T A N N S A D FE R NTSB/AAR-04/04 T Y B OA PB2004-910404 National Transportation Safety Board Notation 7439B 490 L’Enfant Plaza, S.W. Adopted October 26, 2004 Washington, D.C. 20594 National Transportation Safety Board. 2004. In-Flight Separation of Vertical Stabilizer, American Airlines Flight 587, Airbus Industrie A300-605R, N14053, Belle Harbor, New York, November 12, 2001. Aircraft Accident Report NTSB/AAR-04/04. Washington, DC. Abstract: This report explains the accident involving American Airlines flight 587, an Airbus Industrie A300-605R, N14053, which crashed into a residential area of Belle Harbor, New York, following the in-flight separation of the airplane’s vertical stabilizer and rudder. The safety issues discussed in this report focus on characteristics of the A300-600 rudder control system design, A300-600 rudder pedal inputs at high airspeeds, aircraft-pilot coupling, flight operations at or below an airplane’s design maneuvering speed, and upset recovery training programs.
    [Show full text]
  • Fluid Power Products on the Airbus A300 and A310
    Aerospace Marine Defense S1KFf Fluid Power Products On the Airbus A300 and A310 The Fluid Power Division of Vickers The A300, with seating capacity for up Other advantages of the A300 and A31 0 Aerospace Marine Defense Group, a to 315 passengers, and its smaller include: extremely low noise and air recognized leader in advanced partner the A31 0, with space for 21 0 to pollution levels; the latest in avionics; technology hydraulic and electro- 280 seats, are Airbus' entry into the improved cargo handling capability; and hydraulic components for aerospace, short to medium-range, wide-body a demonstrated high reliability rate. marine and defense vehicles, was commercial jet airliner market. Both The wide-body concept, which Airbus chosen to supply hydraulic pumps, aircraft are fitted with either Pratt & has incorporated into both the A300 and motorpumps, power transfer units and Whitney or General Electric turbofan the A31 0, has greatly increased the valves for the Airbus A300 and A31 0 engines which, combined with the operating efficiency of these aircraft over commercial jet airliners. Airbus Industry, high-lift wing design, make these aircraft earlier jet airliner designs. Because of a consortium comprised of cooperating two of the most efficient and economical its greater capacity for passengers and * airframe manufacturers from throughout jet airliners in use today. The A300 cargo, the A300 series requires fewer Western Europe, is headquartered in series' twin engine concept, along with scheduled frequencies to perform the Toulouse, France, where the aircraft other state-of-the-adt improvements in same productivity of the narrow-body components and subassemblies are engine design, has produced a 25% jets.
    [Show full text]
  • Driver Training 2 Contents
    Driver training 2 Contents Aircraft components-------------------------------------------Page 3 Commercial aircraft ID---------------------------------------- Page 4-66 Helicopter ID-----------------------------------------------------Page 67-68 Business Jet ID---------------------------------------------------Page 69-74 Light aircraft ID--------------------------------------------------Page 75-77 Military aircraft ID----------------------------------------------Page 78-83 Aircraft Dimensions-------------------------------------------- Page 84-91 Taxiway signage------------------------------------------------- Page 92 Phonetic Alphabet--------------------------------------------- Page 93 Radiotelephony------------------------------------------------- Page 94 3 Aircraft Components Fin (Vertical Stabiliser) Wingtip Rudder Tail (Empennage) Airbrakes / Spoilers (Jet Aileron Elevator engines only) Fuselage Flaps Wind Shield (Cockpit) Horizontal Stabiliser Main Gear Nose Gear Wing Engines (nacelle) Nose (Radar Cone) Undercarriage Airbus A200-100 (Formally CS100) 4 Note Airbus purchased a 50.01% majority stake in the CSeries program in October 2017, with the deal closing in July 2018. The Airbus A220, previously known as Bombardier CSeries (or C Series), is a family of narrow- body, twin-engine, medium-range jet airliners marketed by Airbus but designed and built by the Canadian manufacturer Bombardier Aerospace. Airbus A200-300 (Formally CS300) Key Features • Double Emergency exits over wing • Winglets • Engines appear oversized compared to
    [Show full text]